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Abstract

Background and Objective—Photodynamic therapy (PDT) has been advocated as an alternative

to antimicrobial agents to suppress subgingival species and treat periodontitis. Bacteria located within

dense biofilms, such as those encountered in dental plaques, have been found to be relatively resistant

to antimicrobial therapy. In the present study, we investigated the ability of PDT to affect bacteria

resistant in biofilms by comparing the photodynamic effects of methylene blue (MB) on human dental

plaque microorganisms in planktonic phase and in biofilms.

Material and Methods—Dental plaque samples were obtained from 10 subjects with chronic

periodontitis. Suspensions of plaque microorganisms from 5 subjects were sensitized with MB (25

μg/ml) for 5 minutes followed by exposure to red light. Multi-species microbial biofilms developed

from the same plaque samples were also exposed to MB (25 μg/ml) and the same light conditions as

their planktonic counterparts. In a second set of experiments, biofilms were developed with plaque

bacteria from 5 subjects and sensitized with 25 and 50 μg/ml MB followed by exposure to light as

above. After PDT, survival fractions were calculated from colony-forming unit counts.

Results—In suspension, PDT produced approximately 63% killing of bacteria. In biofilms, the

effect of PDT resulted in much lower reductions of microorganisms (32% maximal killing).

Conclusion—Oral bacteria in biofilms are less affected by PDT than bacteria in planktonic phase.

The antibacterial effect of PDT is reduced in biofilm bacteria but not to the same degree as has been

reported for treatment with antibiotics under similar conditions.
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Introduction

Bacteria growing in biofilms adhere to a solid surface where they multiply and form

microcolonies embedded in an extracellular polymeric matrix, which includes water and

nutrient channels (1). Biofilms that colonize tooth surfaces and epithelial cells lining the

periodontal pocket/gingival sulcus (subgingival dental plaques) are among the most varied and

complex biofilms that exist in nature. These biofilms may include a subset of selected species

from more than 700 bacterial species or phylotypes (2-4) and can lead to periodontal diseases.

Mechanical removal of the periodontal biofilms is currently the most frequently used method

of periodontal disease treatment. Antimicrobial agents are also used, but biofilm species exhibit

several resistance mechanisms (5-7). In addition, disruption of the oral microflora and the

difficulty of maintaining therapeutic concentrations of antimicrobials in the oral cavity are also

problems associated with the use of these agents (8).

Photodynamic therapy (PDT) has been suggested as an alternative to chemical antimicrobial

agents to eliminate subgingival species and treat periodontitis (9). PDT is based on the concept

that non-toxic photosensitizers can be preferentially localized in certain tissues and

subsequently activated by light of the appropriate wavelength to generate singlet oxygen and

free radicals that are cytotoxic to cells of the target tissue (10). Several studies have shown that

oral bacteria are susceptible to PDT in planktonic cultures (9,11,12) and plaque scrapings (9,

13,14). Recent studies have reported that PDT-induced bacterial cell killing reduced bacterial

numbers by more than 10-fold in Streptococcus mutans, Streptococcus sobrinus and

Streptococcus sanguinis (15-18) biofilms using toluidine blue O or erythrosine as the

photosensitizer. Data produced in our laboratory, however, have shown that eradication of oral

bacteria is incomplete following biofilm sensitization with methylene blue (MB) and exposure

to red light in Actinomyces naeslundii biofilms (19,20) and multi-species biofilms produced

from human saliva as inoculum (21).

In this study, we investigated effects on bacteria derived from human natural dental plaque

exposed to PDT in vitro under planktonic or biofilm conditions. The goal of our research was

to compare the susceptibility of dental plaque bacteria in suspension or biofilms to PDT after

their sensitization with certain concentrations of MB and exposure to red light at 665 nm.

