
Journal of Elasticity, Vol. 5, Nos. 34 ,  November 1975 
Dedicated to A. E. Green 
Noordhoff International Publishing - Leyden 
Printed in The Netherlands 

The angular dislocation in a half space 
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ABSTRACT 

The solution for an angular dislocation allows one to construct the fields for any polygonal loop by super- 
position. The paper presents the displacements induced by the angular dislocation in an elastic half space. In 
view of potential applications in geophysics, particular attention is paid to the elastic fields at the free surface. 
The surface data are seen to exhibit a very simple dependence on the elastic constants. 

RI~SUMt~ 

On peut construire les champs 61astiques associ~rs ~. une dislocation en polygone par superposition de solutions 
au probl6me d'une dislocation angulaire. Nous pr6sentons les d6placements induits par une dislocation 
angulaire dans un demi-6space 61astique. En vue des applications g6ophysiques, les champs 61astiques sur la 
surface librc sont 6tudi6s en particulier. Nous montrons que les champs 61astiques sur la surface d6pendent 
des constantes 61astiques d'une fa¢on tr+s simple. 

Introduction 

The classical concept of a Volterra dislocation involves two requirements. The first is 
that the cut not terminate inside the material. The body must therefore be multiply 
connected, and the cut has to reduce its connectivity at least by one. The second require- 
ment is that the relative motion of one side of the cut with respect to the other, or the dis- 
continuity in the displacement field is of the same form in position coordinates as the 
infinitesimal motion of a rigid body. The consequences of these conditions are that the 
mechanical operation of dislocating induces strain that is continuous at the cut. Whereas 
traction must be continuous at the cut on account of Newton's third law, continuity of 
strain in the elastic body implies continuity of all components of stress. If the first require- 
ment is discarded, and the cut is allowed to terminate inside the material, the elastic 
fields are singular at the edge of the cut. Dislocations of this type which are of particular 
interest in materials science and have recently gained applications in geophysics could 
justly be called singular Volterra dislocations. A simplifying feature of singular Volterra 
dislocations is that the strain and stress fields depend only on the boundary of the cut and 
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not on its over-all shape. In addition, more complicated configurations of singular Vol- 
terra dislocations can often be obtained by superposition of simpler cases. 

The idea of angular dislocations was first put forth by Yoffe [1] who showed that they 
can be superposed to yield any closed polygonal loop. Furthermore,  she gave the elastic 
fields for angular dislocations in the unbounded material. However, in geophysical 
applications where polygonal loops are used to model faults in the crust of the earth [2], 
the effect of the free surface cannot be neglected and it is necessary to know the fields in a 
half space. The present paper presents for this purpose the displacements induced by 
angular dislocations in the elastic half space, while leaving the generation of results for 
closed polygonal loops to a later publication in a journal devoted to geophysics. 

Approach 

There is no loss in generality by taking one leg of the angular dislocation as perpendicular 
to the surface of the half space, since any other angular dislocation can be obtained by 
superposition. The angular dislocation considered thus lies in a plane normal to the free 
surface. The dislocation is also made to coincide with one of the coordinate planes 
(Y3, Yl), as shown in Fig. 1. It may be noted that the specific configuration treated here is 
particularly convenient for generating closed polygonal loops. 

~ l r n a g e  
g = Z . V  dislocotion 

/ i  z /  i , 1 1 / 1 1 1 / i / / / 1 1  
a z, 

y, 

cotion 

x. ~ y~ ~z3 

Figure 1. Angular dislocation in a half space. 

The solution for any interior action in the elastic half space can be constructed by 
modifying the fields that would be induced by the same action in the whole space. Thus 
consider an angular dislocation in the infinitely extended material, placed in the region 
x3 = Y3 + a > 0 and having the relation to the coordinate axes indicated in Fig. 1. The 
components of the Burgers vector of this dislocation in the yi-system are (B1, B2, B3). 
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The single angular dislocation in the infinitely extended material leads to tractions on 
the plane x3 = 0 that contain both normal (2733) and shearing (2723, Z31) components. 
The shearing tractions on the plane x3 = 0 can be eliminated, however, by putting in the 
infinitely extended material a second dislocation that is a mirror image of the first dis- 
location across the plane x3 -- 0 and has the direction ~ indicated in Fig. 1. For  the 
Burgers vectors (B1,0, 0) and (0, B E ,  0) of the first dislocation or Cases I and II, respec- 
tively, the image dislocation has the same Burgers vector as the dislocation in xs > 0. 
For  (0, 0, B3) or Case III, on the other hand, the image dislocation must have the opposite 
Burgers vector. It also may be noted that adding the image dislocation simply doubles 
the normal traction on x3 = 0 induced by the original dislocation. The calculations are 
facilitated if a coordinate system is attached to each leg of the dislocation and its image, 
as shown in Fig. 1. The obvious relations between the different coordinates are 

