
The AORTA Architecture:
Integrating Organizational Reasoning in Jason

Andreas Schmidt Jensen1, Virginia Dignum2, and Jørgen Villadsen1

1 Technical University of Denmark, Kongens Lyngby, Denmark
{ascje,jovi}@dtu.dk

2 Delft University of Technology, Delft, The Netherlands
m.v.dignum@tudelft.nl

Abstract. Open systems are characterized by a diversity of heteroge-
neous and autonomous agents that act according to private goals, and
with a behavior that is hard to predict. They can be regulated through
organizations similar to human organizations, which regulate the agents’
behavior space and describe the expected behavior of the agents. Agents
need to be able to reason about the regulations, so that they can act
within the expected boundaries and work towards the objectives of the
organization. In this paper, we propose the AORTA1 architecture for
making agents organization-aware. It is designed such that it provides
organizational reasoning capabilities to agents implemented in existing
agent programming languages without being tied to a specific organi-
zational model. We show how it can be integrated in the Jason agent
programming language, and discuss how the agents can coordinate their
organizational tasks using AORTA.

1 Introduction

Open systems rely on organizational structures to guide and regulate agents, be-
cause these systems have no control over the internal architecture of the agents.
This means that the agents must be able to reason about the organizational
structures in order to know what to do in the system and how to do it. Reg-
ulations are often specified as organizational models, usually using roles that
abstract away from specific agent implementations such that any agent will be
able to enact a given role. Roles may restrict enacting agents’ behavior space,
such that it coincides with the expectations of the system. The system can then
be regulated, for example, by blocking certain actions (for example through a
middleware, such as S-Moise+ [9]), or by enabling the agents to reason about
the expectations of the system.

1 Adding Organizational Reasoning to Agents

1

Organization
Agent

AORTA

Fig. 1. AORTA is part of an agent and provides it with an interface to the organization.

Agents that can reason about organizations are organization-aware [14]. This
includes understanding the organizational specification, acting using organiza-
tional primitives, and cooperating with other agents in the organization to com-
plete personal or organizational objectives. From the agent’s perspective, there
are two sides of organizational reasoning. First, how can it contribute to the
objectives of the organization, and second, how can it take advantage of the
organization, once it is a part of it.

AORTA (Adding Organizational Reasoning to Agents) [12] is an organiza-
tional reasoning component that can be integrated into the agent’s reasoning
mechanism, allowing it to reason about (and act upon) regulations specified by
an organizational model using simple reasoning rules. AORTA assumes a preex-
isting organization, is independent from the agent, and focus on reasoning rules
that specify how the agent reasons about the specification. The organization is
completely separated from the agent, as shown in figure 1, meaning that the
architecture of the agent is independent from the organizational model, and the
agent is free to decide on how to use AORTA in its reasoning. The separation
is possible because AORTA is tailored based on an organizational metamodel,
designed to support different organizational models.

In this paper, we propose the AORTA architecture for making agents organiza-
tion-aware2. It is designed such that it can provide organizational reasoning ca-
pabilities to agents implemented for existing agent platforms. We present an
integration of AORTA in the well-known agent platform Jason [1], and show
how it lets Jason-agents decide how to use their capabilities to achieve their or-
ganizational objectives, and furthermore, how they are able to coordinate their
tasks.

We consider software architecture as the highest level of abstraction of a
software system. The AORTA architecture is designed as a component that can
be integrated into existing agent platforms. Existing agents are linked to an
AORTA-agent, which features an organizational reasoning cycle that performs
organizational reasoning, providing the existing agent with organizational rea-
soning capabilities. Furthermore, the organizational reasoning is specified in an
AORTA-program in which organizational actions and coordination mechanisms
for each agent can be defined by the developer.

The rest of the paper is organized as follows. We begin, in section 2, with
a description of the organizational metamodel, and briefly discuss a simple sce-
nario, which we later implement in AORTA and Jason. In section 3, we present

2 The implementation of the AORTA architecture is available as open source at http:
//www2.compute.dtu.dk/~ascje/AORTA/.

2

the AORTA architecture. Section 4 describes the integration with Jason. We
discuss related work in section 5 and conclude the paper in section 6.

2 Organizational model

Organizational models are used in multi-agent systems to give agents an explicit
representation of an organization. Different models are proposed in the literature
(e.g. Moise+[9], OperA [5], ISLANDER [6]). A common trait is the use of
roles, abstracting implementation details away from expectations, and objectives,
defining the desired outcome of the organization.