Materials and Methods

Subjects and plaque samples

Samples of dental plaque were taken from 10 subjects. Permission to collect dental plaque

samples was authorized by Institutional Review Board-approved informant consent. All the

subjects were diagnosed as having chronic periodontitis with probing depths greater than 5

mm. None of the subjects used antibiotics nor had undergone periodontal treatment during 3

months prior to sampling. Dental plaque samples were taken from supra- and subgingival

mesiobuccal aspects of premolars or molars in each subject (4-8 samples/subject) with

individual sterile Gracey curettes. After their removal, all of the samples from each subject

were placed immediately into one vial containing of 4.5 ml pre-reduced, anaerobically

sterilized (PRAS) Ringer's solution (Anaerobe System Morgan Hill, CA). Microorganisms

were dispersed by sonication and repeated passage through Pasteur pipettes. Aliquots were

measured in a spectrophotometer in 1 ml cuvettes (one optical density unit was considered as

approximately 109 cells/ml at 600 nm). Then each sample from 5 subjects (subjects 1 to 5) was

divided in two parts. The first part, in suspension, was exposed to PDT. The second part was

used for the development of biofilms, which were also exposed to PDT a week later. In the

first group, we compared the photodynamic effects of the same MB concentration (25 μg/ml)

on both planktonic and biofilm bacteria. The samples from the other 5 subjects (subjects 6 to

10) were used only for the development of biofilms that were also exposed to PDT. In the
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second group, we compared the photodynamic effects of two different MB concentrations (25

and 50 μg/ml) on biofilm species.

Preparation of blood agar culture plates

An enriched agar medium was prepared containing 20 g/l trypticase soy agar (BBL,

Cockeysville, MD), 26 g/l brain heart infusion (BHI) agar (Difco Laboratories, Detroit, MI),

10 g/l yeast extract (BBL) and 5 mg/l hemin (Sigma Chemical Co., St. Louis, MO). The medium

was autoclaved and cooled to 50°C. Then 5% defribinated sheep blood (Northeast Labs, ME),

5 mg/ml menadione 6 (Sigma Chemical Co. St. Louis, MD) and 10 mg/ml N-acetylmuramic

acid (Sigma) were aseptically added. Aliquots of 150 μl of the agar mixture was dispensed into

wells of 96-well microtiter plates at volume of 150 μl per well respectively (NUNC, Rochester,

NY) and allowed to dry.

Development of plaque-derived biofilms

The dental plaque samples collected from each subject were placed into one vial containing

PRAS Ringer's solution. Under anaerobic conditions, the entire sample was dispersed and

added to BHI broth (Beckton, Dickinson & Company, Sparks, MD). For biofilm development,

the plaque/BHI broth inoculum contained approximately 107 cells/ml. One hundred and fifty

μl of this inoculum (approximately 1.5 × 106 bacteria) was carefully pipetted to fill four blood

agar wells in each 96-well plate. The plates were then incubated anaerobically (80% N2, 10%

H2, and 10% CO2) at 35°C for 7 days. After initial incubation of 48 hours, the liquid medium

was carefully aspirated from each well and the biofilms were replenished with fresh BHI broth.

Then fresh BHI broth was daily added onto each well very slowly to avoid damage of the

biofilm.

Biofilm characterization

a) Counts of biofilm microorganisms—On day 7 of their development, biofilms were

gently scraped from blood agar in each well with a sterile bacteriological loop to remove the

entire visible biomass. Then spectroscopy was performed to determine the total bacterial load.

b) Confocal scanning laser microscopy (CSLM)—A Leica SP2 confocal scanning

fluorescence microscope (Leica Inc., Malvern, PA) with a 40x or 100x water-dipping objective

lens was used to observe the distribution of deal/live microorganisms in biofilms. Biofilms

were grown on agar in 24-well plates (to accommodate the confocal microscope objective) as

described above. For optimum biofilm development, the plaque:BHI inoculum contained

109 cells/ml. Live and dead biofilm bacteria were simultaneously viewed using the reagents

SYTO 9 stain and propidium iodide in the LIVE/DEAD BacLight Bacterial Viability Kit

(Molecular Probes, Inc., Eugene, OR) according to the manufacturer's instructions. Biofilms

were stained in the dark at room temperature for 15 min. An argon laser (476 nm) was used as

the excitation source for the reagents and the fluorescence light emitted was collected by two

separate emission filters at 500 nm (SYTO 9) and 635 nm (propidium iodide). Sections were

collected at 20 μm intervals and these were then analyzed by image-processing techniques to

assess the distribution of dead/live bacteria within the biofilm matrices.

c) Microbial analysis—The microbial composition of biofilms was assayed using whole

genomic probes to 40 oral microorganisms (see Fig. 2) as described below.

