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A bstract 

Approximately five years ago scientists discovered that modern L4Y.Y workstations connected 

with ethernet andfiber nehvorks could provided enough computational performance to compete 

with the supercomputers. As this concept became increasingly popular, the need for distributed 

queuing and scheduler systems became apparent. Systems such as DQSfrom Florida State 

Universtiy were developed and worked very well. Today however, supercomputers such as 

Argonne National Laboratory's IBMSP system can provide more CPU and networking speed 

than can be obtainedfiom these networks of workstations. Nevertheless, because modem super 

computers look like clusters of workstations developers felt that the scheduiing systems 

previously used on clusters of workstations should still apply. Afier trying to apply some of 
these scheduling systems to Argonne's SP environment it became obvious that these two 

computer environments have very different scheduling needs. Recognizing this need, and 

realizing that no one has addressed it, we at Argonne developed a new scheduling system. The 

approach taken in creating this system was unique in that user input and interaction were 
encouraged throughout the development process. Thus a scheduler was built that actually 

workes the way the users want it to. 

Background 

The Mathematics and Computer Science Division of Argonne National Laboratory purchased a 

128-node SP system in order to study parallel computing, scalable VO, and several other 

advanced computing areas. The SP system has many types of users whose various jobs often 

have conflicting requirements. In order to come up with a fair way to schedule these different 

jobs, several popular scheduling systems were considered. After studying these scheduling 

systems and actually trying a few, it was determined that none of them could actually suit the 

needs of our user community. The problem was that these systems had been developed for 

clusters of high-end workstations connected by fast networks. The authors of these systems had 

considered all the best ways to schedule jobs on such a distributed system, including scheduling 

110-intensive jobs with CPU-intensive jobs, and many other popular, optimistic scheduling 

schemes. These schedulers can do all sorts of complex tasks-- but not the simple tasks that our 
users wanted! After explaining this predicament to my managers, I was told either to find a 

scheduling system that could satisfy our user community or to schedule their jobs by hand round- 

the-clock. Not being much of a night person, I opted to write my own scheduling system in 
which the user community could define its requirements. 
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Building the Ultimate Scheduler 

Before beginning to write a new scheduler, I thought a lot about what exactly a scheduling 

system should provide. There are three basic goals that almost any scheduling system strives 

for: fairness, simplicity (ease of understanding), and efficient use of available resources. These 

three goals are obviously in conflict; some compromise was needed that would make the users 

happy. After a fair amount of research, a list of features making up the “Ultimate Scheduler” 

was developed. 

This “Ultimate Scheduler” would: 

Provide optimum performance (e.g., I/O-bound and CPU-bound jobs together) 

Be fair 

Support different job classes (interactive vs. batch) 

Support various message-passing libraries 

Use static or dynamic partitioning of the machine 

Utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms 

Schedule different computation models (task farm vs. parallel processing) 

Manage other system resources (e.g., YO subsystems) 

Provide priority scheduling for special jobs 

Several of these items really depend upon how the users of a machine expect to be able to use it. 

Several nice scheduling systems are available today that try to address these issues. A few of the 
more popular are 

IBM LoadLeveler 

NQS 

DQS from Florida State University 

Condor from The University of Wisconsin 

The problem with these systems is that they all primarily focus on managing multiple queues of 

nonparallel jobs for networks of workstations. They were developed in the age of the “free 

supercomputing” movement. This was not too long ago when high-end workstations connected 
by fast networks could provide as much computational power the supercomputers, at a fraction 

of the cost. Many of these scheduling systems do more than scheduling. Figure 1 shows the 

main pieces of a complete scheduling system. Several of the available scheduling systems have 

implemented the various pieces of this diagram in a tightly coupled fashion. Such a 
configuration greatly reduces the extensibility of the system. For this reason a scheduling 

system that would meet our goals addresses only scheduling and attempts to get the other pieces 

from either the machine vendors or other developers wherever possible. 
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Figure I :  A compete scheduling system 

The ANL Scheduler Requirements 

Argonne’s users and management had their own set of requirements that these systems could not 

fully address. The first was that users had to be able to request a set of nodes for any type of use. 

ANL users have several different modes of operation. Some need to be able to do task farming 

where the SP is used as if it were a large collection of unconnected workstations. Others want to 

run parallel jobs using various message-passing libraries. They need to be able to run jobs 

interactively and in batch mode. Interactive use allows users to actually log onto the nodes and 

run their codes by hand. This facilitates debugging and simple use of the machine for less 

sophisticated users. Batch use allows for large production runs and unattended runs during the 

night or weekends. Given these different job types, it was important not to statically partition the 

machine into different-sized ‘‘poo1s” of nodes. A 127-node job should be able to run with a 1- 

node job as should a 65-node job with a 63-node job. These different jobs have equal 

importance so the number of requested resources and duration or usage had to drive the queuing 

policy, not the “types” of jobs. 

