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Abstract Protistan species belonging to the phylum

Apicomplexa have a non-photosynthetic secondary plas-

tid—the apicoplast. Although its tiny genome and even the

entire nuclear genome has been sequenced for several

organisms bearing the organelle, the reason for its exis-

tence remains largely obscure. Some of the functions of the

apicoplast, including housekeeping ones, are significantly

different from those of other plastids, possibly due to the

organelle’s unique symbiotic origin.
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Abbreviations

NEP Nuclear-encoded T7-like RNA polymerase

NTD Nucleotide-binding domain

PBGS Porphobilinogen synthase

SPP Stromal-processing peptidase

TPT Triosephospate/phosphate transporter

Introduction

Apicomplexa comprise a eukaryotic phylum that, along

with two others, Ciliophora and Dinoflagellata, form the

superphylum Alveolata under the protistan kingdom

Chromalveolata [1, 2]. To date, about 6,000 apicomplexan

species have been named, but sequencing data of envi-

ronmental samples suggest there may be millions more

species belonging to this phylum [3]. Most named api-

complexans are obligate parasites, and some of them cause

important human or animal diseases such as malaria

(caused by Plasmodium spp.), toxoplasmosis (Toxoplasma

gondii), coccidiosis in poultry (Eimeria spp.), babesiosis

(Babesia spp.), theileriosis (Theileria spp.), and crypto-

sporidiosis (Cryptosporidium spp.). However, many

apicomplexans are not pathogenic to their host.

Although apicomplexans apparently lack photosynthe-

sis, they have a secondary plastid—the apicoplast (Fig. 1).

Because of their clinical, veterinary, or economical

importance, disease-related apicomplexans have been

extensively researched, and in several instances, both the

apicoplast and the nuclear genomes have been sequenced.

Metabolisms involving the apicoplast have attracted

attention as potential targets for disease-controlling drugs,

since they might directly contribute to the survival of the

apicomplexan cell. By contrast, housekeeping functions of

the organelle have attracted less attention, though they are

often unique or significantly different from those of other

organisms. In this article, housekeeping functions unique to

the apicoplast are mainly discussed.

The apicoplast—the plastid of apicomplexan cells

Discovery of the plastid in apicomplexan cells

An extremely A ? T rich extrachromosomal DNA was

identified in Plasmodium spp. [4]. The DNA was initially

believed to be mitochondrial [5–8], but later was shown to

be related to the plastid DNA of algae and plants [9]. Other

apicomplexan genera such as Toxoplasma, Eimeria, and

Theileria have a similar plastid-like DNA [9, 10] sharing

highly conserved coding sequences [11, 12]. However,
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intensive studies to detect these genes in Cryptosporidium

parvum [13] and Gregarina niphandrodes [14] have failed,

indicating that some apicomplexans species lack the plas-

tid-like DNA.

McFadden et al. [15] reported that rRNA encoded by the

plastid-like DNA is accumulated in a small ovoid organelle

located anterior to the nucleus of T. gondii. Independently,

Köhler et al. [10] showed by in situ hybridization that the

plastid-like DNA is strictly localized in an organelle, and

created a new term ‘‘apicoplast’’ that has become popular

and is widely used today by abbreviating the phrase

‘‘apicomplexan plastid’’. Chaubey et al. [16] reported that

the EF-Tu protein expressed from the gene on the plastid-

like DNA localizes in the apicoplast as distinct from the

mitochondrion in P. falciparum. It is generally believed

that every apicomplexan species with the plastid-like DNA

has an apicoplast, though this has yet to be confirmed

experimentally in genera other than Plasmodium and

Toxoplasma. Perhaps some species have an apicosome—an

apicoplast without organellar DNA, though such has yet to

be reported.

Morphology and potential association with other

organelles

The number of membranes surrounding the apicoplast is

generally recognized as four [15], and no internal thyla-

coid-like membranous structure has ever been observed.

However, Hopkins et al. [17] proposed that the P. falci-

parum apicoplast probably had only three membranes.

