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Summary. The reflectivity technique for the calculation of synthetic seismo- 
grams from a point source in a horizontally stratified isotropic structure is 
extended to include weakly anisotropic layers. The formulation is in terms of 
displacement excitation factors rather than potential functions, which have 
not yet been specified for wave propagation in anisotropic media. Coupling 
between vertical, radial and transverse components of motion increases the 
number of plane-wave reflection and transmission coefficients which must be 
computed for any problem. These coefficients are calculated by extending 
Kennett’s iterative scheme for the computation of isotropic coefficients to 
stratified anisotropic structures. 

1 Introduction 

Theoretical and numerical calculations show that there are fundamental differences between 
the propagation of seismic waves in isotropic and anisotropic media (Crampin 1977a). Many 
of these differences are subtle and difficult to detect on observed seismograms, and the 
calculation of synthetic seismograms is an important technique for determining the effect of 
anisotropy on seismic wave propagation in any particular Earth structure (Crampin 1981). 

The detection and analysis of seismic anisotropy in the Earth’s crust and upper mantle is 
becoming increasingly important as the number of possible applications continues to 
increase: Crampin (1977b) and Meissner & Fliih (1979) have drawn attention to the possi- 
bility of anisotropy in the crystalline upper mantle, which may contain information about 
the past and present deformation processes and the tectonic history of the lithosphere. 
Enough anisotropy may be present in shallow sedimentary beds to be important in explora- 
tion geophysics (Crampin & Radovich 1982; Gal’perin 1977). Anisotropic effects are 
displayed by structures containing aligned cracks, and these can be modelled by propagation 
through homogeneous anisotropic media once appropriate elastic constants have been deter- 
mined (Crampin 1978). Such crack anisotropy has applications to hot-dry-rock geothermal 
heat extraction, and to the study of phenomena associated with earthquake dilatancy. Shear 
wave splitting, diagnostic of anisotropy, has now been observed near the Northern Anatolian 
Fault in Turkey by Crampin et al. (1980). 
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756 D. C. Booth and S. Crampin 

For a great many investigations of anisotropic structures the seismic effects are too 
complicated to understand without numerical experiments with synthetic seismograms. 
Synthetic seismograms for plane wave propagation through anisotropic media have been 
calculated by Keith & Crampin (1977~)  and Crampin (1978). However, plane waves have 
very limited applications in the Earth, where all local and regional arrivals have curved 
wavefronts. Since the directions of group (energy) and phase propagation generally diverge 
in anisotropic media (Crampin 198 l) ,  there are fundamental differences in behaviour 
between waves with plane and curved wavefronts in anisotropic propagation (Crampin & 
McGonigle 1981). 

In this paper, we modify the reflectivity technique of Fuchs & Muller (1971), for calcu- 
lating synthetic seismograms from point sources in layered media, to accept structures where 
some of the layers may have generally orientated anisotropic symmetries. There are several 
ways to calculate synthetic seismograms from point sources in layered structures. The 
particular attraction of modifying the reflectivity technique for anisotropic propagation is 
that it makes use of propagator matrices (Gilbert & Backus 1966) or reflection and trans- 
mission coefficients at interfaces (Kennett 1974), which can be readily calculated for aniso- 
tropic structures through the work of Crampin (1970), and Keith & Crampin (1977a, b). 

2 Wave propagation in anisotropic media 

We shall first indicate some of the fundamental differences between wave propagation in 
isotropic and anisotropic structure. There are three body waves propagating in every direc- 
tion in anisotropic media: a quasi-compressional wave, qP, and two quasi-shear waves, qS 1 
and qS2, with velocities which vary with direction, and with particle-motion which also 
varies with direction, but has fixed orthogonal polarizations for any particular direction of 
phase propagation (Crampin 1981). These polarizations are not in general coincident with 
the dynamic axes formed by the wavefront and the propagation vector, and, in particular, 
the polarizations of qS1 and qS2 are only parallel to SH and SV for propagation in parti- 
cular symmetry directions of the anisotropy. 