Addressing the Requirements 

Several of the members of the Mathematics and Computer Science Division at ANL are 
researching new message-passing systems, so the scheduler had to be able to make use of any of 

them. Addressing this requirement was difficult because of a software limitation but led to one 

of the key concepts of the scheduler. To use the IBM SP high-performance switch, the users had 

to have exclusive access to it. To provide users of the switch exclusive access to the nodes, there 
had to be a fair alternative to SP users who weren‘t necessarily using the switch or doing parallel 

programming for that matter. It turned out the only fair thing to do was to provide any user 

exclusive access to any number of nodes they requested. For several reasons this approach 

turned out to be an advantage in the scheduler development. Exclusive access meant that any 
user would have optimal cache performance, access to all the memory, and access to the full 

CPU and I/O potential of each node for benchmarking performance. Unfortunately, exclusive 

access has a major drawback. If users have exclusive access, what is to keep them from holding 

the resource and not letting other jobs on the system? There had to be a way to provide 

exclusive access to the machine and still provide a deterministic run time for any given job. This 

is the other key concept in the ANL scheduling system. Users have to provide a run time in 

wall-clock node/minutes (like in the days of mainframe computing). Having exclusive access to 

the nodes allows them to do this since they will be able to better predict the run time of their 

jobs. These key concepts, exclusive access and user-provided run times allow for this different 



approach to scheduling. One other problem remains. What prevents a user from scheduling a 

job that requires all the resources for a very long time? It quickly became apparent that a new 

resource accounting mechanism was needed. Using the system-generated accounting statistics 
of CPU and 1/0 usage was not sufficient. A user who “forgot” to use exclusively scheduled time 

would not be “charged” anything since no resources were consumed. The accounting system had 

to be based on wall-clock time scheduled, not resources used. When users are given their 

account, they are given a number of resource-units to use on the machine (in the case of ANL, 
wall-clock minutes). Once they have used all their units, they are not allowed to submit any 

more jobs to the queue. This effectively prevents users from asking for more time on the 

machine than they actually need. 

An Attempt at Fairness 

Based on the two key scheduler concepts, a FIFO queue was the first queuing method that was 

implemented. The ANL users ran a variety of jobs on the system. Figure 2 shows the typical 

resource requirements that were observed. 

Bumber of Nodes Request ed 

1 - 8 nodes 

16 - 32 nodes 
64 - 128 nodes 

Duration of Use 
8 - 48 hours 
1 - 8 hours 

30 minutes - 3 hours 

Figure 2: Typical resources required on the SP 

Realizing the limitations of a FIFO queue, I designed the scheduler to be modular so that new or 

different user requirements could drive the scheduling policy without requiring a complete 

rewrite of the code. Modularity also provided the capability to plug in different queuing 

algorithms. Users were involved in developing and creating the scheduler policy from the 

beginning. Rather than try to come up with the optimal computer-science solution, a simple 

FIFO solution was applied, and users were encouraged to make suggestions for its improvement. 
Users could see the current scheduling algorithm and the job queue and could watch the queuing 

of jobs in operation. Many users quickly became acquainted with the problems the scheduler 

was trying to solve and suggest improvements in its operation. Having this user interaction 

helped in debugging the scheduler, and thus its development became a community project. 

It quickly became apparent to all that a FIFO queue was extremely inefficient. What typically 

happened was that on our 128-node system a job requiring only a few nodes would start, leaving 

the next job in the queue which required 128 nodes waiting. Thus, a large number of nodes 

remained idle until the first job finished and the second job could start. A new scheme was 
quickly devised. it was dubbed FIFO with bacyilling. Backfilling provides a way to fill in the 

idle nodes with other jobs further down the queue provided that they do not cause the first job in 

the queue to wait any longer for the nodes they require, Here is an example of a typical queue of 
jobs and backfilling in action: 



Step 1: 128 nodes are idle with the following queue ofjobs. 

User A needs 32 nodes. There are 128 available, so it is allowed to start. 

User Name 

User A 

User B 
User C 
User D 
User E 
User F 

User G 
User H 

Number of Nodes 

32 

64 

24 

32 

16 

10 

4 

32 

Number of Minutes 

120 

60 

180 

120 

120 

480 

30 
120 

Step 2: 96 nodes are idle and 32 are in use with the following queue of jobs. 

User B needs 64 nodes. There are 64 available, so it is allowed to start. 

User Name 

User A 

User 3 

User C 
User D 
User E 
User F 
User G 
User H 

JYumber of Nodes 

32 

64 

24 

32 

16 
10 

4 

32 

Number of Minute 

120 

60 

180 

120 

120 
480 
30 

120 

Step 3: 32 nodes are idle and 96 are in use with the following queue of jobs. 

User C needs 24 nodes. There are 32 available so it is allowed to start. 