They also reported that the organelle harbors two unique

membrane complexes. The inner membrane complex was

predicted to be a rolled-up myelin-like invagination of the

innermost membrane. On the other hand, an outer mem-

brane complex, which lies between the outermost and the

middle membrane, remains of uncertain origin. Both the

outer and inner membrane complexes increase in size and

in complexity during the parasite’s development from

merozoite to trophozoite.

Köhler [18] reported that the apicoplast membrane of

T. gondii was not consistent throughout the organelle and at

least one extensive sector appeared to be bordered solely

by two membranes. All apicoplasts examined, including

those in organellar division, have a single pocket-like

invagination of about 50–200 nm in width, often located in

close proximity to a voluminous evagination of the outer

membrane of the parasite’s nuclear envelope.

Tomova et al. [19] isolated Sarcocystis sp. from roe deer

and analyzed the ultrastructure of its apicoplast using a

combination of high-pressure freezing, freeze-substitution,

and electron tomography. This apicoplast had four con-

tinuous membranes: two inner membranes of circular

profile with a constant distance between them and two

outer membranes of irregular shape. The outermost mem-

brane displayed protuberances into the parasite cytoplasm

and was associated with the endoplasmic reticulum (ER) at

‘contact sites’. Similar contact sites were observed in

T. gondii, but no fusion point was observed [20]. Thus it is

uncertain if the apicoplast is connected to the ER like the

secondary plastids of cryptophytes [21].

Hopkins et al. [17] mentioned that the intracellular

position of the apicoplast in P. falciparum varied consid-

erably depending on the developmental stage of the

parasite, but there was a close association between the
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Fig. 1 Apicomplexans and the plastid. a Phylogeny of alveolates and

distribution of the plastid. The phylogenetic tree was drawn based on

the nuclear-encoded 18S rRNA sequences of representative species

available in the databases and suggests only topological relationships

between taxa. Distribution of the plastid in most Gregarinasina
species has not yet been studied (see text). b Phylogeny of the plastids

and their variety. Like red plastids (purple), apicoplasts (red, orange,

yellow) have the genome encoding sufB, while organisms with green

plastids (green) have the gene encoded in the nucleus. Unlike other

plastids, the apicoplast genomes lack 5S rRNA gene (rnf). Like other

plastid-bearing organisms, Toxoplasma, Eimeria, and Plasmodium
have the Suf system incorporating the SufBCD complex, while

Babesia and Theileria lack genes specifying the components of the

complex. Toxoplasma, Eimeria, and Plasmodium have a unique

hybrid-type heme pathway that involves mitochondrial ALA syntase

(ALAS). Although Babesia lacks the heme pathway, it has the PBGS
gene forming a tight gene cluster with the SPP gene in the nuclear

genome like Toxoplasma, Eimeria, and Plasmodium. Unlike other

organisms, Eimeria lacks the intron in the trnL(UAA) gene in the

plastid genome
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apicoplast and mitochondrion in all cellular stages,

including merozoites. Kobayashi et al. [22] reported the

apicoplast and the mitochondrion were inseparable from

one another using two different techniques—Percoll den-

sity gradient centrifugation and fluorescence-activated

organelle sorting. This agrees with the suggestion now

prevalent that the apicoplast in Plasmodium is physically

bound to the mitochondrion via the cytoskeleton.

The apicoplast genome

The complete gene content and map of the apicoplast

genome were first determined for P. falciparum [9], and

then for two coccidian species, T. gondii (Kissinger et al.,

unpublished: database sequence with accession no.

U87145) and E. tenella [23], followed by two piroplas-

mids, Theileria parva [24] and Babesia bovis [25]. The

gene content of the apicoplast genomes is highly conserved

apart from a few lineage specific genes; the genome of each

species commonly encodes SSU and LSU rRNAs (rrs and

rrl), three subunits of the bacteria-type RNA polymerase

(rpoB, rpoC1, rpoC2), 16 ribosomal proteins, an EF-Tu, a

ClpC-like protein and 24 tRNA species, the minimum

sufficient for translation without importing a tRNA from

the cytosol. On the other hand, genes for DNA metabolic

enzymes, the a subunit of the bacteria-type RNA poly-

merase (rpoA) and some ribosomal proteins are missing

from the apicoplast genome. These and other genes spec-

ifying most if not all proteins involved in the organellar

functions are encoded by the nuclear genome.

