
Answer set programming (ASP, for short) is a declarative
programming paradigm for solving search problems
and their optimization variants. In ASP a search prob-

lem is modeled as a set of statements (a program) in a logic
programming type of a language in such a way that the
answer sets (models) of the program correspond to the solu-
tions of the problem. The paradigm was first formulated in
these terms by Marek and Truszczyski (1999) and Niemelä
(1999). The ASP paradigm has its roots in knowledge repre-
sentation and nonmonotonic logics research as described by
Marek, Niemelä, and Truszczyski (2011) in a historic
account on the development of the paradigm. A recent and
more technical overview of ASP has been contributed by
Brewka, Eiter, and Truszczyski (2011).

The ASP paradigm is most widely used with the formalism
of logic programming under the semantics given by answer
sets (Gelfond and Lifschitz 1988, 1990). The term answer sets
was proposed by Gelfond and Lifschitz (1991) for sets of lit-
erals, by which programs in an extended syntax are to be
interpreted where the classical negation operator and dis-
junctions of literals are allowed in the heads of program rules.
Lifschitz’s article (2016) in this special issue gives an intro-
duction to the notion of an answer set and the language of
ASP, as well as a comparison to Prolog systems. An alternative
approach to ASP has been to use directly first-order logic as
the basis and extend it with inductive definitions. The details

Articles

FALL 2016 13Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

The Answer Set
Programming Paradigm

Tomi Janhunen, Ilkka Niemelä

n In this article, we give an overview of
the answer set programming paradigm,
explain its strengths, and illustrate its
main features in terms of examples and
an application problem.

can be found in the articles by Denecker and Ven-
nekens (2014), Denecker and Ternovska (2008), East
and Truszczyski (2006), and the one by Bruynooghe
et al. (2016) in this issue of AI Magazine.

A main reason for the increasing interest in ASP is
the availability of fast software tools that make it pos-
sible to tackle problems of practical importance. Most
of the current software tools employ two steps com-
monly referred to as grounding and solving, reflect-
ing the definition of answer sets for programs with
variables (Lifschitz 2016). The idea is to separate con-
cerns so that the grounding phase takes care of the
evaluation of more complicated data structures and
variable instantiations using logic programming and
deductive database techniques, and then the solving
phase focuses on search for answer sets for a much
simpler type of programs by employing advanced
search methods. The articles by Kaufmann et al.
(2016) and by Gebser and Schaub (2016) in this issue
provide more information on the solving and
grounding techniques.

There is a growing number of successful applica-
tions of ASP including molecular biology (Gebser et
al. 2010a, 2010b), decision support system for space
shuttle controllers (Balduccini, Gelfond, and
Nogueira 2006), phylogenetic inference (Erdem
2011, Koponen et al. 2015), product configuration
(Soininen and Niemelä 1998, Finkel and O’Sullivan
2011) and repair of web-service work flows (Friedrich
et al. 2010). Erdem, Gelfond, and Leone (2016) give
an account of the applications of ASP in this issue.

On the one hand, ASP is closely related to logic
programming and Prolog and, on the other hand, to
constraint programming (CP), propositional satisfia-
bility (SAT), and linear or integer programming
(LP/IP). Unlike Prologlike logic programming ASP is
fully declarative and neither the order of rules in a
program nor the order of literals in the rules matter.
Moreover, Prolog systems are tailored to find proofs
or answer substitutions to individual queries where-
as ASP systems are finding answer sets corresponding
to complete solutions to a problem instance. The
basic idea in ASP is very close to the paradigm of CP,
SAT, or LP/IP where problems are represented by con-
straints and where systems are tailored to find satis-
fying variable assignments corresponding to com-
plete solutions.

However, there are significant differences. The ASP
paradigm allows for a very systematic approach to
problem representation through uniform encodings
where the problem statement can be developed inde-
pendently of data on a particular instance. This leads
to a large degree of elaboration tolerance. The ASP
approach enables structured representation of prob-
lems where more complicated constraints are com-
posed of simpler ones using rules. On the other hand,
rules enable one to encode conditions that are chal-
lenging (like representing disjunctive constraints or
other basic relational operations on constraints) or

not available at all (like recursive constraints) when
comparing to CP or LP/IP paradigms. Because of
these properties ASP allows for incremental develop-
ment of an application and supports well rapid pro-
totyping.

The goal of this article is to provide an up-to-date
overview of the ASP paradigm and illustrate its usage
with examples as well as a more comprehensive
application problem. We proceed as follows. In the
next section, we explain the fundamental ideas of the
ASP paradigm. The use of the paradigm and its main
features are then illustrated by developing ASP
encodings for an application problem step by step.
The application considered in this article is about
designing a locking scheme for a building so that cer-
tain safety requirements are met. Having introduced
the basic paradigm, we briefly address main ways to
implement ASP — either using native answer set
solvers or translators that enable the use of solver
technology from neighboring disciplines. We end the
article with a summary and discussion of future
prospects. In addition, we illustrate the potential
computational hardness of our application problem
by explaining its connection to the NP-complete
decision problem Exact-3-SAT.

Basic ASP Paradigm
The conceptual model of the ASP paradigm is depict-
ed in figure 1. We start by explaining how to under-
stand search problems at an abstract level and then
illustrate how ASP is typically employed to solve such
problems using the approach illustrated in the figure.
Finally, we address a number of features and attrac-
tive properties of the paradigm.

Problem Solving
The ASP paradigm provides a general-purpose
methodology for solving search and optimization
problems encountered in many real-world applica-
tions. To get started, the key step is to identify and
formalize the problem to be solved, that is, to work
out a problem statement. Typically this consists of
clarifying what the potential solutions of the prob-
lem are like and then setting the conditions that
solutions should satisfy. Solving the problem means
that given the data on an instance of the problem we
should find one or more solutions that satisfy the giv-
en conditions (see the topmost arrow in figure 1). For
illustration, we use the task of finding a seating
arrangement for a dinner as the first simple example.
The respective problem statement could read as for-
mulated next.

Example 1 (Seating Arrangement Problem)
A certain group of people, say persons p1, … , pn, are
invited for dinner. There are tables t1, …, tk with the
respective capacities c1, … , ck available for seating
such that c1+… +ck >= n. The host has some prior

Articles

14 AI MAGAZINE

Articles

FALL 2016 15

knowledge about the relationships of the guests: there
are both friends and enemies among the invitees. This
information should be taken into account when
designing the arrangement. A solution to this problem
is a mapping s(pi) = tj of persons pi to tables tj so that
the mutual relationships are respected.