Composition of pooled dental plaque and biofilms

A part of each dental plaque sample (4 × 108 bacteria) obtained from subjects 6 to 10 was split

in 4 tubes with BHI broth (108 bacteria per ml). The bacterial solutions underwent serial

dilutions and 100 μl aliquots were spread over the surfaces of blood agar plates, which were
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incubated anaerobically for 7 days. Then the microbial composition was assayed using whole

genomic probe assay as described previously (22). In biofilms, which were developed from

the same subjects and were not exposed to light and/or MB (L-MB-), the composition was

assayed 7 days after PDT. Briefly, Tris-EDTA buffer (1.5 ml) was added to the plates and the

bacterial colonies were scraped off the surface with sterile L-shaped glass rods. The

suspensions were placed into individual Eppendorf tubes and sonicated for 10 sec to break up

clumps. The optical density (OD) of each suspension was adjusted to a final OD of 1.0, which

corresponded to approximately 109 cells. Ten μl of the suspension (107 cells) were removed

and placed in another Eppendorf tube with 140 μl of TE buffer and 150 μl of 0.5M NaOH. The

samples were lysed and the DNA was placed in lanes on positively charged nylon membrane

using a Minislot device (Immunetics, Cambridge, MA, USA). After fixation of the DNA to

the membrane, the membrane was placed in Miniblotter 45 (Immunetics) with the lanes of

DNA at perpendicular to the lanes of the device. Digoxigenin-labeled whole genomic DNA

probes to 40 bacteria species (Fig. 2) were hybridized in individual lanes of the Miniblotter.

After hybridization, the membranes were washed at high stringency and the DNA probes were

detected using antibody to digoxigenin conjugated with alkaline phosphatase for

chemifluorescence detection. Signals were detected using AttoPhos substrate (Amersham Life

Science, Arlington Heights, IL, USA) and were scanned using a Storm Fluorimager (Molecular

Dynamics, Sunnyvale, CA, USA). Computer-generated images were analyzed to determine

the fluorescence intensity associated with each sample and probe. Two lanes in each membrane

contained DNA standards with 1 ng (105 bacteria) and 10 ng (106 bacteria) of each species.

The sensitivity of the assay was adjusted to permit detection of 104 cells of a given species by

adjusting the concentration of each DNA probe. The measured fluorescence intensities were

converted to absolute counts by comparison with the standards on the same membrane. Failure

to detect a signal was recorded as zero.

Photosensitizer

Methylene blue (Sigma, St Louis, MO) was dissolved in BHI broth to give solutions at

concentrations of 25 and 50 μg/ml before use. The ultraviolet-visible absorption spectra of MB

in BHI broth were recorded from 300 to 700 nm using quartz cuvetts with 1 cm path length on

a diode array spectrophotometer (model 335907P-000, ThermoSpectronic, Rochester, NY),

and were characterized by a long-wavelength maximum at 665 nm.

Light source

A diode laser (BWTEK Inc., Newark, DE) with an output power of 1 Watt and a central

wavelength of 665 nm was used. The system was coupled to a 1 mm optical fiber that delivered

light into a lens, which formed a uniform circular spot on the base of the 24- or 96-well plate,

2 cm in diameter. This spot of light was able to irradiate each time either one well in a 24-well

plate or a group of 4 wells in a 96-well plate. The power density of incident radiation was

measured with a power meter (Ophir Optronics, LTD, Danvers, MA). The distance between

the lens and the illuminated plates was adjusted to create a 2 cm in diameter spot of light with

a fixed power density of 100 mW/cm2.