It is not possible to describe plane wave propagation in mutlilayered anisotropic media 
separately in terms of wave motion in the sagittal and transverse directions, as in isotropic 
layered structures. Consequently, there are differences between the matrix formulations in 
the reflectivity method which give the plane wave responses of multilayered isotropic, and 
anisotropic media. The calculation of the plane wave response of a multilayered structure 
for a wide range of frequencies and horizontal wavenumbers is a fundamental part of the 
reflectivity technique. The appropriate matrix formulations for multilayered anisotropic 
media will be described in detail in Section 4. 

The variation of body wave velocity with direction means that the direction of group 
velocity propagation is not in general perpendicular to the plane of constant phase, which 
propagates at the phase velocity. It is the phase velocity which is represented in the wave 
equations and in most other analytical expressions, whereas it is the group velocity which 
is the velocity of propagation of wave energy and is measured in most observations. 

The deviation of the energy propagation vector from the phase propagation vector in 
anisotropic media gives rise to differences in the propagation characteristics of waves with 
plane and spherical wavefronts. Two orthogonally polarized plane shear waves will piopagate 
in any direction at the phase velocity, with parallel wavefronts which are normal to the 
phase propagation vector. However, the velocity of arrival of a spherical wave from a point 
source is the group velocity of energy propagation along ray which deviates from the 
direction of the phase propagation vector. At least two shear waves propagate along a ray in 
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Figure. 1. Schematic illustration of a ray path through a plane horizontal layer possessing general 
anisotropic symmetry, where the sagittal plane is not a plane of symmetry. (a) Sectional view. 
(b) Plan view. In order that the wave energy may propagate from A to B, rather than B', the propa- 
gation vector at A must diverge from the vertical plane through A and B. 

any direction, and there may be additional arrivals if the direction intercepts cusps in the 
group velocity surface (sometimes called the wave surface). These arrivals will not, in 
general, have orthogonal polarizations and will be associated with different directions of 
phase propagation. 

Some of the effects of the divergence of the group and phase velocity vectors in a hori- 
zontally stratified half-space containing isotropic and anisotropic layers are illustrated by 
Fig. 1. A schematic representation of a ray path from point A to point B through a strati- 
fied anisotropic structure is shown in Fig. l(a). The plan view in Fig. l(b) shows incident 
energy radiating from A in the vertical plane containing A and B, which deviates away from 
this plane in the anisotropic medium, but returns to propagating parallel to the original 
plane on re-entering an isotropic medium, and propagates to B', not B. We would need to 
consider an incident ray out of the vertical plane in order to determine the travel time of 
wave energy from A to B (Fig. Ib). This behaviour occurs because the reaction at an 
interface is controlled by the phase propagation vector, whereas the energy is controlled by 
the group velocity vector. These vectors may deviate by up to 30" for some directions of 
propagation in strongly anisotropic solids (Crampin, Stephen & McConigle I982), although 
the deviation is much less in the weakly anisotropic materials which we shall consider in this 
discussion. 

The independence of the sagittal and transverse components of motion in isotropic media 
allow the wave propagation to be described in terms of wave potentials, The wave energy 
propagates in the sagittal plane, and the displacements in the near and far field at any 
azimuth from a general type of point source can be expressed in terms of integrals of 
cylindrical wave potentials (Hudson 1969). Kennett & Kerry (1979) have generalized the 
original reflectivity technique of Fuchs & Muller (1971) to construct synthetic seismograms 
at any point in a horizontally stratified isotropic structure, for a buried, general type of 
point source. 

Wave propagation in anisotropic media does not have a convenient wave potential 
representation, and a general formulation equivalent to that of Kennett & Kerry has not yet 
been derived. In order to make the problem tractable, we impose some restrictions on the 
initial conditions: we consider only the far-field response due to a point source in an 
isotropic surface layer; we allow only weakly anisotropic media to form the stratified 
half-space; and as in the original reflectivity technique, free surface reflections above the 
source are ignored, although their effect may be included at the receiver. 
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3 The reflectivity technique for anisotropic structures 

We use the horizontally stratified model structure in Fig. 2 ,  which is similar to that used for 
the original isotropic reflectivity technique (Fuchs 1971), but we now permit anisotropic 
layers in the reflection zone. 