21  ------ Yl cos f l - Y a  sin fl, 

Z2 = Y2,  

za = Yl sin fl + Y3 cos fl, 

R 2 = y2+y22+y2 = z ~ + y 2 + z  2, 

Z1 = Yl COS fl "[- Y3 s i n  fl, 

Z2 ~ Y2,  

~3 = - Y l  sin B+Y3 cos B, 

R2 2 2 -2 = e~l + y~ + e~. = Y l + Y 2 + Y 3  

(1) 

In order to obtain a free surface at x3 = 0, the remaining task is to cancel the normal 
tractions induced by the given dislocation and its image. This is, however, a standard 
problem for the elastic half space 1-3] which can be treated by means of a single harmonic 
function -d that is regular in x3 > 0. The displacement derived from .4 is given by 

21avi = - (Y3 - a )83  8i -~ - -  (1 - 2v)8 i A + (3 - 4v)di3i 8 3 . ~ ,  (2) 

where p is the shear modulus, v Poisson's ratio and the derivatives are taken with respect 
to the coordinates y~ or 37i. The tractions on xa = 373 - a  = 0 associated with the potential 
.4 are 

2723 = 2731 = 0, 2733 = 83 83 ~ "  (3) 

Several combinations of elementary functions appear frequently in the expressions 
for the field quantities, which makes it convenient to adopt  the following abbreviations: 

F = - t a n  -~ Y2 + tan_~  Y2 + tan_~  
Yl Zl 

F = - t a n  -1 Y2 + t a n _ l  Y2 + t a n _ l  

Y2 R sin fl 

Yl z1+y2 cos f l '  

Y2/~ sin fl 

Yl zl+Y2 cos f l '  
(4) 

(P = - Y2 F - y 1  log (/~+y3)+~1 log (/~+~3), 

= - - Y l  i f + Y 2  log ( / ~ d - y 3 ) - - y  2 COS fl log (R+~3), 

= Y~3 F + y 2  sin fl log (/~+ ~3)- 

1 The directions assigned to the two dislocations shown in Fig. 1 are such that  the discontinuity in displacement 
or Burgers vector is evaluated for both  of  them upon crossing the cut or slip plane in the direction of  increasing 
Y2, with the understanding that  the coordinate system Yl is right handed. The slip plane is the sector with the 
angle ft. 
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Finally it may be noted that the subsequent expressions for the elastic fields are restrict- 
ed to the angles - n/2 < fl < n/2. Iffl is outside this interval, the slanting leg of the image 
dislocation cuts into the half space, and an additional dislocation appears in the material. 
It is a simple matter, however, to overcome this difficulty, as will be explained later. 

Case I: Burgers vector (B1, O, O) 

The displacement induced in the infinitely extended material by the given dislocation and 
its image is obtained by simply superposing the fields given by Yoffe [ 1]. The components 
of this displacement in the coordinate system yi are 

8~0-v) {)1 1 }  
B ~  v~ = 2 ( 1 - v ) ( F + F ) - y l y  2 ( /~_y3)+ /~(/l~..~_y3~ 

~ R s i n f l - y ,  /~ sin f l -y ,~  
- y z C O S f l  ( R ( R - z 3 )  + /~(/~+e3) J '  

8~z(1 - v) 

B1 

(5) 

- -  v~ = (1 - 2v){log (R-- Y3) + log (/~ + 93) -  cos fl[log (R-- z3) + log (/~ + z3)]} 

1  os,E1 11 } 
_ yZ R(R ~- Y3) + /~(/~+ 93) R(R-- z3) + R(R-+ ~3 ' 

(6) 

8re(l-v)  ~1  1 . [ - R c o s f l - y  3 ]~ COS fl -~- 93]~ 
B ~  v~° = Y2 { g  /~ - c o s / ~  L R~R ~ /~(~+~)3) J J '  (7) 

The normal traction on the plane x 3 = Y3 q- a ----- 0 due to the dislocation and its image 
is 2 

{( 2re(1 - = Y z 1 cos fl "~( l _ 2v _ ~ 
7 <  - R + .  