Photodynamic treatment

The light parameters used in this study for bacterial suspensions and biofilms were 100 mW/

cm2 (power density) and 30 J/cm2 (energy fluence). The MB concentration of 25 μg/ml was

applied on both suspensions and biofilms that were derived from samples obtained from

subjects 1 to 5 (Table 1). The MB concentrations of 25 and 50 μg/ml were applied on biofilms

developed using plaque samples from subjects 6 to 10 (Table 2). The following groups were

used: 1) L-MB- (No light, no MB), 2) L-MB+ (treated only with MB), 3) L+MB- (treated only
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with light), and 4) L+MB+ (treated with MB and light, PDT group). Groups 1 and 2 were kept

in plates at room temperature covered with aluminum foil during irradiation.

a) Plaque samples—Suspensions of bacteria (108/ml) were incubated with MB (25 μg/ml)

for 5 minutes in the dark at room temperature in tetraplicate. Following incubation, bacterial

suspensions were placed in the wells of 24-well plates and exposed to light of 665 nm from

above for 5 minutes in the dark at room temperature. Two neighboring wells with bacterial

suspensions were separated by at least two empty wells to avoid any overlapping exposure of

wells. During PDT, 24-well plates remained covered with a lid, and special care was taken not

to disturb the plates. After illumination of the appropriate wells, bacterial suspensions

underwent serial dilutions in BHI broth and 100 μl aliquots were plated on blood agar plates

for anaerobic incubation for 7 days.

b) Biofilms—Four wells of 96-well plates containing the biofilms were exposed to MB (25

or 50 μg/ml) for 5 min. These wells were then irradiated with red light simultaneously. There

was only one group of 4 wells with biofilms in each 96-well plate thereby avoiding any adjacent

well exposure. During PDT 96-well plates remained covered with a lid and were not disturbed.

After illumination, adherent bacteria were gently scraped from blood agar in each well with a

sterile bacteriological loop to remove the biofilm and dispersed in BHI broth. The same

experienced researcher removed all of the biofilms to assure that the scrapings collected the

entire biofilm and did not add variability to the results. Aliquots were measured in a

spectrophotometer in 1 ml cuvettes. Then serial dilutions were prepared and 100 μl aliquots

were spread over the surfaces of blood agar plates. The plates were incubated anaerobically at

35°C for 7 days.

Data analysis

The multiple comparisons of 40 individual species in suspensions and biofilms were evaluated

against a Bonferroni adjusted P-value (with overall alpha=0.10). Survival fractions in each

group (L+MB+, L-MB+, L+MB-) were calculated by dividing the mean number of colony-

forming units (CFU) by CFU from dark controls (L-MB-), planktonic or biofilm as appropriate,

from the same subject. Survival fractions in Tables 1 and 2 were evaluated by repeated

measures analysis of variance to compare treatment groups while controlling variation across

subjects. Pair-wise comparisons were done by Least Significant Difference (LSD) tests.

Results

Characterization of biofilms

The average number of microorganisms obtained from 50 independent biofilms was

approximately 109. Confocal images (X-Y) that were obtained from dental plaque-derived

biofilms on day 7 of their growth showed a mixture of dead and live microorganisms extending

to a depth of 180-200 μm (Fig. 1). No fluorescent signal was observed below 200 μm.

Microbial analysis

DNA probe analysis of plaque samples and biofilms demonstrated that the composition of each

were similar. Although there were, on average, slightly more bacteria in the suspension (5.9 ×

106/sample) than in the biofilms (4.6 × 106/sample), these differences were not statistically

significant. No significant differences in species levels were found in statistical comparisons

between suspensions and biofilms after applying Bonferroni criteria (with overall alpha=0.10)

to adjust for multiple comparisons. Although counts were consistently somewhat lower in

biofilms, species profiles were generally similar for biofilms and suspensions.
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Photodynamic treatment of planktonic bacteria versus biofilms

The effects of light with/without MB (25 μg/ml) were evaluated on dental plaque bacteria from

5 subjects in planktonic versus biofilm phase (Table 1). Pair-wise comparisons by LSD tests

indicated significant differences (P<0.05) between L+MB+ relative to MB alone (L-MB+) and

light alone (L+MB-) in both planktonic and biofilm states. The synergism of light and MB did

not fully kill plaque microorganisms. The survival fractions for the PDT groups were

approximately 37% and 69% in planktonic and biofilm cultures, respectively, compared with

dark controls (L-MB-). Samples for all 5 subjects had higher survival fractions for L+MB+ in

the biofilms relative to corresponding planktonic values.