The problem statement in example 1 uses mathe-
matical symbols to abstract the details of the prob-
lem such as the number and the identity of persons
involved and the collection of tables available for
seating. This reflects an important methodological
feature, namely the separation of instance data from
the actual problem statement. The point is that the
problem can be stated without listing all details for a
particular instance of the problem. In case of the seat-
ing arrangement problem, the instance data would
consist of the names of invitees together with lists of
tables and their capacities, and the pairs of persons
who are known to be either friends or enemies. More
concretely put, suppose that we have a group of 20
people: Alice, Bob, John, and others. There are four
tables, seating 7, 6, 5, and 4 people, respectively.
Moreover, we know that Alice likes Bob, Bob likes
John, and so on. Given all such pieces of informa-
tion, the goal is (1) to find at least one solution that
fulfills the criteria set in the problem statement of
example 1, or (2) to show that no solution exists. Giv-
en what we know so far, we can expect solutions
where Alice, Bob, and John are seated together at one
of the four tables available. However, if we state addi-
tionally that Alice and John dislike each other, for
instance, the seating problem instance under consid-
eration has no solutions.

ASP Encoding
But how do we achieve the aforementioned goal
using ASP and get the problem solved? As suggested
by figure 1, we should formalize the problem state-
ment by writing down a (logic) program. Before we

can really do this, we should have a basic under-
standing of syntax, also introduced in the article by
Lifschitz (2016) in this issue. In ASP, programs consist
of rules, that is, statements of the form

head :– body1, body2, ..., bodyn.

The intuitive reading of this rule is that the head can
be inferred if (and only if) the body conditions body1,
body2, ..., bodyn have been inferred by any other rules
in the program. The conditions in the rule are either
atomic statements (also called atoms) like seat(a,1) for
Alice being seated at table 1, or count-bounded sets of
atoms

l { atom1; ...; atomk } u
where at least l but at most u atoms among atom1, ...,
atomk should be inferable. The cardinality constraint
above can also be expressed in terms of a counting
aggregate

#count{atom1; ...; atomk}

where appropriate bounds can be incorporated using
relation symbols <, <=, >, >=, and =. Atoms can also
be negated using the operator not for default nega-
tion. A rule with an empty body (n = 0) stands for a
fact whose head holds unconditionally. As a further
special case, a rule without a head stands for a con-
straint whose body body1, body2, ..., bodyn must not
be satisfied. In this article, we do not consider exten-
sions of rules by classical negation nor disjunctions
in rule heads (Gelfond and Lifschitz 1991).

We are now ready to describe typical steps in writ-
ing down a program in ASP, resulting in an encoding1

given as listing 1. First, we have to decide how to rep-
resent the instance data. Sometimes this requires
some form of filtering in order to identify which
pieces of information are relevant in view of solving
the problem. This is easy for the seating problem. The
persons involved are listed in line 2 using predicate
symbol person/1 and constant symbols a, b, j, … as
abbreviations for the names of persons in question.

Figure 1. Conceptual Model of the ASP Paradigm.

Facts

Program

Evaluate
Instantiate

Ground
program

Search Answer
set(s)

Extract

Problem statement
Formalize

Instance dataFilter

Solution(s)

Solve

Predicates likes/2 and dislikes/2 are used in lines 3–4
to represent (potentially incomplete)2 information
concerning friendship and dislike, respectively. Final-
ly, the identities and capacities of tables are declared
by the facts listed in line 5 using predicate tbl/2.
Overall, we have obtained a set of facts as the repre-
sentation of instance data.

The second step concerns the actual program for-
malizing the problem statement. Writing down the
rules is of course a creative activity, which one learns
best by doing, but in ASP one can concentrate on
defining the relevant concepts (relations) in terms of
rules, as well as thinking about conditions on which
certain relations should hold. To understand the out-
come of the formalization in listing 1, let us give the
intuitive readings for the rules involved. The rule in
line 8 stipulates that every person P must be seated at
exactly one table T. A few constraints follow. The
capacities of tables are enforced in line 9: it is unac-
ceptable if more than C persons are seated at table T
which seats at most C persons. Moreover, if person
P1 likes person P2, they should not be seated at dif-
ferent tables T1 and T2. This constraint is expressed
in lines 10–12. The other way around, if P1 does not
like P2, then they should not be seated at the same
table T. The respective rule is given in lines 13–14.
The rules and constraints in lines 8–14 explained so
far form a uniform encoding of the seating problem,
as the representation is independent of any problem
instance described by facts of the type in lines 2–5.

So far, we have demonstrated the modeling phi-
losophy of ASP in terms of a simple application. The
later section on locking design provides further
insights into modeling and typical design decisions
made. Yet further information is available in the arti-
cles of Bruynooghe, Denecker, and Truszczyski
(2016) and Gebser and Schaub (2016) in this issue.

ASP Solving
It remains to explain how the encoding from listing
1 solves the problem instance in practice. First, the
rules of the program have to be instantiated and eval-
uated with respect to the present facts. This means,
for example, that the rule in line 8 yields an instance

1 { seat(a,1); seat(a,2); seat(a,3); seat(a,4) } 1.

when P is replaced by a and T ranges over the avail-
able tables 1, 2, 3, and 4. This particular instance con-
cerns the seating of Alice. While instantiating the
rules also some evaluations take place. For example,
when handling the rule in line 9 for table 1 with
capacity 7 the lower bound C of the constraint is sub-
stituted by the value 7. The ground program, also
indicated in figure 1, is typically generated by run-
ning a dedicated tool, that is, a grounder, on the input.
After that the search for answer sets can be performed
by invoking an answer set solver. Finally, the solu-
tion(s) of the original problem instance are obtained
by extracting relevant part(s) from the answer set(s)
found. For the encoding under consideration, this
means that whenever an occurrence of seat(P, T) is
contained in an answer set, then person P is supposed
to be seated at table T. Using the notions from exam-
ple 1, we would have the required mapping s from
persons P to tables T. If no answer set can be found,
then a problem instance has no solutions. This is
actually the case for the instance described by lines 2–
5 in listing 1, since it is impossible to place Alice, Bob,
and John at the same table due to their relations.
However, if the facts in line 4 are removed, obtaining
answer sets is still feasible — the relationships of oth-
er guests permitting.