1 [  ( R c o s f l + a ) 2 c o s f l ] }  (8) 
+ ~  1-- (R-- z3) 2 . 

The potential that is related to the displacement through (2) and clears the surface 
x3 = y 3 + a  = 0 of the tractions given by (8) is 

2~(l#Bl-V)~ = Y2 v log (R+Ya)+ ~ )  

- -cot f l  a ~ y  2 + 2(1-- v)~ cot fl -- (1-- 2v)~ . (9) 

The components of displacement derived from the given potential A and which con- 
stitute the corrective part of the solution are in the Yi coordinate system 

2 The derivations for angular dislocations and related configurations are greatly facilitated through the tables 
provided by Dixon [4]. 
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4rt(1 -- v) 
B1 

- -  v] = -- 2(1 - v)(1 - 2v)F cot 2 fl + 

47t(1 - v) 
B1 

(1 - 2v)y-z c°s fl c°t fl (c°s fl + R) + R+~3 
/ ~ + ~ 3  

ay2(Y3- a) cot fl 

Yz(y3-a){ -(1-2v) c°tfl+ Y~ ( R) ayl~ 
+ ~(R + 93) ~ 2v + + ~2 J 

Y2@3-a) {c°s fl [ "~ ( R)  + R(R+z3) _~-q_~ (/~cosfl+~3) (1 -2v)cos f l -  cotfl 

+ 2(1- v)(/~ sin f l_y0  cos fll - aP3 cos fl cot p} /~2 

v~ = (1-2v){[2(1 -v)  cot / fl-v] log (/~+Y3) 

(/~ COS fl-~-y3)l} , 

-[2(1 -v)  cot 2 fl+ 1-2v] cos fl log (/~ + ~3)} 

1-2V{y, cot f l (1-2V--R)+VY3-a+~y 3 
R+~3 

(l " 2v)Y., cot fl ( R) aya(~3-a) cot fl 
- = c o s  f l  + - / ~ 3  

Rq-z 3 

{ 1 y 2 ( R )  ay2~ 
+ ~Y3-a --2v+ ~ [(1-2v)y 1 cot fl-a]+ R(Rq-Y3) 2v+ + /~3 j 

+ ~3 -a  ~'cos2 f l -  1 [(1 --2v)ff, 1 cot f l+a cos fl] + aY3 zl cot 
Rq_~, 3 [ ~ /~3 - -  

1 I 2 a~l cot fl R(R -+ z.a) ~_Y2 cos2 fl- 

4n(1 - v) { Y2 (2v+ ; )  B1 v~ = 2( l -v)  (1-- 2v)F cot fl + R~-~ 

Y2/~+~3cosfl( c°s fl+ R)} + Yz(y3-a) ( "  2~3 + ~22) 

+ R(R + 53) ~+z3 cosf l+  -- /~2j- 

The total displacement is evidently 

(10) 

(11) 

(12) 

cx) c vi = vi + vi. (13) 
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Case II: Burgers vector (0, B2, O) 

Using the same notat ion as before, the results for this case are 

8it(1 
V)v~ = - (1 - 2v) {log (R - Y3) + log (/~ + Y3)- cos fl[log (R - z3) + log (/~ + z3)]} 

B2 

} ~l(R sin fl-y~) 1 1 zl(R sin fl-YO + (14) 
+ y2 R(R-- Y3) + /~(~+ 93) + R(R- z3) R(/~ + e3) ' 

8n(1-v)  { 1 1 } 
B2 v~ = 2(1-vXF+ff)+yxy2 R(R--y3) + /~(/~+Y3) 

- Y~ 23) + / ~ ( R +  ~3 

81r(1 - v) 

B2 - (1 - 2v) sin fl{log ( R -  z3) -  log (R + 23)} 

(1 1)Zl(RCosfl-y3)~1(]~ cos fl + 93) (16) 
- Y~ - + R ( R -  z3) - R ( R  + ~3) ' 