Reasoning in AORTA is based on an organizational metamodel, which sup-
ports different organizational models. The metamodel is based on roles and ob-
jectives.

A role, role(r,O) has a name, r, and is responsible for a set of objectives, O.
An objective is denoted objective(o). Roles can form a dependency relation over
an objective, dependency(r1, r2, o), such that r1 depends on r2 for the completion
of an objective o. Objectives may be partially ordered, order(o1, o2), indicating
that certain objective o1 must be completed before objective o2. Role enact-
ment is denoted rea(a, r), which means that agent a enacts role r. Furthermore,
active(o) denotes objective o is active (an objective is active if it has not yet
been completed and all objectives it depends on have been completed).

Existing organizational models can be mapped to this metamodel. For exam-
ple, if Moise+ is being used, an objective is a goal, which is part of a mission,
and a role would be responsible for missions it is permitted or obligated to pur-
sue. Note that since the metamodel is currently based on roles and objectives,
and has no notion of norms, it is not yet possible to reason about norms that
are enforced.

2.1 First responders

We consider a scenario of first responders at a fight between groups of people,
some of them being injured and requiring medical attention.

After a match between Manchester United and Manchester City, the fans
are fighting and some of them are badly hurt. The authorities have been
contacted, and a group number of medics and police officers (the first-
responders) have arrived. The medics are supposed to help the injured,
while the police officers are supposed to break up the fight. The fans may
try to prevent medics from rescuing injured fans from the other team.

The organizational specification is shown in figure 2. For this paper, we as-
sume that the agents entering the organization are cooperative, that is, they
will pursue organizational objectives and cooperate with the other agents in the
organization. It is, however, simple enough to consider self-interested agents as
well; they will just be more likely to pursue their personal objectives rather than
those of the organization.

3

role(medic,{injuredFound,injuredSaved,removeBlocker}).
role(officer,{fightFound,fightStopped}).
dependency(medic,officer,removeBlocker).
order(injuredFound,injuredSaved).
order(fightFound,fightStopped).
objective(injuredFound).
objective(injuredSaved).
objective(removeBlocker).
objective(fightFound).
objective(fightStopped).

Fig. 2. Organizational specification of the crisis response scenario.

Agents in the scenario will have to reason about which role(s) to enact, how
to achieve and coordinate their objectives, and how to complete objectives that
the agents are not capable of achieving themselves (i.e., by delegating to another,
more capable agent).

3 The AORTA architecture

Classical BDI agents are represented by sets of beliefs, desires and intentions,
where desires are possible states of affairs that the agent might want to real-
ize, and intentions are those states of affairs that the agent has committed to
(attempt to) realize. A similar representation can be made for organizational
reasoning: the agent holds beliefs about the organization (its specification and
instantiation) and can use that for reasoning about organizational objectives
that are possible (or required) to be achieved, roles that can be enacted, norms
that are enforced, and so on. An integration of the organization within the agent,
makes the agent more likely to take both the organization and its own beliefs
into account in its reasoning. Furthermore, by representing the organization as
beliefs, the organizational structure can be changed, if necessary. For example,
if the organization changes (reorganization), or if the agent finds out that it has
wrong beliefs about the organization.

AORTA provides organizational reasoning capabilities to agents, and extends
classical BDI reasoning, allowing the agents to reason about organizational mat-
ters. Organizational reasoning is divided into organizational option generation,
organizational action deliberation and organizational coordination. An organi-
zational option is something that the agent should consider, such as an active
objective, or a role that can be enacted or deacted [11]. For instance, initially
in the scenario, the medics will only search for injured people. When all areas
have been searched, this objective has been completed and a new objective, res-
cuing the injured, will be possible. An organizational action is the execution of
an organizational option: actually enacting a role or committing to an organi-
zational objective. This creates the expectation (for the organization) that the
agent should somehow believe it is able to (help) achieving it, either by itself,
by cooperating with other agents, or by delegating it to one or more agents in

4

Organizational
beliefs

Actions

Options

Coordination

Organizational Reasoning Component

Desires

Beliefs

Intentions

BDI Agent

Mailbox

Fig. 3. The Organizational Reasoning Component of AORTA.

the dependency relation of its role. Note that self-interested or deceitful agents
might know that they cannot achieve an organizational objective, but will com-
mit to it anyway to disturb the organization. Organizational coordination is
organization-level coordination, which is based on the agent’s mental state.