Photodynamic treatment of biofilm bacteria

The effects of light with/without MB (either 25μg/ml or 50μg/ml) were evaluated on biofilms

from subgingival plaque samples of 5 additional subjects (Table 2). LSD tests indicated that

50 μg/ml MB + light was significantly lower in bacterial number (P<0.05) than all other groups.

Differences among mean survival fractions for the other treatment groups were quite modest.

Discussion

Several studies have reported that oral microorganisms in planktonic cultures (11-13), plaque

scrapings (14) and biofilms (17,18,23) are susceptible to PDT. Recently, it was reported that

PDT induced bacterial cell killing greater than 1 log10 in oral mono-species biofilms using

erythrosine (15,16), which is currently used clinically as a dental plaque-disclosing agent.

However, other studies have demonstrated incomplete destruction of oral pathogens in plaque

scrapings (20,24), mono-species biofilms (19,20) and multi-species biofilms derived from

human saliva (21). In the present study, we investigated the photodynamic effects of MB on

human dental plaque microorganisms in planktonic phase versus biofilm phase. Methylene

blue, whose intravenous administration is FDA approved for methemoglobinemia, has been

tested as a promising candidate for PDT of cancer (25) and has also been used in PDT for

targeting various gram-positive and gram-negative oral bacteria (26). The hydrophilicity of

MB (27), its low molecular weight, and the positive charge allow passage across the porin-

protein channels in the outer membrane of gram-negative bacteria. MB predominantly interacts

with the anionic macromolecule lipopolysaccharide resulting in the generation of MB dimmers

(28), which participate in the photosensitization process (28,29)

In our study PDT produced approximately 63% killing of bacteria in planktonic phase (Table

1), whereas in biofilms derived from the same plaque samples the effect of light resulted in

much lower reductions of microorganisms (31% killing) (Table 1). Although PDT was less

effective in treatment of bacteria within dense biofilms formed by dental bacteria than in

planktonic culture, the difference was only 2-fold, whereas antibiotics have been reported to

be approximately 250-fold less effective under these conditions (30). In comparing biofilm

with planktonic effects, a degree of reduced efficacy would be expected of any penetrant

molecule species. Incomplete bacterial killing by PDT is not limited to MB. In a previous study

(20), a conjugate between the photosensitizer chlorine6 and a poly-L-lysine failed to completely

eradicate microorganisms in dental plaque scrapings. Recently, incomplete elimination of

microorganisms in subgingival scrapings was reported after their sensitization with toluidine

blue, a phenothiazinium-based photosensitizer such as MB, and their subsequent exposure to

red light at 635 nm (24). There are several explanations for the lowered PDT effect in dental

plaque microorganisms. First, the reduced susceptibility to PDT may be related to the distinct

and protected phenotypes expressed by them once they attach to the tooth (31). These

phenotypic changes, which are critical for the development of dental biofilm resistance (32),

are still carried by dental plaque bacteria in suspension. Second, the photodynamic effects of

MB on dental plaque bacteria were probably affected by the presence of serum proteins in BHI
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broth (20,33,34). In the present study, MB was dissolved in BHI broth since proteins from both

saliva and gingival crevicular fluid would also reduce the effect of MB in the hypothetical case

of its in vivo application (34). Third, it has been shown that phenothiazinium-based

photosensitizers, including MB, toluidine blue O and 1,9-dimethylmethylene blue, are

substrates of multi-drug resistance pumps in bacteria (35).

The microcosm biofilm model that was employed in this study originates directly from the

whole-mixed natural dental plaque, is technically simple to prepare and maintain, and, possibly,

reflects the complexity of dental plaque. Microbial analysis (Fig. 2) showed the establishment

of a mixed microflora, whereas CSLM (Fig. 1) showed a biofilm structure, which resembled

that of natural dental plaque. The growth of microorganisms from pooled human dental plaque

on blood agar has been demonstrated by other investigators (36,37). Plaque microcosms are

functional models for studying drug delivery and targeting (38). The characterization of the

biofilm model used in the present study has been reported previously (39), whereas its validity

has been demonstrated using novel drug delivery and therapeutic procedures (21).