Beyond Basic ASP
The basic paradigm illustrated in figure 1 solves the
problem at hand by eventually finding one or more
solutions to the problem, or by showing that no solu-
tion exists. If there are multiple solutions to the prob-
lem, then it may be desirable to select the best solu-
tion among the alternatives using some criterion
such as price, capacity, and so on. This turns the
problem into an optimization problem. In ASP, objec-
tive functions for such problems can be defined in
terms of optimization statements like

#minimize { w1,1: atom1; ...; wn,n: atomn }.
The statement above assigns weights w1, … , wn to
atoms atom1, … , atomn, respectively, and the goal is
to minimize the sum of weights for atoms contained
in an answer set — when evaluated over all answer
sets. As regards the seating arrangement problem, the
respective optimization problem could deal with
obviously inconsistent settings like the one described
above. Rather than satisfying all constraints resulting
from the mutual relations of persons, the goal would
be to satisfy as many as possible. In the preceding
example, this would mean that either Alice is seated
at the same table as Bob, or Bob is seated with John,
but Alice and John are placed at different tables.

Articles

16 AI MAGAZINE

Listing 1. Encoding the Seating Problem in ASP.

1 % Instance
2 person(a). person(b). person(j).
3 likes(a,b). likes(b,j). ...
4 dislikes(a,j). dislikes(j,a). ...
5 tbl(1,7). tbl(2,6). tbl(3,5). tbl(4,4).
6
7 % Rules and constraints
8 1 { seat(P,T): tbl(T,_) } 1 :- person(P).
9 :- #count{seat(P,T): person(P)}>C, tbl(T,C).
10 :- likes(P1,P2), seat(P1,T1), seat(P2,T2),
11 person(P1), person(P2),
12 tbl(T1,_), tbl(T2,_), T1 != T2.
13 :- dislikes(P1,P2), seat(P1,T), seat(P2,T),
14 person(P1), person(P2), tbl(T,_).

Besides the optimization of solutions, there are
also other reasoning modes of interest. It is some-
times interesting to see how much the solutions are
alike. In cautions reasoning, the idea is to check
whether a certain atom is present in all or absent
from some answer set. For instance, if seat(a,1) is for
some reason contained in all answer sets, then Alice
will be unconditionally seated at the first table and
no options remain to this end. Cautious reasoning
corresponds to basic query evaluation over answer
sets and it can be implemented by adding a con-
straint to the program. In the case of our example,
the constraint would read :- seat(a,1). indicating that
we would like to find any counterexample, that is, an
answer set not containing seat(a,1). Alternatively, cau-
tious reasoning can be implemented by solvers as a
special reasoning mode while searching for answer
sets. Brave reasoning is the dual of cautious reasoning
and then the presence in some or absence from all
answer sets is required. Again, this can be imple-
mented by adding a constraint or as a special reason-
ing mode.

It is also possible to enumerate answer sets and,
hence, count their number. For certain applications,
the number of solutions could actually be an inter-
esting piece of information. In product configuration
(see, for example, Soininen and Niemelä [1998]), this
could be the number of variants that a production
line should be able to produce. There are also com-
plex use cases of ASP. In incremental solving, the idea
is to compute partial solutions to a problem (or show
their nonexistence) by calling an ASP solver several
times and by extending the instance data on the fly.
Various kinds of planning problems (with an increas-
ing plan length) typically fall into this category. The
latest developments even suggest multishot solving
(Gebser et al. 2014) where solver calls are freely
mixed and the ground programs used upon solver
calls may evolve in more complex ways.

Constraints over Infinite Domains
Since grounding is an inherent part of ASP work flow,
the basic paradigm is based on Boolean or finite-
domain variables only. However, certain applications
call for variables over infinite domains such as inte-
gers and reals. For instance, there have been propos-
als to extend ASP rules by linear inequalities (Gebser,
Ostrowski, and Schaub 2009; Liu, Janhunen, and
Niemelä 2012; Mellarkod, Gelfond, and Zhang 2008)
as well as difference constraints (Janhunen, Liu, and
Niemelä 2011). From the modeling perspective, the
goal of such extensions is to increase the expressive
power of ASP suitably so that new kinds of applica-
tions become feasible. For instance, referring back to
the seating problem in listing 1, we could refine the
specification for each person P by introducing integer
variables e(P) and l(P) denoting the points of time
when P enters and leaves the table in question. Using
difference constraints, we could state a specification

given as listing 2. Intuitively, the rules in lines 1 and
2 insist that person P stays at the table from 5 to 90
minutes. The constraint in lines 3–5 refines the last
one from listing 1. It is not allowed that any two per-
sons P1 and P2 who dislike each other are seated at
the same table at the same time. It is important to
notice that when the constraint in line 1 is instanti-
ated for Alice, the resulting constraint is :- 1(a)–e(a) <
5. Thus, the infinity of the underlying domain is not
reflected to the size of the resulting ground program.
Naturally, the interpretation of 1(a) and e(a) as inte-
ger variables must be dealt with by the implementa-
tion of such constraints.

Application: Locking Design
Having introduced the ASP paradigm on a general
level, we now illustrate its main features in terms of
an application problem where the goal is to design a
locking scheme for a building. This is to be under-
stood comprehensively, that is, we are not just inter-
ested in locks but also anything else that can affect
accessibility in a building. For simplicity, we consid-
er a single floor. A sample floor plan of such a build-
ing is depicted in figure 2. There are 12 rooms alto-
gether, numbered from 1 to 12 in the figure.

Given this domain, our objectives are as follows.
First, we describe the domain in a uniform way by
selecting adequate predicates for the representation
of domain information. Second, we take one con-
crete design goal from this domain into considera-
tion. To this end, we concentrate on the configura-
tion of locks installed on (potential) doors between
the rooms in such a way that certain accessibility cri-
teria are met. A particular safety requirement is that
the floor can be effectively evacuated in case of an
emergency. The idea is to develop ASP encodings for
a design problem like this and, at the same time, illu-
minate the basic line of thinking and typical primi-
tives used when modeling in ASP.

Uniform Encoding
The goal is to choose predicate symbols and the
respective relations that are needed to represent an
instance of the application problem at hand. To
abstract the physical coordinates of the rooms, we
rather represent the adjacency relation of rooms in

Articles

FALL 2016 17

Listing 2. Examples of Difference Constraints.