2n(1-v)  z °o y,  ( 2v a 
~B~-~(  33)x~=o = - ~ - \ R ~ a  + k ~ J 

1 f 
~2 cos fl(R sin fl-Yl) R(R--z3) ( 

+ ~z'[-R2"~ a2 (Rc°sfi+a)2]}R_z3 ' (17) 

v~3 - a~ 0q5 
27r(1-v) ~ = - y l  vl°g(R+Y3)  "k- g~Y3.} 6~Y3 

#B2 + a - -  

+ cot fl{(1 -- 2v)[/~ - Y3 log (/~ + Y3)] +/~ - z3 log (/~ + e3)} + a ~ + 2(1 - v)~ cot fl, 
c3yx (18) 

__47r(1-v) v] = (1 -2v ){ [2 (1 -v )  cot 2 f l+v]  log (/~ +Y3) 
B2 

- [2(1 - v )  cot 2 fl+ 1] cos/3 log (/~ + 23)} 

1-2v{  -(1-2v)ylc°tfl+vy3-a+ay'c°tB Y~ ( R)} 

{ a(Rsin fl-_ yx) ~ ay,(y~3-a) cot fi (1-2v)  cot fl 21 cos f l -  - /~3 
+e3 ~ cos t~ J 

y 3 - a {  1 y2 ( a~ ay~ 
+ ~  2v+ ~ [ ( 1 - 2 v ) y a C O t f l + a ] -  2v+ 



The anoular dislocation & a half space 209 

(Y3- a )cot f l  { _  cos/3 sin fl+ RaYcoYsa 3 
+ ~ +  ~3 

+ /~ sinR= fl - Y l  [2(1 - v) cos /3-  /~ cos fl+Y3 ( 1 +  
R+ z  3 a )lt /~ COS 

(19) 

4re(1 - v) 

BE 
- -  v~ = 2(1 -v)(1 --2v)F cot 2 fl+ (1-2v)y2 { R + :  Y3 - ( 1 - 2 V - R )  c°t/3 

( R)} ( a )ay2(f~3-a)cot/3 (1 -- 2v)y 2 cot fl 1 + /~ + _Y~ v+ -- = 
R+Y3\ R+~a ~ /~3 (20) 

+ 2v , 1)} 
/~(R+y3) (1-2v)  cot/3 /~+333 /~ + 

+ y203 a) cot /3 f - 2(1 - v) cos fl + R(R + e3) ( 
/~ COS fl+y3 (1 + a ) 

~+~3  R cos fl + /~2 COS 

4re(1 - v) 

B2 
v 5 = - 2(1 - v)(1 - 2v) cot/3{log (/~ + Y3)- cos fl log (/~ + z3)} 

2(1R+y3=-v)y 1 2V+ + e+z3= Cos fl+ 

Y3 -- a ~ 2Vyl ayl~ 
+ - ~ - -  [(1--2v) cot/3-- /~+Y3 R2J  

R-+~a-a{z3 cos fl sin/3 + (Rc°s/3+Y~3) c°t /3[2(1-v)cosfl-Rc°sfl+Y3]~ ~-+~33 d 

cos/3+y )]  
+ sin/3 Rz R~-+~)3) J J" (21) 

Case III: Burgers vector (0, O, B3) 

The solution for this case is specified by the following expressions: 

8n(1 - v) fR  sin fl-Yl 
B3 v~° = y2 s in f l~  R ~ _ z 3  ) 

8~(I - v) 

B3 

+ / ~ ( , ~ + s 3 )  J' 

- -  v~ = (1-2v) sin fl{log ( R - z 3 ) + l o g  (R-t-z3) } 

1 
_ y2 sin fl R(R- 23) 

87~(1 - v )  { 
B3 v~ = 2(1 -v)(F-F)+ye sin fl RR(R_z3)COS B - y 3  

1)} 
(R2- ' + R 23 

I1~ COS flq-Y3~ 

(22) 

(23) 

(24) 
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y2 s i n  fl {R2Ra2 2re(1 - v )  (z~3)x3=o = - + 
liB 3 R2(R -- z3) 

(R cos fl + a)2.'[ 
(25) 

