
The ANLABM SP Scheduling System

David Lifka

Argonne National Laboratory

2/1/95

A bstract

Approximately five years ago scientists discovered that modern L4Y.Y workstations connected

with ethernet andfiber nehvorks could provided enough computational performance to compete

with the supercomputers. As this concept became increasingly popular, the need for distributed

queuing and scheduler systems became apparent. Systems such as DQSfrom Florida State

Universtiy were developed and worked very well. Today however, supercomputers such as

Argonne National Laboratory's IBMSP system can provide more CPU and networking speed

than can be obtainedfiom these networks of workstations. Nevertheless, because modem super

computers look like clusters of workstations developers felt that the scheduiing systems

previously used on clusters of workstations should still apply. Afier trying to apply some of
these scheduling systems to Argonne's SP environment it became obvious that these two

computer environments have very different scheduling needs. Recognizing this need, and

realizing that no one has addressed it, we at Argonne developed a new scheduling system. The

approach taken in creating this system was unique in that user input and interaction were
encouraged throughout the development process. Thus a scheduler was built that actually

workes the way the users want it to.

Background

The Mathematics and Computer Science Division of Argonne National Laboratory purchased a

128-node SP system in order to study parallel computing, scalable VO, and several other

advanced computing areas. The SP system has many types of users whose various jobs often

have conflicting requirements. In order to come up with a fair way to schedule these different

jobs, several popular scheduling systems were considered. After studying these scheduling

systems and actually trying a few, it was determined that none of them could actually suit the

needs of our user community. The problem was that these systems had been developed for

clusters of high-end workstations connected by fast networks. The authors of these systems had

considered all the best ways to schedule jobs on such a distributed system, including scheduling

110-intensive jobs with CPU-intensive jobs, and many other popular, optimistic scheduling

schemes. These schedulers can do all sorts of complex tasks-- but not the simple tasks that our
users wanted! After explaining this predicament to my managers, I was told either to find a

scheduling system that could satisfy our user community or to schedule their jobs by hand round-

the-clock. Not being much of a night person, I opted to write my own scheduling system in
which the user community could define its requirements.

The rubmrtted manuscript has been authored

by a contractor of the U. S. Government

under contract No. W-31-100ENG-38.
Accordingly, the U. S. Government retains a

nonexclusive, royalty-free license to publish

or reproduce the published form of this

contribution. or allow others to do so, for

U. S. Government purposes.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

Building the Ultimate Scheduler

Before beginning to write a new scheduler, I thought a lot about what exactly a scheduling

system should provide. There are three basic goals that almost any scheduling system strives

for: fairness, simplicity (ease of understanding), and efficient use of available resources. These

three goals are obviously in conflict; some compromise was needed that would make the users

happy. After a fair amount of research, a list of features making up the “Ultimate Scheduler”

was developed.

This “Ultimate Scheduler” would:

Provide optimum performance (e.g., I/O-bound and CPU-bound jobs together)

Be fair

Support different job classes (interactive vs. batch)

Support various message-passing libraries

Use static or dynamic partitioning of the machine

Utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms

Schedule different computation models (task farm vs. parallel processing)

Manage other system resources (e.g., YO subsystems)

Provide priority scheduling for special jobs

Several of these items really depend upon how the users of a machine expect to be able to use it.

Several nice scheduling systems are available today that try to address these issues. A few of the
more popular are

IBM LoadLeveler

NQS

DQS from Florida State University

Condor from The University of Wisconsin

The problem with these systems is that they all primarily focus on managing multiple queues of

nonparallel jobs for networks of workstations. They were developed in the age of the “free

supercomputing” movement. This was not too long ago when high-end workstations connected
by fast networks could provide as much computational power the supercomputers, at a fraction

of the cost. Many of these scheduling systems do more than scheduling. Figure 1 shows the

main pieces of a complete scheduling system. Several of the available scheduling systems have

implemented the various pieces of this diagram in a tightly coupled fashion. Such a
configuration greatly reduces the extensibility of the system. For this reason a scheduling

system that would meet our goals addresses only scheduling and attempts to get the other pieces

from either the machine vendors or other developers wherever possible.

I

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any s&ic commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

~-

DynamicProcess Allocation

Resource Scheduler Job User
Starter Processes Management

Security
I I

Figure I : A compete scheduling system

The ANL Scheduler Requirements

Argonne’s users and management had their own set of requirements that these systems could not

fully address. The first was that users had to be able to request a set of nodes for any type of use.