The organizational reasoning component of AORTA is depicted in figure 3.
The agent (assumed to be a BDI agent) has a mental state, which is coupled to
AORTA. Based on the mental state, AORTA can determine which organizational
options to choose, and the organizational actions might change the mental state.
For instance, in order to consider the available organizational options, AORTA
uses the agent’s capabilities and intentions. Furthermore, intentions may influ-
ence the reasoning, e.g., when the intention to coordinate a task requires use
of the organizational model. Finally, AORTA lets agents commit to objectives:
an organizational action leads to change in the agent’s intentions, corresponding
to the fact that the agent commits to the objective. The coordination compo-
nent sends messages using the mailbox, and incoming messages can change the
organizational structure.

3.1 Mental state

BDI agents usually have knowledge bases containing their beliefs and intentions.
AORTA-agents are agents that contain an AORTA-component, which means that
they not only have belief and intention bases, they also have knowledge bases
for the organizational aspect. Each knowledge base will hold different kinds of
formulas depending on their purpose.

Definition 1 (Knowledge bases). The AORTA knowledge bases are based on
a predicate language, L, with typical formula φ and operators ∧,¬,∀. The agent’s
belief base and intention base are denoted Σa and Γa, respectively. The language
of the organization is denoted Lorg, and Lorg ⊆ L. The organizational specifica-
tion and options are denoted Σo and Γo, respectively. We then have the following

5

knowledge bases:
Σo, Γo ⊆ Lorg Σa, Γa ⊆ L

We define different kinds of formulas for each knowledge base, which allows
us to target specific knowledge bases in different situations.

Definition 2 (Formulas). AORTA uses reasoning formulas, LR, with typical
element ρ, which are based on organizational formulas, option formulas, belief
formulas and goal formulas.

ρ ::= > | org(φ) | opt(φ) | bel(φ) | goal(φ) | ¬ρ | ρ1 ∧ ρ2

Organizational formulas, org(φ), queries the organizational specification, op-
tion formulas, opt(φ), queries the options base, belief formulas, bel(φ), queries
the belief base and goal formulas, goal(φ), queries the intention (or goal) base.
We can use the formulas to specify things such as:

org(objective(injuredFound)) ∧ ¬bel(injuredFound),

where the first part of the conjunction queries the organizational specification,
Σo, and the second part queries the agent’s belief base, Σa. The formula queries
whether there is an organizational objective (to find victims), which the agent
currently does not believe it has achieved.

Definition 3 (Mental state). The AORTA mental state, MS, is a tuple of
knowledge bases:

MS = 〈Σa, Γa, Σo, Γo〉.

The implementation of the mental state is based on tuProlog [4], which is
a Java-based lightweight implementation of ISO-Prolog. We chose tuProlog be-
cause of its efficiency and straightforward interface in Java, allowing us to query
a Prolog database without requiring any external system-dependent libraries.
Each AORTA-agent has its own instance of tuProlog, comprising its entire men-
tal state. That is, all knowledge bases of an agent are implemented in a single
Prolog instance by wrapping each rule in a predicate depending on its nature.
For example, the reasoning formula bel(a ∧ b)∧¬org(c ∧ d) is converted to the
following Prolog query: bel(a), bel(b), \+ (org(c), org(d)). This transla-
tion makes querying straightforward, while still keeping the distinction between
the different knowledge bases.

Note that we let AORTA-agents have their own mental state, rather than in-
tegrating AORTA into the knowledge bases of an agent in an existing platform.
This means that the belief base and goal base of AORTA must be synchronized
with the agent, which could lead to pitfalls in an integration process (especially
if the knowledge bases are not properly synchronized). However, our aim is to
enable AORTA to be integrated with most of the existing agent platforms, and
since it requires only that formulas must be converted between the language of
AORTA and the agent platform in question, we find that it makes the implemen-
tation of AORTA simpler to understand.

6

3.2 Acting and coordinating

At the center of AORTA-agents are the organization-specific actions. While an
agent will have access to a number of domain-specific actions (such as a medic
performing a life-saving action), an AORTA-agent will furthermore be able to
consider certain organizational options (what happens by enacting a certain
role, pursuing an objective), or performing organizational actions (enacting a
role, committing to an objective).