R--z3 f 

2zc(1 - v) 3 = a + if, 
/tB3 0~2 

(26) 

4re(l--v) ~ Y2 (1 R )  B ~  v~ = (1 - 2v) + 
( R + y 2  \ 

= cos  fl + 
R + z  3 

{"= ( < + Y2(f~3--a) c°sflR(R + Z3) COS fl"]-Y3R + z3 c o s f l +  + ~ 2 j '  (27) 

4rt(1 - v) { 
B~ v~ = (1 -2v)  - s i n  fl log (R+,~3) 

/~+Y3 

R(R + ~3) y~ cos/~ s in /~-  ~ -  (~ cos/~ + ~3) , (28) 

B3 
{ } - - v ~ = 2 ( 1 - v )  F +  R-+~3 \ 

{ II~ COS 1~ q" 'Y3 ( R) a'~3"~ + Y2(Y3 --  a) sin fl 1 + = cos fl-]- -I-- •2 j" 
R(R + 53) R + ~3 

(29) 

Displacement at the surface 

Of particular interest in geophysical applications is the displacement at the free surface, 
because it is the most readily measured quantity. It can be shown that the displacement 
at the surface depends linearly on Poisson's ratio for any dislocation configuration [5]. 3 
It requires, however, some fairly tedious manipulations to bring out this dependence 
starting with the general expressions given in the previous sections, and it is worth while 
to record the results. 

3 The special dependence of the surface data on Poisson's ratio was first observed by Converse for rectangular 
loops [6]. 
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Case I: 

--B1 v~ = { 1 - (1 -2v )  cot 2/3}F+ R ~ a  (1-2v) cot//+ 2(R+a) 

yZ(R sin/3-Yl) cos/3 
- -  R ( R  - -  z a )  ' (30) 

B~ v2 = (1-2v) (½+cot //3) log ( R + a ) -  cot/3 log (R-z3) 
sin/3 

R+a (1-2v) Yl cot/3-½a 2(R+a)J + + (31) 
cos/3 

R ( R -  z3)' 

B1 v3 = (1-2v)F cot/3+ 2v+ R - z 3  (32) 

Case II: 

2~ 
B2 vl = - (1 -2v){(½-co t  2/3) log (R + a) + cos /3 cot 2/3 log (R--z3) } 

R + a  (1--2v) y l co t /3+½a+ y2 ~ _  
2(R + a)A + 

zl(R sin/3-Yl) 
R(R--z3) 

B~2V2 = { l + ( 1 - 2 v ) c o t  2/3}F-  R+a (1-2v) co t f l+  2(R~a 

(33) 

Y2 Z1 
(34) 

R ( R -  z3)' 

2n 
B2 v3 = - ( 1 - 2 v )  cot//{log (R + a) - cos /3 log (R-z3)  } 

Yl ( 2 R) z1 ( R )  v + + cos/3 + (35) 
R+a ~ " 

Case III: 

2~ y2(R sin fl-Yl) sin/3 
B~3 v, = R ( R -  z3) ' (36) 

2n y22 sin/3 
B3 v2 -- R ( R -  z3)' (37) 

2re y2(R cos fl + a) sin/3 
B3 v 3 = F +  R ( R -  z3) (38) 

It may be noted that for Case III the displacement at the surface is independent of the 
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elastic constants. 
In all expressions pertaining to the free surface, 

zl = Yl cos fl+a sin fl, 

Za = Yl sin f l - a  cos/3, 

R 2 = y ~ + y ~ + a  2. 

(39) 

Strain at the surface 

The strain in the Yi coordinate system is 

l (Ov~ c~vi'] (40) 
rlij = 2 \t?y i + gy~]" 

The components q23 and qal vanish at the free surface on account of the boundary con- 
ditions. The remaining components at the surface (x3 = Y3 + a = 0) are given below. 