The apicoplast genomes of Plasmodium and coccidian

genera contain an inverted repeat (IR) each half of which

consists of rrs, rrl, and nine tRNA genes. Unlike those of

other plastid DNAs, the rrs and rrl in each half of the IR

are arranged head-to-head, and all protein-coding genes are

arranged in two large clusters following the rrl genes. By

contrast, there is no IR in the apicoplast genome of piro-

plasmids, despite the fact that it contains a very similar set

of genes to Plasmodium and coccidians. All genes in the

piroplasmid apicoplast genome, except for the duplicated

clpC and several repetitive hypothetical ORFs, are single-

copy and arranged on the same DNA strand, potentially

forming one big gene cluster.

Likewise, topology of the apicoplast DNA varies

depending on species. Essentially all molecules of api-

coplast DNA in P. falciparum are circular and about 35 kb

in size; only a minor population (about 3%) are linear [26].

On the other hand, the circular form represents only 9% of

the total mass of the apicoplast DNA in T. gondii; the

remaining [90% existing as linear concatemers of the

35-kb units up to dodecamer [27]. The apicoplast DNAs of

E. tenella [28] and Neospora caninum [29] also have been

reported to comprise linear molecules of several different

sizes. The topology of the apicoplast DNA for other api-

complexan species is unknown.

Nuclear-encoded apicoplast proteins

Like those of other secondary plastids [30–33], apicoplast

proteins encoded by the nuclear genome generally have a

bipartite organellar targeting sequence at the N terminus

[34, 35]. The transit peptide following the N terminal

signal sequence of the bipartite apicoplast targeting

sequence of P. falciparum is rich in asparagine and lysine

residues rather than the serine/threonine found in plants

[34]. The transit peptide often contains putative Hsp70-

binding sites, a feature that was included with earlier

judging criteria to create the prediction algorithm Plas-

moAP [36] which predicts that more than 500 proteins

encoded by the nuclear genome of P. falciparum have an

apicoplast targeting sequence at the N terminus [36, 37].

About 150 of them show significant sequence similarity to

other proteins of known function or structure in the

sequence databases: the most prominent include enzymes

involved in de novo biosynthesis of isoprenoid, fatty acid

and heme, as well as housekeeping proteins such as DNA

polymerase, DNA gyrase subunits, ribosomal proteins,

molecular chaperones, and components of a Suf type Fe–S

cluster assembly system [37, 38]. There remain over 350

hypothetical ‘‘stromal’’ proteins with obscure functions. In

addition to these 500? proteins, a nuclear-encoded protein

that lacks a typical bipartite organellar targeting sequence

has been identified to localize to the apicoplast of P. fal-

ciparum. This exceptional protein, PfoTPT, is one of the

two triosephospate/phosphate transporters (TPT) that

mediate moving of phosphorylated C3, C5, and C6 com-

pounds such as phophoenolpyruvate across the apicoplast

membranes [39]. It has been proposed that PfoTPT is

inserted into the ER membrane by the first of its ten

transmembrane domains that functions as the internal sig-

nal peptide, before being transferred to the outermost

membrane of the apicoplast [39]. The apicoplast-related

genes in the nuclear genomes of other Plasmodium spp.

including that of oTPT are remarkably similar to those of

P. falciparum [40, 41] with the exon/intron structures

almost perfectly conserved.

The nuclear genomes of three other plastid-bearing

apicomplexan species, T. parva [24], T. annulata [42], and

B. bovis [25] have also been sequenced. Apart from

unequally expanded gene families, both Theileria nuclear

genomes contain an almost identical set of genes [42].