Definition 4 (Organization-specific actions). The set of options with typ-
ical element aO is denoted Opt and the set of actions with typical element aA is
denoted Act.

aO ::= consider(φ) | disregard(φ)
aA ::= enact(ρ) | deact(ρ) | commit(φ) | drop(φ)

Actions are executed using a transition function, TO and TA, respectively. Each
action is only applicable in certain states. For example, consider(φ) can only be
applied if Σo |= φ in the current state, and the effect is that φ is added to Γo.
Role enactment, enact(ρ), is applicable only when ρ is the name of a role, the
agent does not currently enact that role. Committing to an objective, commit(φ),
is possible only if φ is an organizational objective, and φ is not already a belief or
a goal3. disregard(φ), deact(ρ) and drop(φ) simply remove the respective formula
from the appropriate knowledge base.

Notice the correspondence between elements in Opt and Act: if the agent
considers enacting a role, the enact action allows it to enact that role. However,
once the role is enacted, the option is no longer an option. Since the agent now
enacts the role, it seems appropriate to remove the option from Γo. This is done
using an option removal function, O, which removes options, when they are no
longer applicable (that is, when their respective organizational action would be
undefined).

We are now in a position to introduce organizational reasoning rules: option
and action rules. These rules enable the agent to decide which organization-
specific actions to perform.

Definition 5 (Reasoning rules). The sets of option rules RO and action rules
RA are defined as follows.

RO = {ρ =⇒ aO | ρ ∈ LR, aO ∈ Opt}
RA = {ρ =⇒ aA | ρ ∈ LR, aA ∈ Act}

Finally, since each agent has its own organizational state, they need to be
able to coordinate and synchronize their organizational knowledge. While such

3 The correspondence between goals and beliefs is based on achievement goals in the
GOAL agent programming language [7], which are defined such that φ is an achieve-
ment goal iff φ is a goal and φ is not currently believed.

7

coordination can happen in different ways, we choose to use organizational mes-
sages. In order to determine whether a message is intended for AORTA, orga-
nizational messages are wrapped in an organizational wrapper, om, which is an
unary predicate with the message as a single term.

Definition 6 (Organizational Messages). An organizational message is de-
fined as

msg(α, om(M),

where om is the organizational wrapper, and M is the message. In outgoing
messages, α corresponds to the set of recipient agents, and in incoming messages,
α is the sender.

Each agent can then specify how to coordinate using a set of coordination
rules, which specifies certain criteria for when and with whom to coordinate.

Definition 7 (Coordination rules). A coordination rule is a triple,

(c, φ,m),

where c is the trigger for coordination and is a set of positive or negative rea-
soning formulas, φ defines the set of agents to coordinate with, and m is the
message.

The coordination trigger c can, e.g., be the set {bel(injuredFound)}, which
will trigger at a point where Σa |= injuredFound is true and Σa |= ¬injuredFound
was true in the previous state.

3.3 AORTA reasoning cycle

The configuration of an AORTA-agent consists of the agent’s knowledge bases, a
number of option, action and coordination rules, and a message box for incoming
(inbox) and outgoing (outbox) organizational messages. The initial state consists
of a set of initial beliefs and goals, and the organizational specification.

The agent has a number of state transition rules available, which can be used
to change its state. A reasoning cycle in AORTA is executed using a strategy that
decides which transition rules to execute.

The agent has transition rules for execution of option and action rules, called
Opt and Act, a transition rule for external updates, Ext, and two rules for
coordination, Coord and Chk.

Opt can be applied to an option rule in a given state, ρ =⇒ aO, if ρ is entailed
and the option transition function, TO, is defined for aO.

Act works similarly for action rules, using the action transition function, TA,
and the option removal function, O.

Ext changes the agent’s mental state to accommodate updates from outside
AORTA. For example, if the agent perceives something, Ext adds the percept
to the belief base.

8

options {
[org(role(R,Os)), bel(me(Me), member(O,Os), cap(O))] => consider(role(Role,Os))
[bel(me(Me)), org(role(R,Os), rea(Me,R), member(O,Os), objective(O), active(O))]

=> consider(objective(O))
}
actions {

[opt(role(Role,_))] => enact(R)
[opt(objective(O)), org(role(R,Os), member(O,Os), rea(Me,R)), bel(me(Me))] => commit(O)

}
coordination {

[+bel(visited(R))] : [org(rea(A,medic))] => send(A,bel(visited(R)))
[+goal(X)] : [bel(me(Me)), org(rea(Me,R1), dependency(R1,R2,X), rea(A,R2))]

=> send(A, goal(X))
[+bel(O)] : [org(role(R,Os), objective(O), member(O,Os), rea(A,R))] => send(A, bel(O))
[+org(rea(A,R))] : [bel(agent(Ag))] => send(Ag, org(rea(A,R)))

}

Fig. 4. An example of an AORTA program.