Case I: 

21t _ Y5 (1 - 2v) cot2 fl + 
B~ rl'~ R+a T 2(R+a) R(R+a) cot f l+ ~ a a  

y 2 ( 1  1 ) }  y2cosf l  { y2 (R sin f l_y,)2~ 
+ ~ \ R  + R ~ a  + R(R-z3)  (1-2v)  c ° t 2 f l -  R 2 ~ z ~  J '  (41) 

2re Y2 
B-~ ?/55 - -  R+a 

1 y~Z(1 1 ) 
- - -  - [ 2 - ( 1 - 2 v ) c o t  2 fl] ~ + ~ \ ~  + ~ a a  

+ R ~ -  1_2 + R R(R + a)_]J 

+ Y2 COS fl f l  + 2 v - ( 1  -2v) 
R(R-z3)  

cot 5 f l - ~ \ g + ~  ' (42) 

B~ t/as = 1 - v  - R \ R + a  RE + g (g - za )  g 2 
(R cos +o q , 

g ( R -  za) JJ 
(43) 

Yl Y lY~(  1 1 ) 2rc 1 - [1 - (1  - 2v) cot z fl] ~- + ~ 5 -  \ ~  + 
B~ th2 = R + a 

1 - 2v [½Yx + (ylz- yzz) cot fl Y x y2 ] ]  ~ 
+ R + ~  L 2R g ~ + a j J J  
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+ 1{ 
R(R-z3)  ½[1 - (1 -2v)  cot z f l ] z , -  [v-~(1-2v) cot 2 fl](R sin f l -YO cos fl 

(44) y cos (  
{ (, 1) - - -  [2+(1-2v)  cot 2 fl] Yl y3 + 

R R 2 R R ~ a  

Case II: 

2n 1 
B~2 r h l -  R+a 

yl cot fl Y~ l l ~  
R R(R + a ) ]J )  

R-z3 / )  

2~ 

BE q22 - -  

- ( l - 2 v ) [ c o t f l +  R~aYl (~ 

2~ 

B2 ~/33 = - -  

1{ 
+ R(R-z3)  [1 +(1-2v) cot 2 fl](R cos fl+a) sin f l -  [2+(1-2v)  cot 2 fl]z, 

(45) 

[ R+a (1-2v) cot fl+ 

1 //~ y~ cot fl 
R+a k ~yl R 

(46) 

a )  l [2(l_V)Zl+2V(Rcosfl+a)sin fl 
~2 R(R z3) 1 - v  ( R  \ R + a  

yl 2 zl z,(R sin f l -yl)2~ 
+ R~- + R(R_z3 ) ) '  

Yl cot2 fl 

R 

YlY~ I1 Y l y 2 (  1 1 )} 
R N  +a)]J 4- ~ -  + R ~ a  

{ )} za +Y2 1 1 
+ R(R-z3)  (1-2v) cot 2 fl ~ R + R - z 3  , 

2n t'2 
B~2 th2 - R +a - - - { [ l + ( l - 2 v )  cot 2 fl] - - -  

aZzl zl(R-c°s t +a)21"  (47) 
R 2 R(R-z3)  [ J '  

R R 2 + R ~ a  

1 - 2 v  [ 1 Yl cot fl + ~  [ - ~ + ~  + - -  R(R+a) - R(R-z3)  [l +(1-2v)c°tZ fl]c°sfl 

Yl 2:1 zI(R si n f l -YO~ (48) 
- R ~ + R ( R - z 3 )  )" 

Case III: 

2n 
B~a rh l - 

2n 
B~/722 -- 

y/sin fl {1 y2 (R sin fl_yl)2_~ 
R(R-z~)  R 2 R(R-z3)  ~'  

Y2 sin f l {  y ~ ( 1  1 )}  
R(R--z3) 2-- ~ k + R- -~  ' 

(49) 

(5O) 
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2n vy2 sin fl { ~  (R cos fl+a)2~ 
B3 = (1- 5k  z3) + j '  (51) 

2n sin fl { [; -YzZ-I y, y2"~ (52, 
BZ ~]12 --  R(R-.._z3) (R sin fl-Yx) R(R-z3)]  + ~ T - j .  

If the surface of an elastic half space is subjected to normal tractions only, the normal 
components of strain at the surface are related through the Lam6 condition. This con- 
dition gives for the corrective part of the solution 

q ] l  -[-n~2 = PLY3, (53) 

where q~s denotes strain derived from the displacement v~. Since the surface of the half 
space is free of tractions, Hooke's law for the total strain leads to 

(1 - 2v)q33 + Vrlkk = 0. (54) 

Combining (53) and (54) results in 

q l l  -{-/722 = ( l  --  V)(q~ k --  2q~°3), (55) 

= v'2 ~ ~" (56) /133 ~ l~33--1~kk), 

where ~/~ is strain derived from the displacement v~. It is seen from (55) and (56) that part 
of the strain at the surface can be found without knowledge of the corrective part of the 
solution which is specified by the potential A. 