A point source of elastic energy lies at the origin of a Cartesian coordinate system imme- 
diately below the surface of the plane-layered half-space (x3 > 0). The half-space, which is 
numbered as in Fig. 2, consists of a surface layer containing the source, and the reflection 
zone comprised of n homogeneous anisotropic layers. An analytical description of the 
wavefield from a source in an anisotropic medium has not yet been derived, and we avoid 
difficulties in the description of the source by stipulating that the source layer is isotropic. 

The point source in the isotropic layer generates three possible source wave typesj, where 
j = 1 ,  2, 3 represents P-, SV- ,  and SH-waves respectively. Six plane wave types p = 1, 
2,  . . . 6 ,  with the same horizontal wavenumber vector ( k , ,  k 2 ,  0) may propagate away from 
the source in each layer. The wave types p = 1 , 2 , 3  represent qP, qS 1 ,  and qS2 wave propa- 
gating downwards, and p = 4, 5 , 6  their upward travelling equivalents. 

The wave potential of a curved wavefront in an isotropic medium can be expressed as an 
integral of plane, or cylindrical wave potential solutions to the isotropic equations of motion 
through the Weyl, or Sommerfeld integrals, respectively. Wave propagation in anisotropic 
media can be described in terms of plane wave displacements (Keith & Crampin 1977a). The 
far-field component displacement spectra at (xl, 0, x3) in an anisotropic layer m due to a 
point-source at (0, 0, 0) is then written as a superposition of plane wave displacements in an 
expression which corresponds to the Weyl integral in isotropic media: 

D. C. Booth and S. Crampin 

x exp(iklx,)} dk,dk,; (3.1) 

where F(w)  is the source spectrum, and the summations include all possible source wave 
types j = 1, 2, 3 and all waves propagating in the receiver layer, p = 1, 2, . . . 6 .  The part of 
the integrand in curly brackets represents the anisotropic plane wave displacements, and the 
integration is over both components of the horizontal wavenumber vector, k l  and k 2 .  

.L 
2. x g  

Figure 2. Configuration of the reflection zone. The source, S, is located at the top of an isotropic layer 
above the multilayered reflection zone. 
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The variable q; is the vertical slowness of wave-type p in layer m. In isotropic media, 
where p = 1, 2, 3 represents downward propagating P-, SV-, and SH-waves respectively, we 
can write q? explicitly as: 

(3.2) 

where is the wavenumber in the direction of propagation of the wave type j  in layer m, 
and k is the horizontal wavenumber in the direction of the receiver. The ain ( p )  terms repre- 
sent the direct cosines of the unit amplitude polarization vector of each wave type p in the 
component directions xi, i = 1, 2, 3, in layer m. They are given by simple expressions in 
terms of k, k r  , and q? in an isotropic layer (Table 1). 

In an anisotropic layer, q? and a T ( p )  cannot be written explicitly. They are found by 
solving either a sextic polynomial for q; and three simultaneous equations for the polari- 
zation vector (Crampin 1970), or a linear eigenvalue problem, where the eigenvalues are the 
squares of the velocities and the eigenvectors are the polarizations (Taylor & Crampin 1978; 
Crampin 1981). 

The fm(p)  terms are excitation factors which give the relative effect of each plane wave 
to the total displacement in layer rn for a source wave type j .  When evaluated in isotropic 
media, these displacement excitation factors are equivalent to, though not in general equal 
to, the excitation factors defined in terms of wave potentials which have been used by Fuchs 
(1971), Kennett (1974) and many others. The excitation factors f?(p), p = 4, 5 , 6  and the 
factors f i n @ ) ,  p = 1 , 2 , 3  correspond to reflection and transmission coefficients, respectively, 
for the whole layer sequence. They include the effects of all reverberations and mode 
conversions in the reflection zone, with the associated path-dependent phasing of the 
response. Thus they are a function of frequency, horizontal wavenumber and the elastic 
constants of the reflection zone. The technique for the computation of the f p ( p )  in an 
anisotropic reflection zone is described in detail in the next section. 