Coord is applied to coordination rules, (c, φ,m), when c is triggered by the
state, and the set of agents entailed by φ is not empty. The message m is
then sent to each agent.

Chk takes new messages from the incoming message queue and adds them to
the appropriate knowledge base4.

For the purpose of this paper, we use a single linear strategy, which executes
the state transition rules in a predefined order.

Definition 8 (Linear strategy). The linear strategy is defined as follows:

(Chk)∗(Ext)(Opt)(Act)(Coord)∗,

where (Rule)∗ denotes that Rule is executed until the agent’s state no longer
changes.

The strategy executes each of the transition rules, as explained above, chang-
ing the agent’s state. The linear strategy is rather simple, but it is possible to
implement strategies, which e.g. allows the agent to explore different paths before
choosing one.

3.4 AORTA programs

An AORTA program consists of three sections: options, actions and coordination.
An example program, which can be used in the first responders scenario, is shown
in figure 4.

Options and actions are of the form [φ] => a, where [φ] consists of a comma-
separated list of reasoning formulas. The content of each reasoning formula (i.e.,
the query) is Prolog code. For example, the action rule

[opt(role(R,_))] => enact(R),

4 For simplicity, we assume that the agents will not consider whether a sender is
trustworthy, and thus whether a message is reliable.

9

states that if role(R,) is an option (i.e. entailed by Γo), the agent should enact
R. Note that this is a simplification of the reasoning process required by agents to
decide whether or not to enact a role in an organization. It is, however, possible
to incorporate more sophisticated reasoning, e.g., by using the notion of social
power. For example, in [3], various forms of power agents may have over each
other are identified and formalized as rules. These power relations can be used
in the reasoning process by adding the rules to the agents’ organizational state.

The coordination section consists of coordination triples, of the form [c] : [φ]
=> send(Ag, ψ), where c is a list of reasoning formulas, with either + or - in front
of each, denoting that the trigger or its negation is now entailed by the agent’s
mental state. φ is identical to φ in option and action rules. Ag corresponds to a
variable in φ or c, and ψ is the message to be sent. Thus, the following rule

[+org(rea(A,R))] : [bel(me(A),agent(Ag))] => send(Ag, org(rea(A,R)))

states that when the agent enacts a role, it should inform all other agents in the
system.

The implementation of Opt and Act is deterministic: the rules in each
section are simply processed linearly, and the first matching rule is executed.
Coord is implemented such that every triggered triple in a state will be executed
in a single step.

3.5 Implementation overview

The architecture is depicted in figure 5. The system is implemented in the class
Aorta, which contains a list of the agents in the system and a reference to the
original organizational specification. Each AORTA-agent is associated with an
instance of AortaAgent, which contains the agent’s state, AgentState, and in
which the reasoning cycle is implemented. The reasoning cycle performs two
steps: executing the strategy and sending messages from the outbox.

3.6 Integration considerations

The agent state contains the agent’s the knowledge bases, rules and message
boxes. Furthermore, it contains an ExternalAgent and an AortaBridge. The
external agent corresponds to the message box and knowledge bases of the agent
using AORTA. That is, whenever the agent commits to a new goal or updates its
beliefs, these changes are propagated via the external agent into AORTA using
Ext. The bridge lets AORTA manipulate the agent’s mental state. For example,
successful execution of commit(φ) will add φ to the agent’s goal base using the
bridge.

When integrating AORTA into an existing agent platform, there are thus
three things to take care of.

Bridge AORTA uses the bridge to send updates to the agent’s goal and belief
bases, so an agent platform-specific bridge should be implemented (by im-
plementing the AortaBridge interface), such that the knowledge bases can
be synchronized.

10

Fig. 5. Implementation overview with the most important classes. A filled arrowhead
indicates an association between classes. An unfilled arrowhead indicates inheritance.

External agent When the agent updates its goal or belief base, it should in-
form AORTA by invoking the appropriate methods of ExternalAgent.

Translation AORTA makes use of tuProlog, so the contents of the agent’s
knowledge bases should be translated into Java objects supported by tuPro-
log.