User Name 

User A 

User B 
User C 

User D 
User E 
User F 

User G 

User H 

Number o f  Nodes 

32 

64 

24 

32 

16 

10 

4 

32 

JYumber of Minutes 

120 

60 

180 

120 

120 

480 

30 

120 

Job Status 

Startable 

Waiting 

Waiting 

Waiting 

Waiting 

Waiting 

Waiting 

Waiting 

Job Status 

Running 

Startable 

Waiting 

Waiting 

Waiting 
Waiting 
Waiting 
Waiting 

Job Statu8 

Running 

Running 

Startable 

Waiting 

Waiting 

Waiting 

Waiting 

Waiting 

Step 4: 8 nodes are idle and 120 are in use with the following queue of jobs. 

User D needs 32 nodes. Since there are only 8 nodes available, it is not able to start. Now the 

backfill algorithm has to determine how long User D is blocked, or in other words how long it 

will be before enough nodes will be available for User D to run. To do this, it looks at the list of 
running jobs and determines how long it will be until enough of them have finished for User D to 

start. User A will be finished in 120 minutes, User B in 60 minutes and User C in 180 minutes. 

From this list the algorithm determines that when user B finishes in 60 minutes there will be 

enough nodes available for User D to start; therefore, User D should have to wait 60 minutes at 
the longest. With this information the algorithm now looks for a job that can use the 8 available 

nodes for 60 minutes or less. Users E and F require too many nodes, so they cannot backfill. 

User G requires 4 nodes for 30 minutes, which will not delay the start of User D, so it is allowed 

to start. 



User Name 

User A 

User B 

User C 
User D 
User E 
User F 
User G 
User H 

Number of Nodes 

32 

64 

24 

32 

16 

10 

4 

32 

Number of Minutes 

120 

60 

180 

120 

120 

480 

30 

120 

Job Status 

Running 

Running 

Running 

Blocked 

Cannot Backfill 

Cannot Backfill 

Startable 

Waiting 

Now suppose that User F needs 8 nodes instead of 10. There are 8 nodes are idle and 120 in use. 

User D needs 32 nodes and there are only 8 nodes available, so it is not able to start. Now the 

Backfill algorithm has to determine how long User D is blocked, or in other words how long it 

will be before enough nodes will be available for User D to run. To do this, it looks at the list of 

running jobs and determines how long it will be until enough have them have finished for User D 

to start. User A will be finished in 120 minutes, User B in 60 minutes and User C in 180 

minutes. From this list the algorithm determines that when User B finishes in 60 minutes there 

will be enough nodes available for User D to start; therefore User D should have to wait for 60 

minutes at the longest. With this information the algorithm now looks at the queue ofjobs 

looking for a job which can use the 8 available nodes for 60 minutes or less. Users E requires 

too many nodes so it cannot backfill. User F requires 8 nodes for 480 minutes which is longer 

than the time User D is blocked for; but when User B finishes, it will release 64 nodes, which is 

more than User D needs. The backfill algorithm determines that there will still be enough nodes 

for User D to start in 60 minutes if it starts User F, so User F is started. 
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User A 

User B 
User C 
User D 

User E 
User F 
User G 

User H 

Number of Nodes 

32 

64 

24 

32 

16 
8 

4 

32 

Number o f  Minutes 

120 

60 
I80 
120 

120 
480 

30 
120 

Job Status 

Running 

Running 

Running 

Blocked 

Cannot Backfill 

Startable 

Waiting 

Waiting 

Keep It Simple 

A common drawback to many of the available scheduling systems is that they can be quite 

complicated to use, and for many naive users, quite intimidating. To avoid this problem I 

desgined a minimal set of commands with functions similar to the UNIX commands they mimic 

or to their names. These simple commands can be used to build up more elaborate tools if the 

users wish to do so. The following list shows the complete set of user commands and a brief 
explanation of their functionality: 

0 

0 

0 

0 

0 

sphelp - list user commands and their functions 

spfree - return the number of free nodes 
sppause - pause a job waiting in the queue so that it will not be started 

spunpause - unpause a job waiting in the queue 

spq - show the jobs currently on the system and waiting in the queue 

sprelease - release a node back to the free pool 

spsubmit - submit a job to queue 



0 

spusage - return a current snap-shot of the resource file 

spwait - block until a specific job has completed 

spwhat - return what type of job could be run if submitted now 

spwhen - tells when a specific job will start given the current queue 

getjid - return the user job ID on a scheduled node. 

Summary 

By focusing on user requirements I was able to design a simple scheduler. The key design points 

to the ANL SP scheduler are that it provides exclusive access to the nodes the user is allocated 

and that users provide runtimes in wall-clock minutes so that anyone can determine when a job 

will start. Having enough information to understand the queuing mechanism and being given the 

tools to follow its progress in real time, our users continue to help in the debugging and 

enhancement of the scheduler. It is surprising that many of today’s advanced scheduling systems 

do not support these features. 
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