The source function Si gives the amplitude directivity of each of the three possible wave 
types P, SV, and SH transmitted from the point source. It is a function of horizontal wave- 
number and the elastic constants of the source layer. Since the propagation of energy at the 
group velocity diverges from the phase propagation vector in anisotropic media, S is a very 
complicated function in anisotropic media, and so we confine the source to an isotropic 
layer at the top of the half-space. 

An evaluation of the wave energy arriving from a point source at any point in an aniso- 
tropic reflection zone will require a superposition of plane waves whose propagation vectors 
are not in general confined to the sagittal plane. Thus the computation of the far-field 
displacement spectra of a curved wavefront from an anisotropic reflection zone requires a 
double integration over the sagittal and transverse components of the horizontal wave- 

Table 1. Relative values of ~ i ( p )  for an isotropic layer in terms of wave- 
numbers k, k , ,  k 2 ,  v, and v 2  where v i  = wqi, and the superscript m is omitted. 
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number vectors, as in (3.1). The terms S , - , r ( p ) ,  a?@), and q7 are functions of k l  and k 2 ,  
andfJn(p) is also a function of w. 

In an isotropic reflection zone, the displacement spectra due to a point source may be 
obtained by appropriate differentiations of the Sommerfeld integral representations of the 
wave potentials (Muller 1969). The expression for the far-field component displacement 
spectra at (xl, 0, x3) can be written in terms of a single integral over k l :  

D. C. Booth and S. Crampin 

3 6  
u(a>=F(w) 1 c SjJo(klx*)f~(P)aT(P)  exp t-iwqpm(X3-dm)Idkl; (3.3) 

j = l  p = l  

where Jo is the Bessel function of the first kind and zero order. The terms Sj,  fim(p), a y ( p )  
and qF refer to the same parameters as the equivalent terms in (3.1), but in an isotropic 
reflection zone their dependence on wavenumber is confined to the sagittal component of 
the horizontal wavenumber vector, k , .  Expressions for q; and a?(p )  have been given in 
(3.2) and Table 1,  and Sj is given in Table 2 for the simple types of point source shown in 
Fig. 3 .  All the wave energy arriving at the receiver travels in the sagittal plane, and a single 
integration over k l  gives the displacement spectra of each wavefront. 

The evaluation of the excitation factorsfF(p) over the required range of frequencies and 
horizontal wavenumbers, and the subsequent integration and Fourier transformation to the 
synthetic seismograms, is expensive in computer time even for isotropic media. In aniso- 
tropic media, the f m ( p )  are intrinsically more difficult to compute, since the anisotropic 
equations of motion must be solved for the q r  and $ ( p )  in each layer for each horizontal 
wavenumber. In addition, the propagator matrix formulations yielding the f F ( p ) ,  which are 
described in the next section, cannot be simplified by treating the wave motion in the 

I I 

( a  1 EXPLOSION 
I 

( b )  SINGLE COUPLE 

( c )  DOUBLE COUPLE ( d )  LINERR DOUBLET 

Figure 3. Amplitude directivity patterns for P- and SV-waves (solid and dashed lines, respectively) gene- 
rated by (a) explosion, (b) single couple, (c) double couple and (d) linear doublet. 
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Anisotropic reflectivity: theory 76 1 
Table 2. Values of Si for each wave type for the point sources in Fig. 3 with the same notation as in 
Table 1, and superscripts m = 1 omitted. The couples may be rotated by 0 about the x,-axis, and the 
doublet by @about  thex,-axis  to generate SH motion. D = - l / 4npwz .  