1 :- l(P)-e(P)<5, person(P).
2 :- l(P)-e(P)>90, person(P).
3 :- l(P1)-e(P2)>0, l(P2)-e(P1)>0,
4 dislikes(P1,P2), person(P1), person(P2),
5 seat(P1,T), seat(P2,T), tbl(T,_).

terms of a predicate adj/2. For simplicity, we also
assume that this relation captures the potential of
installing doors between any adjacent rooms. The
floor plan of figure 2 can be represented by constants
1..12 for the rooms and the following facts:

adj(1,2). adj(1,3). adj(2,3). adj(2,4). … adj(11,12).

In total, there are 21 such facts and they are sufficient
for the purposes of our examples to describe the
interconnections of the rooms. For space efficiency,
the adjacency information is represented asymmetri-
cally, that is, adj(X,Y) is reported only if X<Y. In addi-
tion, the rooms having exits are reported using a
unary predicate exit/1. For the running example in
figure 2, this is captured by the fact exit(5). Now, if
the given floor plan were changed in one way or

another, or a completely different floor plan were tak-
en into consideration, this should be reflected in the
facts describing the problem instance. The other rules
describing the application problem are based on
these two predicates, hence making the encoding
uniform. As typical in ASP encodings, some sub-
sidiary domain predicates are defined in order to
make the description of the actual problem easier.
Some domain rules for the locking design problem
are collected in listing 3 and explained next.

Relational Operations
The rules in lines 1–2 of listing 3 are used to extract
room information from the adjacency information
by a simple projection operation. As a result room(R)
is true for only those values of R that actually appear
in the adjacency information. In principle, a door
between two rooms provides symmetric access from
a room to another. Thus, the adjacency relation is not
well-suited as such for the description of accessibility
and we form the union of the accessibility relation
with its reverse relation using rules in lines 3–4. The
relation pot/2 stands for potential access depending
on instrumentation such as locks, handles, press but-
tons, and so on.

Defaults
To illustrate the use of defaults in encodings, we have
included the rules in lines 5–6 of listing 3. The rule in
line 5 defines the condition otherexit/0 meaning that
some other room than the room 1 has an exit. The
rule in line 6 ensures that, by default, there is an exit
at room 1. This is to hold unless another exit has
been declared for the particular problem instance.
There can be multiple exits. For instance, if there are
two exits at rooms 1 and 5, this can be stated explic-
itly using facts exit(1) and exit(5). Adding these facts
overrules the default in line 6 because otherexit can be
inferred by the rule in line 5.

Defining the Search Space
Typical ASP encodings include a part where the solu-
tion candidates for the problem being formalized are
generated. This can be achieved by expressing a num-
ber of choices that aim at capturing the varying
aspects of solutions. As regards syntax, such choices
can be expressed in terms of choice rules whose heads
are count-bounded sets of atoms. Bounds can also be
omitted if an arbitrary choice is of interest. As
explained above, the access from a room to another
can be asymmetric due to physical constructions. In
particular, this is true for emergency situations where
persons try to leave the building as soon as possible
but might have no keys to unlock any door. For sim-
plicity, we introduce a two-argument predicate evac/2
that is used to express the existence of an evacuation
route from a room to another. Given adjacent rooms
R1 and R2, such a design choice can be made in terms
of a choice rule

Articles

18 AI MAGAZINE

Figure 2. Floor Plan for the Rooms 1–12.

12

11

10

98

7

6

5

4

3

2

1

Listing 3. Domain Rules for Locking Design.

1 room(R1) :- adj(R1,R2).
2 room(R2) :- adj(R1,R2).
3 pot(R1,R2) :- adj(R1,R2).
4 pot(R1,R2) :- adj(R2,R1).
5 otherexit :- exit(X), X>1.
6 exit(1) :- not otherexit.

{ evac(R1,R2) } :- pot(R1,R2).
The intuitive reading is that if pot(R1,R2) is true, then
the truth value of evac(R1,R2) is subject to a choice.
Hence, the selection of evacuation routes between
rooms is formalized. Note that the analogous normal
rule

evac(R1,R2) :- pot(R1,R2).

would falsify evac(R1,R2) by default if pot(R1,R2) were
false, for example, rooms R1 and R2 were not adja-
cent. Since the relation pot/2 is symmetric, this gives
rise to four different scenarios if pot(R1,R2) and thus
also pot(R2,R1) is true.

Evacuation in one direction is possible if either
evac(R1,R2) or evac(R2,R1) holds. If they are both
true, this allows for bidirectional evacuation between
R1 and R2. If such an option is not considered safe, it
is easy to introduce an integrity constraint to exclude
such a possibility in general:

:- evac(R1,R2), evac(R2,R1), pot(R1,R2).

If both evac(R1,R2) and evac(R1,R2) are false, then
there is no connection between rooms R1 and R2 in
case of an emergency. It remains to ensure that there
exists an overall evacuation plan, that is, it is possi-
ble to reach at least one exit of the building from
every room.

Recursive Definitions
The existence of an evacuation plan is governed by
constraints that concern the mutual reachability of
rooms, to be formalized using a predicate reach/2.
The first two rules of listing 4 give a recursive defini-
tion for this predicate. Every room R is reachable
from itself: the corresponding base case is given in
line 1. The recursive case is formulated in lines 2–4:
the reachability of R2 from R1 builds on the reacha-
bility of an intermediate room R3 from R1 and the

condition that R3 can be evacuated to R2 (compare
with line 3).

Constraining Solutions
The essential constraint on the evacuation plan is
given in lines 6–7 of listing 4. Any given room R is
considered to be OK, if some exit X is reachable from
it (line 6). The auxiliary predicate ok/1 is defined in
order to detect this aspect for each room. The actual
constraint (line 7) excludes scenarios where some of
the rooms would not be OK. Last, we want to mini-
mize the number of evacuation connections by the
objective function given in line 9. Using the encod-
ing devised so far and an ASP solver, it is possible to
check for the floor plan of figure 2 that the minimum
number of connections is 11. This is clear since there
are 12 rooms in total each of which (except room 5)
must be connected to some other room for the pur-
pose of evacuation. But ASP solvers can find out more
for our running example. For instance, it is possible
to enumerate and count all possible evacuation plans
with 11 connections. In fact, there are 22 020 such
plans and further constraints can be introduced to
identify the most suitable ones. It is indeed the case
that the current requirements allow for very long
evacuation routes through the building of figure 2
such as

7 → 6 → 11 → 12 → 10 → 9 → 8 → 4 → 2 → 1 → 3 → 5.