ANL users have several different modes of operation. Some need to be able to do task farming

where the SP is used as if it were a large collection of unconnected workstations. Others want to

run parallel jobs using various message-passing libraries. They need to be able to run jobs

interactively and in batch mode. Interactive use allows users to actually log onto the nodes and

run their codes by hand. This facilitates debugging and simple use of the machine for less

sophisticated users. Batch use allows for large production runs and unattended runs during the

night or weekends. Given these different job types, it was important not to statically partition the

machine into different-sized ‘‘poo1s” of nodes. A 127-node job should be able to run with a 1-

node job as should a 65-node job with a 63-node job. These different jobs have equal

importance so the number of requested resources and duration or usage had to drive the queuing

policy, not the “types” of jobs.

Addressing the Requirements

Several of the members of the Mathematics and Computer Science Division at ANL are
researching new message-passing systems, so the scheduler had to be able to make use of any of

them. Addressing this requirement was difficult because of a software limitation but led to one

of the key concepts of the scheduler. To use the IBM SP high-performance switch, the users had

to have exclusive access to it. To provide users of the switch exclusive access to the nodes, there
had to be a fair alternative to SP users who weren‘t necessarily using the switch or doing parallel

programming for that matter. It turned out the only fair thing to do was to provide any user

exclusive access to any number of nodes they requested. For several reasons this approach

turned out to be an advantage in the scheduler development. Exclusive access meant that any
user would have optimal cache performance, access to all the memory, and access to the full

CPU and I/O potential of each node for benchmarking performance. Unfortunately, exclusive

access has a major drawback. If users have exclusive access, what is to keep them from holding

the resource and not letting other jobs on the system? There had to be a way to provide

exclusive access to the machine and still provide a deterministic run time for any given job. This

is the other key concept in the ANL scheduling system. Users have to provide a run time in

wall-clock node/minutes (like in the days of mainframe computing). Having exclusive access to

the nodes allows them to do this since they will be able to better predict the run time of their

jobs. These key concepts, exclusive access and user-provided run times allow for this different

approach to scheduling. One other problem remains. What prevents a user from scheduling a

job that requires all the resources for a very long time? It quickly became apparent that a new

resource accounting mechanism was needed. Using the system-generated accounting statistics
of CPU and 1/0 usage was not sufficient. A user who “forgot” to use exclusively scheduled time

would not be “charged” anything since no resources were consumed. The accounting system had

to be based on wall-clock time scheduled, not resources used. When users are given their

account, they are given a number of resource-units to use on the machine (in the case of ANL,
wall-clock minutes). Once they have used all their units, they are not allowed to submit any

more jobs to the queue. This effectively prevents users from asking for more time on the

machine than they actually need.

An Attempt at Fairness

Based on the two key scheduler concepts, a FIFO queue was the first queuing method that was

implemented. The ANL users ran a variety of jobs on the system. Figure 2 shows the typical

resource requirements that were observed.

Bumber of Nodes Request ed

1 - 8 nodes

16 - 32 nodes
64 - 128 nodes

Duration of Use
8 - 48 hours
1 - 8 hours

30 minutes - 3 hours

Figure 2: Typical resources required on the SP

Realizing the limitations of a FIFO queue, I designed the scheduler to be modular so that new or

different user requirements could drive the scheduling policy without requiring a complete

rewrite of the code. Modularity also provided the capability to plug in different queuing

algorithms. Users were involved in developing and creating the scheduler policy from the

beginning. Rather than try to come up with the optimal computer-science solution, a simple

FIFO solution was applied, and users were encouraged to make suggestions for its improvement.
Users could see the current scheduling algorithm and the job queue and could watch the queuing

of jobs in operation. Many users quickly became acquainted with the problems the scheduler

was trying to solve and suggest improvements in its operation. Having this user interaction

helped in debugging the scheduler, and thus its development became a community project.

It quickly became apparent to all that a FIFO queue was extremely inefficient. What typically

happened was that on our 128-node system a job requiring only a few nodes would start, leaving

the next job in the queue which required 128 nodes waiting. Thus, a large number of nodes

remained idle until the first job finished and the second job could start. A new scheme was
quickly devised. it was dubbed FIFO with bacyilling. Backfilling provides a way to fill in the

idle nodes with other jobs further down the queue provided that they do not cause the first job in

the queue to wait any longer for the nodes they require, Here is an example of a typical queue of
jobs and backfilling in action:

Step 1: 128 nodes are idle with the following queue ofjobs.

User A needs 32 nodes. There are 128 available, so it is allowed to start.

User Name

User A

User B
User C
User D
User E
User F

User G
User H

Number of Nodes

32

64

24

32

16

10

4

32

Number of Minutes

120

60

180

120

120

480

30
120

Step 2: 96 nodes are idle and 32 are in use with the following queue of jobs.

User B needs 64 nodes. There are 64 available, so it is allowed to start.