Source type P : j = 1  SV: j = 2 S H : j = 3  

Explosion -k k l  
(Fuchs & ~- 

Muller 197 I )  V 1  

Dkk: k v ,  
Single couple ik:) case 
(Muller 1969) V 1  

0 

Double couple Dkk: 2kv1  Dkk: v : - k 2  
(Kind & ~~ (-FJ case ~ v2 (TJ case Muller 1975) v1 

Linear doublet 
(Pilant 1979) V1 

0 

sagittal and transverse directions separately. The evaluation of the displacement spectra in 
(3.1), involves the computation of the integrand over a range of frequencies and two wave- 
number ranges, corresponding to the radial and transverse components of the horizontal 
wavenumber vector. These calculations would require unacceptably long computing times 
with the techniques available to us at present. 

However, a good approximation to the true seismograms may be obtained with a single 
integration over wavenumber, if we only consider weak@ anisotropic media for which we 
can assume that the wave energy does not diverge significantly from the sagittal plane. This 
is equivalent to assuming that the integrand in (3.1) is only weakly azimuthally dependent, 
and then the expression (3.3) becomes a reasonable approximation to (3.1). Then the 
fim(p),  a r ( p )  and qr in the anisotropic reflection zone need only be calculated over a 
range of values of the sagittal component of the horizontal wavenumber vector. Note that 
the assumption that Si is only weakly azimuthally dependent implies that the approximate 
expressions for the displacement spectra cannot be used near a node in the azimuthal direc- 
tion of the source directivity pattern, where there is a rapid variation of signal amplitude 
with direction. 

The matrix formulations which have been developed to calculate the plane wave exci- 
tation factors in horizontally stratified anisotropic structures are described in the next 
section. 

4 Calculation of the plane wave response 

4.1 T H E  D I R E C T  M E T H O D  

The plane wave decomposition in (3.1) and (3.3) allows the use of the propagator matrix 
formulations of Gilbert & Backus (1966), adapted for anisotropic media by Crampin (1970) 
and Keith & Crampin (1977b), to describe wave propagation through the sequence of layers. 
The excitation factors in any layer m may be defined as phased with respect to the top of 
the layer as in equations (3.1) and (3.3), or the bottom of the layer, and the corresponding 
6-vectors are written f" and fm respectively, dropping the subscript j .  These vectors are 
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related by  the equation: 
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f" = D m f m ;  

where 

D" = diag [ioqr (dm -a'")], p = 1, 2 . . . , 6 .  

We define a stress-displacement 6-vector p, whose elements are the displacements and 
the vertical components of  stress, ui3 : 

vm = ( u l t u 2 , ~ 3 ~  u131023, 033)T; (4.2) 

where v" is related to the excitation vector f" in layer m by 

(4.3) vm = E m f " ;  

and E m  is given by Keith & Crampin (1977a). The continuity of  the stress-displacement 
vector across any interface m gives: 

(4.4) Vm = ~m - 1  -m - 1 .  
f ,  

so that ,  from (4.3), the excitation factors on  either side of the m th interface are related by 

(4.5) f r n  = ( E r n l - 1  ~m - 1  i m  - 1 .  

The stress-displacement vectors a t  the top and bottom of any anisotropic layer m are 
related by: 

p = Am " rn  - 1 .  

where the anisotropic propagator matrix A" is given by 

(4.6) 

(4.7) = ~ m ( ~ m ) - 1 ;  

Keith & Crampin (1977b). Thus the excitation factors in the layers above and below the 
reflection zone are related by: 

. . . A' Elf' .  (4.8) f f l  = (Efl)-l Afl - 1  

Application of the appropriate boundary conditions t o  the reflection zone for each incident 
wave type j ,  and the use of  equations (4.3) and (4.6), allows us t o  solve for the excitation 
factors in any layer of the multilayered structure. Note that when all the layers are isotropic, 
the wave propagation in the sagittal and transverse planes decouples, and the sagittal and 
transverse components of the wave motion may be described separately in terms of 4 x 4 
and 2 x 2 propagator matrices. 