Given this observation, the lengths of routes seem
important. Thus, we now pay special attention to the
number of evacuation steps, that is, moves from a
room to another, and from the room perspective. The
number of steps ought to be limited.

Elaboration Tolerance
It is straightforward to modify the recursive encod-

Articles

FALL 2016 19

Listing 4. ASP Encoding of the Evacuation Plan.

1 reach(R,R) :- room(R).
2 reach(R1,R2) :-
3 reach(R1,R3), evac(R3,R2),
4 room(R1), pot(R3,R2).
5
6 ok(R) :- room(R), reach(R,X), exit(X).
7 :- not ok(R), room(R).
8
9 #minimize{1,R1,R2: evac(R1,R2), pot(R1,R2)}.

ing so that the number of steps is reflected. The
revised encoding is presented as listing 5. The
domain for steps is first declared by the rule in line 1
where the maximum number of steps s is determined
from the command line of the grounder. The base
case in line 3 simply states that each room R is reach-
able from itself in zero steps. The main modification
in the recursive case (lines 4–5) concerns counting:
the number of steps S is increased by one to S+1
whenever a further step is made. However, since both
S and S+1 must be members of the domain of steps,
the maximum value is effectively determined by the
constant s in line 1. Given the floor plan of figure 2
and s=2, no evacuation plans can be found. By
increasing s by one, solutions with 11 connections
are found again and there are only 152 plans where
the number of evacuation steps is at most three.

In summary, we have now tackled one particular
aspect of locking design, that is, ensuring that an
evacuation plan exists for a building. In reality fur-
ther requirements are imposed on evacuation plans
making the problem computationally more and
more challenging. For instance, it can be shown that
if we incorporate conditions which can make rooms
along an evacuation route mutually exclusive, for
example, for certain security reasons, it is unlikely
that we are able to find a polynomial time algorithm
for solving the problem (mathematically expressed
the problem becomes NP-complete). This justifies
well the use of powerful search methods like ASP for
tackling the problem. For readers interested in com-
putational complexity, we sketch the justifications of
computational hardness in the sidebar.

Computing Answer Sets
So far, we have concentrated on the conceptual mod-
el of figure 1 with an emphasis on the modeling side.
As regards the actual computation of answer sets,
grounding and solving were also identified as the
main steps involved. Grounders are implemented

either as stand-alone tools, such as the state-of-the-
art grounder GRINGO,3 or integrated as a front end
of the solver. Native answer set solvers are able to
handle ground logic programs directly and, hence,
truly implement the search step illustrated in the fig-
ure. Typically, this step is the most demanding one
from the computational perspective. A number of
answer set solvers have been developed in the histo-
ry of ASP and we mention here DLV,4 CLASP3, and
WASP5 since they are actively maintained and devel-
oped at the moment. The article by Kaufmann et al.
(2016) in this issue gives a more detailed account of
grounding and solving. If ASP is extended by con-
straints which cannot be directly handled by the ASP
solver being used, the typical solution is to isolate
extensions from rules themselves and to treat them
by appropriate solvers externally. This leads to an
architecture where two or more solvers are cooperat-
ing and interacting in analogy to SAT modulo theo-
ries (SMT) solvers. Then each sort of constraints can
be handled by native algorithms.

Translation-Based ASP
The other constraint-based disciplines discussed in
the introduction offer similar solver technology at
the user’s disposal for handling, in particular, the
search phase. However, they cannot be used straight-
forwardly, as ground programs are not directly under-
stood by such solvers and certain kinds of transfor-
mations become indispensable. The idea of
translation-based ASP is to translate (ground) logic
programs into other formalisms so that a variety of
solvers can be harnessed to the task of computing
answer sets. Such an approach can be understood as
a refinement of the search step in figure 1. There are
existing translations from ASP, for example, to SAT
(Janhunen 2004), and its extension as SMT (Niemelä
2008), and mixed integer programming (MIP) (Liu,
Janhunen, and Niemelä 2012). These translations
indicate the realizability of ASP in other formalisms
and they have all been implemented by translators
in the ASPTOOLS6 collection. They offer another way
of implementing the search phase in ASP using off-
the-shelf solvers as black boxes. This approach is
already competitive in certain application problems
and it can be seen as an effort to combine the expres-
sive power of the modeling language offered by ASP
with the high performance of existing solvers. Trans-
lations are also useful when implementing language
extensions in a single target language. For instance,
the idea of (Janhunen, Liu, and Niemelä 2011) is to
translate programs enriched by difference constraints
into difference logic altogether. The strength is that a
single solver is sufficient for the search phase, but on
the other hand, the original structure of constraints
may be lost.

Cross Translation
The translations mentioned above are based on very

Articles

20 AI MAGAZINE

Listing 5. Revised ASP Encoding of the Evacuation Plan.

1 step(0..s).
2
3 reach(R,R,0) :- room(R).
4 reach(R1,R2,S+1) :-
5 reach(R1,R3,S), evac(R3,R2),
6 room(R1), pot(R3,R2), step(S), step(S+1).
7
8 ok(R) :- room(R), reach(R,X,S),
9 exit(X), step(S).

Articles

FALL 2016 21

It is not surprising that finding a
locking scheme satisfying given
conditions can become computa-
tionally challenging when more
involved conditions need to be sat-
isfied. Here we consider the prob-
lem of finding a locking scheme
that allows an evacuation plan
such that for each room there is
exactly one evacuation direction
and the evacuation routes respect a

given set of room conflicts, that is,
a set of pairs of rooms (R1, R2) such
that when following the evacua-
tion routes if you enter room R1,
then you cannot enter room R2. We
show that this locking design prob-
lem is NP-complete indicating that
it is unlikely that a polynomial
time algorithm for solving this
problem can be found. See, for
example, Papadimitriou (1994) for
an introduction to computational
complexity and the required con-
cepts used next.