4 Jason+AORTA

We now show how AORTA can be implemented in an existing agent platform,
the Jason platform [1]. Jason is a Java-based interpreter for an extended version
of AgentSpeak. Jason is based on the beliefs-desires-intentions (BDI) model, is
open source and highly extensible, making it a reasonable choice for the integra-
tion of AORTA.

The AgentSpeak language is a Prolog-like logic programming language, which
allows the developer to create a plan library for each agent in a system. A plan
in AgentSpeak is of the form

+triggering event : context <- body.

If an event matches a trigger, the context is matched with the current state of the
agent. If the context matches the current state, the body is executed; otherwise
the engine continues to match contexts of other plans with the same trigger. If
no plan is applicable, the event fails. Triggering events can amongst other things
be addition or deletion of beliefs (+l and -l) and addition or deletion of goals

11

Fig. 6. Jason+AORTA. A filled arrowhead indicates an association between classes.
An unfilled arrowhead indicates inheritance.

(+!l and -!l). The body contains a sequence of actions the agent should perform
and goals to adopt. When adopting a goal in the body of a plan, the agent will
attempt to achieve the new goal before continuing executing the current plan.

Note that when a plan for a goal has been completed, the goal is considered
finished. This means that it will be removed from the agent’s mental state. Since
commit(φ) is only defined if φ is not already a goal and is not believed by the
agent, the agent will be able to commit to a goal multiple times, until it believes
it has been achieved.

The AORTA integration in Jason is shown in figure 6. The integration consists
of an extended agent architecture, which implements the actual integration with
AORTA, and an infrastructure, which makes it possible to create an AORTA-
project in Jason without having to deal with the specifics of the integration.
This is done by specifying the infrastructure as follows:

MAS projectname {

infrastructure: AORTA(organization(location, type))

...

}

The infrastructure takes two parameters: location refers to the location of
the organizational specification, and type refers to the type of organizational
model (currently, the a generic organization based on the metamodel is sup-
ported).

12

AORTA does not make any changes to the Jason language, and any existing
implementations of multi-agent systems in Jason should be compatible with
Jason+AORTA. The integration does two things: (1) when the belief base or goal
base of the AORTA-agent changes, these changes are propagated to the Jason-
agent (via AortaJasonBridge), and an addition/deletion event is triggered and
(2) when the Jason-agent’s mental state changes, AORTA receives those changes
(via the ExternalAgent). The Jason-agent is connected to the ExternalAgent

in three places:

AortaAgentArch Organizational messages are filtered and sent to AORTA for
processing. The normal procedure for checking an agent’s mailbox is ex-
tended to check whether incoming messages are wrapped in the organiza-
tional wrapper.

AortaBB Whenever the Jason-agent’s belief base is changed (i.e., a belief is
added or removed), those beliefs are sent to AORTA to ensure synchrony
between the mental states.

AortaGoalListener When a goal changes state (i.e., when a plan for it has
started, failed, or stopped), the goal listener is responsible for sending the
changes to AORTA.

Furthermore, Jason formulas are converted to AORTA formulas. Note that
while Jason supports annotations on literals (e.g., denoting the source of a belief,
injuredFound[source(alice)]), they are lost in conversion to AORTA formu-
las, since they are not supported. This should generally not be a problem, since
formulas will not propagate back and forth between the systems. That is, if a
belief originates from Jason, it will be sent to AORTA, which will not send it
back to Jason, e.g. +injuredFound[source(alice)]→ bel(injuredFound)→
+injuredFound does not happen.

The AORTA reasoning cycle is executed in Jason via the method reasoning-

CycleStarted() in AortaAgentArch, which is called in the beginning of a Jason
reasoning cycle. This means that the agent will execute the AORTA reasoning
strategy in the beginning of each cycle.

4.1 The first responders scenario

We now discuss how AORTA can be used to let agents participate in the first
responders scenario. We use the Blocks World for Teams [13] testbed to simulate
the first responders scenario by considering the drop zone being the ambulance,
colored blocks being injured fans, and agents playing the roles of fans, medics
and police officers. Fans are fighting just outside some of the rooms and they
can stop the medic from rescuing injured fans by entering a room just before the
medic does so. Police officers will look for areas where fans are standing, while
medics will check the rooms to find injured fans.