Straightforward calculation o f  the excitation factors by direct application o f  the propa- 
gator matrices can lead t o  significant loss of  numerical precision. Kind (1976) overcomes 
these problems by using a system of reduced matrices, the elements of which are derived 
from all the possible subdeterminants of the isotropic propagator matrices. This method is 
efficient when applied t o  the 4 x 4 and 2 x 2 isotropic propagator matrices, but it is unsuited 
for application t o  the full 6 x 6 anisotropic propagator matrices. 

Kennett (1974) adapted the Gilbert-Backus propagator formulation to  produce a con- 
venient iterative method of  solution for the excitation factors on  either side of a stratified 
isotropic reflection zone. This technique, which avoids the inaccuracy problem, is capable 
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)f easy physical interpretation and is easily extended to an anisotropic reflection zone. 
Cennett & Kerry (1979) have extended the iterative technique to the calculation of the 
dane wave response when both source and receiver are located in the reflection zone, with 
111 free surface effects being included. An anisotropic formulation of the work of Kennett 
!k Kerry has not yet been developed, but we shall show how excitation factors due to a 
source outside an anisotropic reflection zone may be calculated at a receiver located outside 
or inside the reflection zone, using the work of Kennett (1974) and Stephen (1977). 

4.2 T H E  I T E R A T I V E  M E T H O D  

We partition the matrix D" (equation 4.1) and the vectors f", f" into Upward and 
Downward propagating components: 

and we can write f" = (f,", f:)'. 
Following Kennett (1974), we shall be describing the propagation through a sequence of 

layers in terms of the matrices RC, R:, T; and T;, where the matrix elements are the 
Reflection and Transmission coefficients for Upward and Downward propagation for the 
mth interface. Kennett used 2 x 2 coefficient matrices and two-component excitation- 
factor vectors fg , f: in his formulation, to describe P- and SV-wave motion in an isotropic 
reflection zone. This formulation can be extended to an anisotropic reflection zone by 
substituting 3 x 3 coefficient matrices and three-component excitation vectors in the matrix 
equations. 

The boundary conditions at interface m for a wave incident from the (m - l ) th  layer are: 

m -1 = ~ m  f m  - 1 .  
f u  D D  3 

and (4.10) 

fg = T p  fz-1. > 

where 

RE = ( r p l  r l l  rZ1 i, and T; = (':; ::: :;:) ; 

m tPP t1P t2P m rpp T I P  r2P 

,rpa r12 r22  D 

and (Y,,):, for example, is the interface coefficient for a reflected @-wave from a qS1- 
wave incident Downwards on interface m and phased with respect to the bottom of the 
(m -1)th layer. There are similar relationships for upward propagating incident waves on 
interface m phased with respect to the top of t hem th layer: 

f: = R ;  f:; 

and (4.1 1) 

fr-l = Tm f m ,  u u  

The interface coefficients are independent of frequency when expressed in this way with the 
phase of the excitation factors related to the interface where the transformation takes place. 
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They are obtained by solving (4.5) with the appropriate boundary conditions (4.10) and 
(4.1 1) for each incident wave type. The reflection and transmission coefficients correspond 
to the appropriate upward and downward excitation factors for an incident wave of unit 
amplitude. 

The various R and T matrices are the coefficients for individual interfaces. We write the 
overall reflection coefficient matrix for the sequence of layers from m to n for Downward 
propagating incident waves as mRE, where the first superscript refers to the layer containing 
the incident wavefield, and mk: is phased with respect to the bottom of layer m. Thus at 
the bottom of layer m, we have the relationship: 

f m  U = m i ,  D f m  D '  

Phasing the excitation factors with respect to the top of layer m, we have 

D. C. Booth and S. Crampin 

(4.12) 

f,m = (D,")-' " R ;  D; f,y; 

and (4.13) 

mR;S =(Durn)-' m R g  0;; 

and similar expressions for nRZ,  "T: and "T?; where the T are the overall transmission 
coefficient matrices. 