While localization of nuclear-encoded apicoplast proteins

has not been shown experimentally, manual inspection

predicts that 345 of the 4,035 proteins annotated in the

nuclear genome of T. parva are targeted to the apicoplast;

of these, 69 have functions predictable from orthologs in

Apicomplexan plastid 1287
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other organisms [24]. Some apicoplast proteins identified

in Plasmodium spp., such as the enzymes for synthesis of

fatty acid and heme and other housekeeping proteins such

as SufC involved in plastidic Fe–S cluster assembly sys-

tem, are missing from Theileria spp. These omissions

indicate that the function of the apicoplast has been greatly

streamlined in these organisms. The percentage of api-

coplast-targeted proteins that have been identified in the

nuclear genome of B. bovis (47 proteins of total

3,671 = 1.3%) [25] is remarkably lower than in P. falci-

parum (8.8–10.3%) [37, 43], T. parva (8.6%) [24] or

A. thaliana (7.9%) [44]. This suggests that the B. bovis

genome encodes more apicoplast-targeted proteins than

those detected by the prediction algorithms [25]. Indeed, an

almost complete set of orthologs of putative apicoplast-

targeted proteins of T. parva seem to be present in the

nuclear genome, though most of them have not been pre-

dicted as apicoplast targeted [25]. Sequencing projects for

two coccidian species T. gondii and E. tenella are still

going on and putative nuclear-encoded ‘apicoplast-targeted

proteins’ are listed in the partial sequence data [45]. Api-

coplast localization has been confirmed for only a few of

these proteins to date.

Non-housekeeping functions of the apicoplast

Apicoplasts are presumed to contribute to the metabolism

of the cells that maintain them. Catalogues of nuclear-

encoded enzymes predict that the apicoplast of P. falci-

parum is involved in isoprenoid biosynthesis via the

DOXP/MEP pathway, fatty acid synthesis with the type II

fatty acid synthase, and heme biosynthesis in collaboration

with the mitochondrion [37, 43, 46, 47]. Similar predic-

tions have been made for coccidian parasites such as

T. gondii [45]. By contrast, the apicoplasts of piroplasmids

such as T. parva [24] and B. bovis [25] are unlikely to

contribute to fatty acid or heme biosynthesis. Studies using

specific inhibitors have been inclined to suggest the

importance of some apicoplast metabolisms, but they are

not conclusive by themselves as predicted apicoplast

metabolisms might be redundant. For example, triclosan,

the specific inhibitor of enoyl-ACP-reductase in the type II

fatty acid synthesis system, strongly suppressed the growth

of P. falciparum [48, 49], though the drug also strongly

inhibited the growth of T. parva that lacks enoyl-ACP-

reductase [50]. This suggests there is a yet-to-be-identified

target of triclosan in the organism, and perhaps in other

apicomplexans as well. Another example is fosmidomycin,

the specific inhibitor of DOXP reductoisomerase involved

in apicoplast isoprenoid biosynthesis. Fosmidomycin

strongly inhibits the growth of P. falciparum [51] but has

little inhibitory effect on T. gondii [52] and T. parva [50].

Perhaps subtle differences in the structure of the target

enzyme DOXP reductoisomerase or the accessibility of the

inhibitor to the enzyme are responsible for this difference

[52]. Alternatively, the importance of the isoprenoid

metabolism may depend on species. Recently, Brooks et al.

[53] made a T. gondii strain in which the apicoplast

membrane-localized phosphate translocator (TgAPT) gene

was knocked out conditionally. Analysis of the phenotype

suggested that isoprenoid biosynthesis in the apicoplast is

essential for parasites survival. A similar genetic approach

should be applied to establish the importance of individual

metabolisms hypothetically attributed to the apicoplast of

each species.

Housekeeping functions of the apicoplast

Maintenance of the apicoplast DNA

The blood-stage P. falciparum contains not more than three

copies of organellar genome prior to replication; this

increases by more than ten times to distribute apicoplast

DNA to each daughter cell in schizogony [26]. Two dif-

ferent mechanisms are involved in the replication of the

DNA. One uses twin D-loops in the IR region, forming a

h-form intermediate and is highly sensitive to the DNA

topoisomerase inhibitor ciprofloxacin [26, 54, 55]. The

other, less drug sensitive mechanism probably involves

rolling circles likely to initiate outside the IR, but has not

been characterized.