Technically, the NP-complete-
ness of a problem can be shown by
establishing a reduction com-
putable in polynomial time from a
known NP-complete problem to
the problem and showing that it
can be checked in polynomial time
that a potential solution satisfies
the required conditions for the
problem. As such a known NP-
complete problem we use the
Exact-3-SAT problem where we are
given a conjunction of 3-literal
clauses and the problem is to find a
truth assignment that satisfies
exactly one literal in each of the
clauses.

Reduction from Exact-3-SAT
Any given 3-SAT instance
C1&…&Cn can be transformed into
a floor plan illustrated in figure 3.
For each 3-literal clause Ci =
li,1|li,2|li,3, we introduce a corridor Ci
connected to rooms Ri,1, Ri,2, and
Ri,3 that are connected to corridor
Ci+1. Moreover, rooms Ri,1, Ri,2, and
Ri,3 do not have doors in between.
The (only) exit is located next to
corridor Cn+1, which means that all
corridors and rooms must be even-
tually evacuated through it. More-
over, each room Ri,j is labeled by the
respective literal li,j, the idea being
that li,j is satisfied if Ci is evacuated

through the room Ri,j. Consequent-
ly, if there are two rooms labeled by
complementary literals (that is, a
Boolean variable x and its nega-
tion), then those rooms are in con-
flict. This means that evacuation
routes involving any pair of con-
flicting rooms are not feasible. It is
also easy to see that the floor plan
in figure 3 and the associated set of
conflicts can be computed in poly-
nomial time.

It can be shown that a 3-SAT
instance C1&…& Cn has a satisfying
truth assignment such that each
clause has exactly one literal satis-
fied if and only if for the corre-
sponding floor plan there is a lock-
ing scheme that allows an
evacuation plan such that (1) for
each room there is exactly one
evacuation direction and (2) the
evacuation routes respect the set of
room conflicts arising from the
complementary literals. The key
observation is that for the corre-
sponding floor plan evacuation is
possible only if there is a route
from C1 to Cn+1 such that for each i
= 1, … ,n the route visits exactly
one of the rooms Ri,1, Ri,2, and Ri,3
and all room conflicts are respect-
ed. A satisfying truth assignment
such that each clause has exactly
one literal satisfied gives directly
such a route, and if such a route is
available, it gives directly an appro-
priate truth assignment where liter-
als corresponding to the visited
rooms in the route are satisfied.

Moreover, it is clear that given a
locking scheme with exactly one
evacuation direction for each
room, whether evacuation is possi-
ble and all room conflicts are
respected can be checked in poly-
nomial time.

Locking Design Can Be Computationally Challenging

Figure 3. Floor Plan and Evacuation
Routes for the NP-Completeness Proof.

...

...

...

...

C1

C2

Cn+1

R1,1 R1,2 R1,3

Rn,1 Rn,2 Rn,3

R2,1 R2,2 R2,3

similar technical ideas but yield representations of
the ground program in completely different formats.
Since the development of several translators brings
about extra programming work, it would be highly
desirable to integrate the variety of translators in a
single tool - having options for different back-end
formats. This is not as simple as that due to the wide
variety of formats under consideration.

However, this issue is partly solved by a recent
translation from ASP to SAT modulo acyclicity (Geb-
ser, Janhunen, and Rintanen 2014) where graph-
based constraints are interconnected with ordinary
logical constraints (that is, clauses). The translation
can be implemented by instrumenting a ground log-
ic program with certain additional rules and meta
information formalizing the underlying recursion
mechanism in terms of the acyclicity constraint. This
leads to a new implementation strategy for transla-
tion-based ASP: the choice of the target formalism
can be postponed until the last step of translation
where the constraints are output in a particular solver
format. This idea is analogous to cross compilation
in the context of compiling conventional program-
ming languages and hence we coin the term cross
translation for ASP. In the current implementation of
this idea, a back-end translator transforms the instru-
mented program into other kinds of constraints
understood by SMT, MIP, and pseudo-Boolean (PB)
solvers, for instance. Interestingly, by implementing
an additional acyclicity check inside a native ASP
solver, the instrumented program can also be
processed directly by the solver (Bomanson et al.
2015), which offers yet another approach to answer
set computation.

Summary and Future Prospects
This article provides an introduction to the ASP par-
adigm as well as explains its main features — first
generally, but also in terms of examples. We also dis-
cuss the two mainstream approaches to implement-
ing the search for answer sets using either native
solvers, or translators combined with solver technol-
ogy offered by neighboring disciplines.

Towards Universal Modeling
There is a clear trend in the area of constraint-based
modeling where methods and techniques are being
transferred from one discipline to another. Various
ideas from knowledge representation, logic program-
ming, databases, and Boolean satisfiability served as
a starting point for the ASP paradigm. But there are
signs of knowledge transfer in the other direction as
well. For instance, ASP solvers have been integrated
into logic programming systems such as XSB (Rao et
al. 1997). Advanced query evaluation mechanisms of
ASP (Faber, Greco, and Leone 2007) are also relevant
for deductive databases. The very idea of answer sets
has been brought to the context of CP by introduc-

ing so-called bound-founded variables (Aziz, Chu,
and Stuckey 2013). Quite recently, the algorithms for
projected answer set enumeration have been export-
ed for model counting in the context of SAT (Aziz et
al. 2015).

We foresee that the exchange and incorporation of
ideas and technologies in this way is gradually leading
towards a universal approach where the user may
rather freely pick the right language for expressing
constraints of his or her interest. The underlying rea-
soning system is then supposed to (1) take care of
required translations transparently and (2) forward
the resulting constraints for a solver architecture that
can realize the search for answers. The first attempts
to define a modular framework for multilanguage
modeling have already been made (Järvisalo et al.
2009; Lierler and Truszczyski 2014; Tasharrofi and
Ternovska 2011). However, a lot of work remains to
be done in order to realize the universal modeling sce-
nario. Our experience from integrating various kinds
of tools suggests that finding a universal format for
the constraints of interest is one of the key issues for
tool interoperability. There are existing formats, such
as the DIMACS format in SAT, the Smodels format in
ASP, and the FlatZinc format in CP, that can be used
as starting points for designing the universal format.

Acknowledgments
We gratefully acknowledge support from the Finnish
Centre of Excellence in Computational Inference
Research (COIN) funded by the Academy of Finland
(under grant #251170). We also thank Martin Gebser,
Michael Gelfond, Torsten Schaub, and Mirek
Truszczyski for their comments on a preliminary
draft of this article.