The iterative schemes which give the overall reflection and transmission coefficient for a 
sequence of layers are given by equations (30) and (31) of Kennett (1974). The iterative 
expression which gives m-lRE in terms of "R: is: 

(4.14) 

All reverberations and associated mode-conversions in the iterative schemes are contained 
in the 3 x 3 matrix terms of the form ( I - X ) - ' .  We may calculate the complete response of 
a sequence of layers by evaluating (4.14) with matrix inversions, or obtain only the response 
for the direct waves, or the direct waves and the first reverberations by expanding ( I -  X)-' 
and truncating the series expansion (Kennett 1974). This facility allows the reflectivity 
technique to be used for a wide range of applications, where, for example, propagation in a 
non-attenuative structure with a wave guide would result in a long train of reverberations 
and lead to time-aliasing problems unless the number of reverberations is truncated in 
this way. 

The iterative equation (4.14) is applied successively until we have the response OR: for 
the whole layered sequence for a source in layer 0. The appropriate excitation factors t o  
evaluate (3.3) at a receiver at the surface from a surface source are then: 

f: = D f O  D '  (4.15) 

When we wish to calculate seismograms at a receiver which is located in a layer within the 
reflection zone, the excitation factors for upward and downward waves must be calculated. 
Stephen (1977) obtained the following expressions for the excitation factors of upward and 
downward propagating waves in layer m within the reflection zone: 

f? = "Rk ( I -  mR: "R;)-l OT; f: ; 

and (4.16) 

fr = ( I  - m R t  mRg))-' OTg f i  . 
These expressions (4.16) are also valid for an anisotropic reflection zone when 3 x 3 
coefficient submatrices and three-component excitation factor vectors are used. The expres- 
sions contain an inverse matrix of the same form as that in (4.14), and its series expansion 

m - 1  R ,  n = ( D t  - ' ) - l  [RE t T$ mRk ( I - R z  mRk)-l T z ]  D; -'. 
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Anisotropic reflectivity: theory 765 
may be similarly truncated to give the response for direct waves only, or direct waves and 
the first reverberations. 

5 Computational procedure 

The terms in the integrand of (3.3) are calculated for a range of frequencies covering the 
source spectrum F(w),  and a range of horizontal wavenumbers (or equivalently, slownesses) 
covering the principal wave arrivals of interest (Fuchs & Miiller 1971). Synthetic seismo- 
grams at (xl, 0, x 3 )  are obtained by integration and Fourier transformation of the spectra 
given by (3.3). Although we have ignored free surface reflections above the source, their 
effect at a receiver located on the free surface can easily be included Ckervenf & Ravindra 
1971), as follows: conversion coefficients given by terveny & Ravindra are substituted for 
the components of the amplitude polarization vectors of each upgoing wave type at 
the receiver. These conversion coefficients include the contributions to the overall displace- 
ment at the receiver from waves reflected downwards at the free surface. Their signs 
correspond to those of the appropriate ap(p) for upgoing waves in Table 1. 

The effect of attenuation in an anisotropic stratified structure may be included by repre- 
senting the attenuation coefficient 1 /Q by appropriate imaginary parts of the otherwise real 
elastic constants (Crampin 1981). Since all the other variables in the program are already 
complex, very little alteration is required to introduce attenuation into the calculations. The 
provision for attenuation is necessary when the attenuation of a structure is known, but it is 
also convenient to prevent overflow and time-aliasing problems, for example, when the 
displacements in a low-velocity channel are calculated. For a channel without attenuation, 
the calculation may involve integration through the poles of the secular function which 
correspond to guided channel waves. This secular function is given by the determinant of the 
matrix of the form ( I - X )  in equations (4.16). The poles are shifted off the path of inte- 
gration along the real wavenumber axis when the channel is made slightly attenuative. Thus 
the full effect of the low-velocity channel in creating channel waves is retained, and 
numerical overflow problems do not arise. 
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