Consider an agent, Bob, playing the role of a medic (Σo |= rea(bob,medic)),
using the program in figure 4. He is considering the objective injuredFound
(Γo |= objective(injuredFound)), to which he has not yet committed. The fol-
lowing action rule can then be executed.

13

commit(injuredFound)

goal(injuredFound) +!injuredFound

+!visited(room1)goal(visited(room1))

+visited(room1)
bel(visited(room1)),

not(goal(visited(room1))),
not(goal(injuredFound))

commit(injuredFound)

goal(injuredFound) +!injuredFound

+injuredFoundbel(injuredFound)

AORTA Jason

Fig. 7. The flow of execution starting when Bob performs the organizational action
commit(injuredFound). not means that the formula is removed from the mental state.

[opt(objective(O)), bel(me(Me)),

org(role(R,Os), member(O,Os), rea(Me,R))] => commit(O)

In the resulting state, injuredFound is added as a goal (Γa |= injuredFound), and
is sent via the bridge to the Jason-agent. This will trigger an event, +!injured-
Found, and if the agent has a plan matching this trigger, it will execute the body
of the plan. Bob has the following simplified plan library, making him capable
of searching for injured fans.

+!injuredFound : room(R) & not(visited(R)) <- !visited(R).

+!injuredFound <- +injuredFound.

+!visited(R) : in(R) <- +visited(R).

+!visited(R) : not(state(traveling)) <- goTo(R); !visited(R).

Bob is situated in an environment with a single room, room1. The flow of the
execution is shown in figure 7. Bob commits to finding the injured, which leads
to the subgoal of visiting room1. When he believes he has visited the room (when
he is inside the room), both goals will finish, since !injuredFound waited on the
completion of !visited(room1). Since the main goal, injuredFound, has not yet
been completed, Bob can execute the same action rule again, thus committing
to the goal once more. Since there are no more rooms to visit, only the second
plan is applicable, and he believes that all the injured fans have been found.

When injuredFound is achieved, several things happen. First, the following
coordination mechanism is triggered:

[+bel(O)]

: [org(role(R,Os), objective(O), member(O,Os), rea(A,R))]

=> send(A, bel(O))

14

Since bel(injuredFound) is added to the agent’s mental state, and injuredFound
is an objective, the agent will inform all agents responsible for that objective,
that it has been completed. Second, the next objective, injuredSaved, becomes
an option, and Bob will then commit to completing it. The flow of execution is
similar to that of figure 7 and will not be described in detail.

If, during the rescue, a room is blocked by a fan, the agent may adopt a goal,
removeBlocker, which will trigger the following coordination mechanism:

[+goal(X)]

: [bel(me(Me)), org(rea(Me,R1), dependency(R1,R2,X), rea(A,R2))]

=> send(A, goal(X))

Since the agent commits to a goal for which there is a dependency, he sends
a request to the agents enacting the role R2 (in this case the officer role). An
officer should then commit to achieving the goal, and inform the medic when it
has been done.

5 Related work

TheMoise+ model is based on three organizational dimensions: the structural,
functional and deontic dimensions [9]. Development of organized multi-agent
systems using theMoise+ model is separated into a system and an agent level.
The system level, S-Moise+, provides an interface (a middleware) between the
agents and the organization using a special agent, the OrgManager, to change
the organizational state, ensuring organizational consistency . The agent level,
J -Moise+, joins Jason and Moise+, by making organizational actions avail-
able to agents, such that they can reason about (and change, using the OrgMan-
ager) an organization.

Similar to AORTA-agents, agents in J -Moise+ receive objectives (missions)
that they can achieve using Jason plans. The main difference is that the organiza-
tion-oriented reasoning is done as a part of the agent’s normal reasoning process,
whereas AORTA-agents perform the organizational reasoning inside AORTA, and
then decides how to complete their objectives at a different level. The main
advantage of keeping the reasoning apart in AORTA is that it allows agents on
different agent platforms to perform the same kind of organizational reasoning
without any extra development required.

The ORA4MAS (Organizational Artifacts for Multi-Agent Systems) approach
[8] is another attempt to build a bridge between an organization and the agents
in it. It is a general approach suitable for different kinds of organizational models.
They use artifacts, which they claim brings the control back to the agents (as
compared to using a middleware), since the agents can, via their autonomy,
choose whether to interact with the organizational artifacts of the system.