Notes
1. The encodings presented in this article are directly exe-
cutable using contemporary ASP grounders and solvers
compatible with the ASP-core-2 language specification (ASP-
CORE-2 Input Language Format, 2012. F. Calimeri, W. Faber,
M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N.
Leone, F. Ricca, and T. Schaub).

2. However, ASP builds on the closed world assumption
(CWA): the given information is treated as complete infor-
mation and the problem is solved under this assumption.

3. potassco.sourceforge.net

4. www.dlvsystem.com

5. github.com/alviano/wasp.git

6. research.ics.aalto.fi/software/asp

References
Aziz, R.; Chu, G.; Muise, C.; and Stuckey, P. 2015. #∃SAT:
Projected Model Counting. In Theory and Applications of Sat-
isfiability Testing (SAT 2015) 18th International Conference,
Lecture Notes in Computer Science 9340, 121–137. Berlin:
Springer. dx.doi.org/10.1017/S147106841300032X

Aziz, R.; Chu, G.; and Stuckey, P. 2013. Stable Model Seman-

Articles

22 AI MAGAZINE

tics for Founded Bounds. Theory and Practice of Logic Pro-
gramming 13(4–5): 517–532.

Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006.
Answer Set Based Design of Knowledge Systems. Annals of
Mathematics and Artificial Intelligence 47(1–2): 183–219.
dx.doi.org/10.1007/s10472-006-9026-1

Bomanson, J.; Gebser, M.; Janhunen, T.; Kaufmann, B.; and
Schaub, T. 2015. Answer Set Programming Modulo Acyclic-
ity. In Logic Programming and Nonmonotonic Reasoning —
13th International Conference, LPNMR 2015, 143–150. Lec-
ture Notes in Computer Science 9345. Berlin: Springer.
dx.doi.org/10.1007/978-3-319-23264-5_13

Brewka, G.; Eiter, T.; and Truszczyski, M. 2011. Answer Set
Programming at a Glance. Communications of the ACM
54(12): 92–103. dx.doi.org/10.1145/2043174.2043195

Bruynooghe, M.; Denecker, M.; and Truszczyski, M. 2016.
First Order Logic with Inductive Definitions for Model-
Based Problem Solving. AI Magazine 37(3).

Denecker, M., and Ternovska, E. 2008. A Logic of Nonmo-
notone Inductive Definitions. ACM Transactions on Compu-
tational Logic 9(2). dx.doi.org/10.1145/1342991.1342998

Denecker, M., and Vennekens, J. 2014. The Well-Founded
Semantics Is the Principle of Inductive Definition, Revisited.
In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference (KR 2014).
Palo Alto, CA: AAAI Press.

East, D., and Truszczyski, M. 2006. Predicate-Calculus-
Based Logics for Modeling and Solving Search Problems.
ACM Transactions on Computational Logic 7(1): 38–83.
dx.doi.org/10.1145/1119439.1119441

Erdem, E. 2011. Applications of Answer Set Programming in
Phylogenetic Systematics. In Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays Dedicat-
ed to Michael Gelfond on the Occasion of His 65th Birthday, ed.
M. Balduccini and T. C. Son. Lecture Notes in Computer Sci-
ence Volume 6565, 415–431. dx.doi.org/10.1007/978-3-
642-20832-4_26

Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications of
ASP. AI Magazine 37(3).

Faber, W.; Greco, G.; and Leone, N. 2007. Magic Sets and
Their Application to Data Integration. Journal of Computer
and Systems Sciences International 73(4): 584–609.
dx.doi.org/10.1016/j.jcss.2006.10.012

Finkel, R., and O’Sullivan, B. 2011. Reasoning about Condi-
tional Constraint Specification Problems and Feature Mod-
els. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing (AI EDAM) 25(2): 163–174. dx.doi.org/
10.1017/S0890060410000600

Friedrich, G.; Fugini, M.; Mussi, E.; Pernici, B.; and Tagni, G.
2010. Exception Handling for Repair In Service-Based
Processes. IEEE Transactions on Software Engineering 36(2):
198–215. dx.doi.org/10.1109/TSE.2010.8

Gebser, M., and Schaub, T. 2016. Modeling and Language
Extensions. AI Magazine 37(3).

Gebser, M.; Guziolowski, C.; Ivanchev, M.; Schaub, T.;
Siegel, A.; Thiele, S.; and Veber, P. 2010a. Repair and Predic-
tion (Under Inconsistency) in Large Biological Networks
with Answer Set Programming. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth Inter-
national Conference (KR 2010). Palo Alto, CA: AAAI Press.
dx.doi.org/10.1109/ICTAI.2010.62

Gebser, M.; Janhunen, T.; and Rintanen, J. 2014. Answer Set

Programming as SAT Modulo Acyclicity. In ECAI 2014 —
21st European Conference on Artificial Intelligence, Frontiers in
Artificial Intelligence and Applications 263, 351–356. Ams-
terdam: IOS Press.

Gebser, M.; Kaminski, R.; Obermeier, P.; and Schaub, T.
2014. Ricochet Robots Reloaded: A Case-Study in Multi-
Shot ASP Solving. In Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation: Essays Dedi-
cated to Gerhard Brewka on the Occasion of His 60th Birthday,
ed. T. Eiter, H. Strass, M. Truszczyski, S. Woltran, Lecture
Notes in Computer Science Volume 9060, 17–32. Berlin:
Springer.

Gebser, M.; König, A.; Schaub, T.; Thiele, S.; and Veber, P.
2010b. The BioASP Library: ASP Solutions for Systems Biol-
ogy. In 22nd IEEE International Conference on Tools with Arti-
ficial Intelligence, ICTAI 2010, 383–389. Piscataway, NJ: Insti-
tute for Electrical and Electronics Engineers.

Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
Answer Set Solving. In Logic Programming, 25th Internation-
al Conference, ICLP 2009, Lecture Notes in Computer Sci-
ence 5649, 235–249. Berlin: Springer. dx.doi.org/10.1007/
978-3-642-02846-5_22

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Logic Programming,
Proceedings of the Fifth International Conference and Sympo-
sium, 1070–1080. Cambridge, MA: The MIT Press.

Gelfond, M., and Lifschitz, V. 1990. Logic Programs with
Classical Negation. In Logic Programming, Proceedings of the
Seventh International Conference, 579–597. Cambridge, MA:
The MIT Press. dx.doi.org/10.1007/BF03037169

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Computing 9(3/4): 365–385.