User Name

User A

User 3

User C
User D
User E
User F
User G
User H

JYumber of Nodes

32

64

24

32

16
10

4

32

Number of Minute

120

60

180

120

120
480
30

120

Step 3: 32 nodes are idle and 96 are in use with the following queue of jobs.

User C needs 24 nodes. There are 32 available so it is allowed to start.

User Name

User A

User B
User C

User D
User E
User F

User G

User H

Number o f Nodes

32

64

24

32

16

10

4

32

JYumber of Minutes

120

60

180

120

120

480

30

120

Job Status

Startable

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Job Status

Running

Startable

Waiting

Waiting

Waiting
Waiting
Waiting
Waiting

Job Statu8

Running

Running

Startable

Waiting

Waiting

Waiting

Waiting

Waiting

Step 4: 8 nodes are idle and 120 are in use with the following queue of jobs.

User D needs 32 nodes. Since there are only 8 nodes available, it is not able to start. Now the

backfill algorithm has to determine how long User D is blocked, or in other words how long it

will be before enough nodes will be available for User D to run. To do this, it looks at the list of
running jobs and determines how long it will be until enough of them have finished for User D to

start. User A will be finished in 120 minutes, User B in 60 minutes and User C in 180 minutes.

From this list the algorithm determines that when user B finishes in 60 minutes there will be

enough nodes available for User D to start; therefore, User D should have to wait 60 minutes at
the longest. With this information the algorithm now looks for a job that can use the 8 available

nodes for 60 minutes or less. Users E and F require too many nodes, so they cannot backfill.

User G requires 4 nodes for 30 minutes, which will not delay the start of User D, so it is allowed

to start.

User Name

User A

User B

User C
User D
User E
User F
User G
User H

Number of Nodes

32

64

24

32

16

10

4

32

Number of Minutes

120

60

180

120

120

480

30

120

Job Status

Running

Running

Running

Blocked

Cannot Backfill

Cannot Backfill

Startable

Waiting

Now suppose that User F needs 8 nodes instead of 10. There are 8 nodes are idle and 120 in use.

User D needs 32 nodes and there are only 8 nodes available, so it is not able to start. Now the

Backfill algorithm has to determine how long User D is blocked, or in other words how long it

will be before enough nodes will be available for User D to run. To do this, it looks at the list of

running jobs and determines how long it will be until enough have them have finished for User D

to start. User A will be finished in 120 minutes, User B in 60 minutes and User C in 180

minutes. From this list the algorithm determines that when User B finishes in 60 minutes there

will be enough nodes available for User D to start; therefore User D should have to wait for 60

minutes at the longest. With this information the algorithm now looks at the queue ofjobs

looking for a job which can use the 8 available nodes for 60 minutes or less. Users E requires

too many nodes so it cannot backfill. User F requires 8 nodes for 480 minutes which is longer

than the time User D is blocked for; but when User B finishes, it will release 64 nodes, which is

more than User D needs. The backfill algorithm determines that there will still be enough nodes

for User D to start in 60 minutes if it starts User F, so User F is started.

Yser Namg

User A

User B
User C
User D

User E
User F
User G

User H

Number of Nodes

32

64

24

32

16
8

4

32

Number o f Minutes

120

60
I80
120

120
480

30
120

Job Status

Running

Running

Running

Blocked

Cannot Backfill

Startable

Waiting

Waiting

Keep It Simple

A common drawback to many of the available scheduling systems is that they can be quite

complicated to use, and for many naive users, quite intimidating. To avoid this problem I

desgined a minimal set of commands with functions similar to the UNIX commands they mimic

or to their names. These simple commands can be used to build up more elaborate tools if the

users wish to do so. The following list shows the complete set of user commands and a brief
explanation of their functionality:

0

0

0

0

0

sphelp - list user commands and their functions

spfree - return the number of free nodes
sppause - pause a job waiting in the queue so that it will not be started

spunpause - unpause a job waiting in the queue

spq - show the jobs currently on the system and waiting in the queue

sprelease - release a node back to the free pool

spsubmit - submit a job to queue

0

spusage - return a current snap-shot of the resource file

spwait - block until a specific job has completed

spwhat - return what type of job could be run if submitted now

spwhen - tells when a specific job will start given the current queue

getjid - return the user job ID on a scheduled node.

Summary

By focusing on user requirements I was able to design a simple scheduler. The key design points

to the ANL SP scheduler are that it provides exclusive access to the nodes the user is allocated

and that users provide runtimes in wall-clock minutes so that anyone can determine when a job

will start. Having enough information to understand the queuing mechanism and being given the

tools to follow its progress in real time, our users continue to help in the debugging and

enhancement of the scheduler. It is surprising that many of today’s advanced scheduling systems

do not support these features.

Acknowlegments

This work was supported by the Office of Scientific Computing, US. Department of Energy,
under Contract W-3 1- 109-Eng-38.