We argue that the ultimate way of bringing the control back to the agents
is to allow the agents themselves to perform the organizational reasoning. By
integrating AORTA in agents, they are provided with organizational reasoning
capabilities, while they are still able to, e.g., decide not to commit to certain
organizational objectives.

15

6 Conclusion and future work

We have described the AORTA architecture and have shown how it can be inte-
grated in the Jason platform. The example shows how Jason-agents gain capa-
bilities to reason about which organizational objectives to commit to, and how
to coordinate completing them.

AORTA lets the developer focus on implementing the agents’ domain-specific
capabilities, while commitment to organizational objectives, coordination, and
communication can be done entirely by AORTA. Furthermore, since AORTA
can be integrated in different agent platforms, the same AORTA programs can
be used for several different implementations in different agent programming
languages. The use of the simple, generic language makes AORTA readily useful,
however, the support of an existing, and more powerful, organizational language,
such as Moise+ or OperA, is a natural extension to the architecture.

The decoupling of AORTA and the agent platform means that synchroniza-
tion is required. However, the linear strategy makes sure that external changes
are synchronized before options and actions are considered (via the Ext tran-
sition rule). As mentioned, the requirement is a translation between AORTA
formulas and the formulas of the connected agent (e.g. AgentSpeak formulas).
Furthermore, organizational reasoning is done in AORTA and is thus separated
from the agent’s normal reasoning. This is because the organizational state is
only available to AORTA, as it is not shared with the agent. This means that
the agent cannot reason about organizational matters, such as role enactment
and organizational objectives without using the rules of AORTA. However, if
necessary, in the case of Jason, it is possible to allow this kind of reasoning
by introducing an internal action, e.g. .org(Fml) which succeeds if Fml can be
translated to an AORTA formula and is entailed by the organizational state.

In the future, we plan to investigate other strategies that could improve the
reasoning, such as a strategy that explores different paths of execution, and
makes a decision based on this. Furthermore, since agents may have objectives
that do not coincide with the organizational objectives, they need a way to
decide which objectives to pursue, for example using a preference ordering [2] or
individual agent preferences [10].

Finally, we are investigating how to incorporate norms in the semantics, such
that the agents are able to deliberately follow paths that violate the organization,
while possibly being sanctioned by other agents in the organization.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

2. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture: conflicts between beliefs, obligations, intentions and desires. Proceed-
ings of the fifth international conference on autonomous agents (2001) 9–16

3. Carabelea, C., Boissier, O., Castelfranchi, C.: Using Social Power to Enable Agents
to Reason About Being Part of a Group. In: Engineering Societies in the Agents
World V. (2005) 166–177

16

4. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet ap-
plications and infrastructures. Practical Aspects of Declarative Languages (2001)
184–198

5. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. PhD thesis, Utrecht University (2004)

6. Esteva, M., de la Cruz, D., Sierra, C.: Islander: An electronic institutions editor.
In: Proc. AAMAS ’02. (2002)

7. Hindriks, K.V.: Programming Rational Agents in GOAL. Multi-Agent Program-
ming: Languages, Tools and Applications (2009) 119–157

8. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent or-
ganisations with organisational artifacts and agents. Autonomous Agents and
Multi-Agent Systems 20(3) (April 2009) 369–400

9. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering 1(3) (2007) 370–
395

10. Jensen, A.S.: Deciding between conflicting influences. In Cossentino, M., Fal-
lah Seghrouchni, A., Winikoff, M., eds.: Engineering Multi-Agent Systems. Volume
8245 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013)
137–155

11. Jensen, A.S., Aldewereld, H., Dignum, V.: Dimensions of organizational coordi-
nation. In: Proceedings of the 25th Benelux Conference on Artificial Intelligence,
Delft University of Technology (2013) 80–87

12. Jensen, A.S., Dignum, V.: AORTA: Adding Organizational Reasoning to Agents.
In: Proceedings of the 13th International Conference on Autonomous Agents and
Multiagent Systems. (2014) to appear

13. Johnson, M., Jonker, C., van Riemsdijk, M.B., Feltovich, P.J., Bradshaw, J.M.:
Joint activity testbed: Blocks world for teams (BW4T). In: Proceedings of the
10th International Workshop on Engineering Societies in the Agents World. (2009)
254–256

14. van Riemsdijk, M.B., Hindriks, K.V., Jonker, C.M.: Programming organization-
aware agents. Proceedings of the 10th International Workshop on Engineering
Societies in the Agents World (2009) 98–112

17