Janhunen, T. 2004. Representing Normal Programs with
Clauses. In Proceedings of the 16th European Conference on
Artificial Intelligence, ECAI’2004, 358–362. Amsterdam: IOS
Press.

Janhunen, T.; Liu, G.; and Niemelä, I. 2011. Tight Integra-
tion of Non-Ground Answer Set Programming and Satisfia-
bility Modulo Theories. Paper presented at the First Work-
shop on Grounding and Transformation for Theories with
Variables, GTTV 2011, Vancouver, BC, Canada, 16 May.

Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä, T.
2009. A Module-Based Framework for Multi-Language Con-
straint Modeling. In Logic Programming and Nonmonotonic
Reasoning, 10th International Conference, LPNMR 2009, Lec-
ture Notes in Computer Science 5753, 155–168.
dx.doi.org/10.1007/978-3-642-04238-6_15

Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and Solving in Answer Set Programming. AI
Magazine 37(3).

Koponen, L.; Oikarinen, E.; Janhunen, T.; and Säilä, L.
2015. Optimizing Phylogenetic Supertrees Using Answer
Set Programming. Theory and Practice of Logic Programming
15(4-5): 604–619. dx.doi.org/10.1017/S1471068415000265

Lierler, Y., and Truszczyski, M. 2014. Abstract Modular
Inference Systems and Solvers. In Practical Aspects of Declar-
ative Languages — 16th International Symposium, PADL 2014,
Lecture Notes in Computer Science 8324, 49–64. Berlin:
Springer. dx.doi.org/10.1007/978-3-319-04132-2_4

Lifschitz, V. 2016. Answer Sets and the Language of Answer
Set Programming. AI Magazine 37(3).

Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer Set Pro-

Articles

FALL 2016 23

gramming via Mixed Integer Programming. In Principles of
Knowledge Representation and Reasoning: Proceedings of the
Thirteenth International Conference (KR 2012), 32–42. Palo
Alto, CA: AAAI Press.

Marek, V., and Truszczyski, M. 1999. Stable Models and an
Alternative Logic Programming Paradigm. In The Logic Pro-
gramming Paradigm: A 25-Year Perspective, ed. K. Apt, V.
Marek, M. Truszczyski, and D. Warren, 375–398. Berlin:
Springer.

Marek, V.; Niemelä, I.; and Truszczyski, M. 2011. Origins of
Answer-Set Programming — Some Background and Two
Personal Accounts. In Nonmonotonic Reasoning: Essays Cele-

brating Its 30th Anniversary, ed. G. Brewka, V. Marek, M.
Truszczynski. London: College Publications. 233–258.
dx.doi.org/10.1007/978-3-642-60085-2_17

Mellarkod, V.; Gelfond, M.; and Zhang, Y. 2008. Integrating
Answer Set Programming and Constraint Logic Program-
ming. Annals of Mathematics and Artificial Intelligence 53(1–
4): 251–287. dx.doi.org/10.1007/s10472-009-9116-y

Niemelä, I. 1999. Logic Programming with Stable Model
Semantics as a Constraint Programming Paradigm. Annals
of Mathematics and Artificial Intelligence 25(3–4): 241–273.

Niemelä, I. 2008. Stable Models and Difference Logic.
Annals of Mathematics and Artificial Intelligence 53(1–4): 313–
329. dx.doi.org/10.1007/s10472-009-9118-9

Papadimitriou, C. 1994. Computational Complexity. Boston,
MA: Addison-Wesley.

Rao, P.; Sagonas, K.; Swift, T.; Warren, D.; and Freire, J. 1997.
XSB: A System for Efficiently Computing WFS. In Logic Pro-
gramming and Nonmonotonic Reasoning, 4th International Con-
ference, LPNMR’97, Lecture Notes in Computer Science 1265,
431–441. Berlin: Springer.

Soininen, T., and Niemelä, I. 1998. Developing a Declarative
Rule Language for Applications in Product Configuration.
In Practical Aspects of Declarative Languages, First Internation-
al Workshop, PADL ’99, Lecture Notes in Computer Science
1551, 305–319. Berlin: Springer. dx.doi.org/10. 1007/3-540-
49201-1_21

Tasharrofi, S., and Ternovska, E. 2011. A Semantic Account
for Modularity in Multi-Language Modelling of Search Prob-
lems. In Frontiers of Combining Systems, 8th International Sym-
posium, FroCoS 2011, Lecture Notes in Computer Science
6989, 259–274. Berlin: Springer. dx.doi.org/10.1007/978-3-
642-24364-6_18

Tomi Janhunen (Tomi.Janhunen@aalto.fi) is a senior uni-
versity lecturer at Aalto University in the Department of
Computer Science. He holds the title of docent from Aalto
University. Janhunen received his doctoral degree in theo-
retical computer science from Helsinki University of Tech-
nology in Finland in 1998. His primary research interests are
in knowledge representation and automated reasoning,
especially in answer set programming, extensions of
Boolean satisfiability, and translations between logical for-
malisms. He has been a member in the program committees
of 50 conferences and workshops in his research area.

Ilkka Niemelä (Ilkka.Niemela@aalto.fi) is a professor of
computer science at Aalto University and serves currently as
the provost of Aalto University. He received a doctoral
degree in computer science in 1993 from Helsinki Universi-
ty of Technology. His research interests include automated
reasoning, constraint programming, knowledge representa-
tion, computational complexity, computer-aided verifica-
tion, automated testing, and product configuration. He is
one of the principal investigators of the Finnish Center of
Excellence in Computational Inference Research. He has
served as the editor-in-chief of Theory and Practice of Logic
Programming and is a Fellow of the European Association for
Artificial Intelligence.

Articles

24 AI MAGAZINE

ICWSM-17 to be Held in
Montréal, Québec, Canada

AAAI is pleased to announce that, in
cooperation with the McGill Univer-
sity School of Computer Science,
ICWSM-17 will be held May 15–18,
2017 in Montréal, Québec, Canada.
The general chair for ICWSM-17 is
Derek Ruths, and the program chairs
are Winter Mason, Sandra Gonzalez-
Bailon, and Alice Marwick.

Please see www.icwsm.org/2017
for the latest developments.

I CWSM