It also may be noted that the strain components qa 1,/722 and ~]12 at the surface depend 
linearly on Poisson's ratio for Cases I and II, and contain no elastic constants for Case III. 

Rotation at the surface 

The rotation tensor, defined as 

1 (Ovj OUi~ 
= (57)  

is the antisymmetric part of the displacement gradient Ovj/Ox,. Although the quantities 
of principal interest in geophysical applications are the tilts or components with mixed 
subscripts of the displacement gradient at the surface, it is convenient to list the 
components of the rotation tensor, because they can be combined with the components 
of strain to yield the tilts, and fewer and shorter expressions need be given. 

Case I: 

4nf212--  1 { [ S~ R+a (1-2v)  cotf l  - 2 q  

+ F 1 
{ - [ 1 -- (1 -- 2v) cot 2 fl]zl + [2(1 -- v) + (1 -- 2v) cot 2 fl] 

R(R--z3) 

x (R sin fl--Yl) cos fl}, (58)  
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{ a( ~ 2n ~223 _ 1 2v- (1-2v)  Yl cot fl + 1 -  
B-~I R + a T R R 2,] R(R + a) 

1{ 
+ R(R-z3) (1 --2V)Z 1 cot fl-(R cos fl+a) cos fl 

+ + 
R - z 3 R 2 ' 

B~ R(R+a) R-~a 2v+ ~ + R2 j 

+ yzCOSfl { Rsinf l -ya(cosf l+R ) ay~ 
R(R-z3) ( l -2v)  cotf l+ R--zs - R23 " 

Case II: 
2~,2 y~(1 cos~h 

,2 = ~ +a R - z 3 / '  

2~i223 - Y2 {--(1--2v) cotf l+ Y' ( R )  ayl~ B~ R(R+a ~ a a  2v+ + R2 j 

{ Y2 (1 --2v) COS fl cot fl-- ~ + 
+ R(R-- z3) R-- Z 3 ] )  

2zr 1 { y lcot  fl [ y2-](2v R) ay21 
ff2f231-R+a (1-2v) ~ + 1 R(R+a)I\ + - R3J 

+ l{ 
R(R-z3) [(1-2v)(R sin fl-Yl) cot fl-(R cos fl+a)] cos fl 

r ayl R sin fl--Yl (cos fl+ R)l} " 
+ zl [R 2 R-z3 

Case III: 

4~t (R sin fl-Yl) sin fl 
B~3 f f ~ l  2 = - -  R(R- z3) 

2~ f223 _ R2 1+ R(R+a) + R2(R--z3) + B3 
(R cos ~+a)2~ 

R - - z  3 3 '  

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

2re Y2 { 1 a cos/3 [-(Rcosfl+a) 2 
- -  ~ t '~31  - -  + 
B 3 R ~ R 2 R(R-- -  z3) [_ R - -  z 3 

(66) 
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Conclusion 

As mentioned before, the formulas given for the elastic fields of the angular dislocation 
are valid only for angles - n / 2  < fl < n/2.  Otherwise the slanting leg of the image 
dislocation cuts into the half space Xa > 0 and gives an additional dislocation in the 
material. 

This fact can be disregarded if angular dislocations are used to construct by super- 
position a closed polygonal loop. In such case, the undesired contributions of the angular 
image dislocations cancel automatically. 

Nevertheless, an angular dislocation such that the slanting leg terminates at the 
surface is a valid problem in its own right and, furthermore, it is needed in the construc- 
tion of open polygonal dislocations that start and terminate at the surface. As indicated 
in Fig. 2, however, the angular dislocation piercing the surface can be obtained by super- 

\ \ \  \ - -  + 

4 
Figure 2. Angular dislocation piercing the surface of a half space. 

posing an angular dislocation with - n / 2  < fl < n/2 and a straight dislocation which 
terminates at the surface. The elastic fields for the latter have been given by Yoffe [7]. 
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