Biofilm bacteria showed resistance to PDT with killing not exceeding 32% compared with

dark controls (Table 2). Although differences in the photodynamic sensitivity of biofilms at

25 μg/ml MB as illustrated in Tables 1 and 2 appear substantial (91.6% versus 69% reduction

of CFU, P=0.05 by t-test), these differences would not be considered significant if corrected

for multiple testing. Biofilms were developed using dental plaque obtained from different

donors, and therefore biofilm variability may reflect differences in responses to PDT. Recently,

Müller et al. (40) reported less than 1 log10 destruction of bacteria in six-species oral biofilms

developed on bovine-enamel discs after their sensitization with MB followed by irradiation

with red light at 665 nm. Incomplete destruction of bacteria was reported previously after their

sensitization with MB and exposure to red light in Actinomyces naeslundii biofilms (19,20) as

well as in microcosm laboratory biofilms developed on agar in the wells of 24-well plates using

human saliva as inoculum (21). In these studies, the reduced susceptibility of biofilms to PDT

was attributed to reduced penetration of MB as revealed by confocal scanning laser microscopy,

an explanation that has been introduced previously (41). Similar findings were obtained by

O'Neill et al. (42). In their study, confocal scanning laser microscopy images of saliva-derived

biofilms revealed that photodestruction occurred predominantly in the outer layers of biofilm

clusters after exposure to toluidine blue O and light. It has been suggested that water channels

can carry solutes into or out of the depths of a biofilm, but they do not guarantee access to the

interior of the cell clusters (43), whose diameter may range from 20 to 600 μm (44). The

mechanism responsible for the reduced susceptibility of biofilms to PDT may also be related

to inactivation of MB (45), the existence of biofilm bacteria in a slow growing or starved state

(46), and to distinct and protected phenotypes expressed by biofilm species when they attached

to agar surface (32). Although the optimal PDT parameters for eradication of microorganisms

in oral microcosm biofilms remain to be determined, preliminary results obtained in our

laboratory using 50 μg/ml MB and light with energy fluence of 60 J/cm2 (two-fold greater

fluence than that used in this study) produced incomplete (40%) killing of bacteria in biofilms

developed using human dental plaque as inoculum (47). Despite the reduced efficacy of PDT,

however, the effect is much greater than seen with antibiotic therapy and is amenable to

modifications that could increase efficacy. In addition, in PDT one is able to use smaller, more

permeant molecular species, more capable of negotiating the water channels of established

biofilm structure. A recent in vivo study showed that scaling and root planing combined with

PDT using MB led to significant improvements of the investigated clinical parameters over

the use of scaling and root planing alone (48). The role of PDT in the clinical treatment of

periodontal disease, either in combination with traditional methods of periodontal care or by

itself, warrants further investigation. Novel delivery and targeting approaches may need to be

developed to overcome the reduced susceptibility of complex dental biofilms to antimicrobial

therapy.
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Figure 1.

Confocal images (horizontal X-Y sections) obtained by dental-plaque derived biofilms grown

on agar in 24-well plates. Live bacteria with intact membranes were stained fluorescent green

by SYTO 9 stain, while dead bacteria with damaged membranes were stained fluorescent

orange by propidium iodide. The fluorescent signals were obtained to a depth of 180 μm.
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Figure 2.

Profiles of mean DNA counts of 40 microorganisms in dental plaque samples (suspensions)

and plaque-derived biofilms. Each bar is the mean (× 105) of values obtained from 5 subjects

(6-10) with chronic periodontitis (data from each subject were representative of 3-4

independent suspensions or biofilms). Error bars denote the standard error of the mean. No

significant differences in species levels were found in statistical comparisons between

suspensions and biofilms after applying Bonferroni criteria (with overall alpha=0.10) to adjust

for multiple comparisons.
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