Electron microscopic analysis of apicoplast DNA pre-

pared from T. gondii tachyzoites found replicating

molecules in lariat rather than h-form replication interme-

diates [27]. Compared to blood-stage P. falciparum,

T. gondii tachyzoites contain much more apicoplast DNA:

at least 25 units of the apicoplast genome per cell [56]. In

addition, organellar division occurs much more frequently

in T. gondii tachyzoites than in blood-stage P. falciparum.

Such factors might account for the different mode of DNA

replication. As mentioned earlier, the apicoplast DNAs of

T. parva and B. bovis lack the IR, all genes including those

of rRNAs and tRNAs being arranged on the same DNA

strand. These features suggest that piroplasmid apicoplast

DNAs might replicate by a rolling circle mechanism like

T. gondii, though experimental evidence is unavailable.

The DNA polymerase responsible for DNA replication

in the apicoplast has yet to be determined. Nonetheless, one

nuclear-encoded enzyme predicted to be involved has been

characterized and named the plastidic DNA replication/

repair enzyme complex (Prex). An apicoplast targeting

sequence precedes a multifunctional polypeptide that

comprises a primase–helicase domain resembling the

Twinkle helicase of mammalian mitochondria, and an
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exonuclease–polymerase domain like DNA polymerase I

of Aquifex aeolicus [57]. An ortholog occurs in the nuclear

genome of every plastid-bearing apicomplexan species

examined, but not in the genomes of either plastid-lacking

Cryptosporidium spp. or non-apicomplexan species. This

implies that Prex is important for the maintenance of api-

coplast DNA.

Like the bacteria from which it evolved, the plastid of

some algae such as Cyanidioschyzon merolae have an HU

protein that assembles organellar DNA into the structure

known as the nucleoid [58]. An HU ortholog with an api-

coplast targeting signal is encoded in the nuclear genome

of each plastid-bearing apicomplexan species examined to

date. In the case of P. falciparum, HU localizes in the

apicoplast and binds the apicoplast DNA in a sequence-

independent manner [59, 60]. PfHU is distributed

throughout the interior of the apicoplast of P. falciparum

[60], agreeing with the distribution of the apicoplast DNA

suggested by electron microscopy [17] and visualization

with DNA-binding fluorescent dyes [61]. Likewise,

Matsuzaki et al. [56] and Köhler [18] mentioned that api-

coplast DNA permeates the entire apicoplast of T. gondii.

Together these observations imply that the apicoplast in

general has a rather-spread nucleoid whose size is equal or

very close to the size of the organelle itself, though the

organelle may have a compact nucleoid like those of other

plastids, at certain developmental stages of the cell.

Transcription and splicing

All apicoplast genomes so far analyzed encode genes

specifying the b, b0 and b00 subunits of the bacteria-type

RNA polymerase (rpoB, rpoC1, rpoC2). By analogy, these

subunits should form a complex with a dimer of the a
subunit [62]. Unlike other plastid genomes, the apicoplast

genome lacks the gene for the a subunit (rpoA); instead the

nuclear genome of each plastid-bearing apicomplexan

encodes two different rpoA genes. The a subunit of other

organisms is comprised of two conserved domains: the N

terminal domain required for assembly of the RNA poly-

merase complex and basal transcription [63, 64] and the C

terminal domain that interacts with transcription activators

recognizing the upstream promoter element [65]. Both a
subunit proteins encoded by the apicomplexan nuclear

genome have an predicted apicoplast targeting sequence

and a well conserved N terminal domain, but neither

contains sequence corresponding the C terminal domain

conserved among other a subunit proteins. Furthermore,

the gene specifying the r subunit, which binds to the

promoter element and promotes transcription of the gene

by the bacteria-type RNA polymerase [66, 67], seems to be

missing from the genomes of apicomplexan species, as are

the conserved -35 and -10 elements from the 50 sequence

upstream of the apicoplast genes. These peculiarities sug-

gest that transcription in the apicoplast is regulated

differently from bacteria or other plastids.

Transcription in the mitochondrion is governed by a

nuclear-encoded RNA polymerase distantly related to the

RNA polymerase of T7 bacteriophage [68]. A similar

nuclear-encoded T7-like RNA polymerase (NEP) is present

in plastids and involved in transcription of genes in the

organelle [69]. The apicomplexan nuclear genome encodes

one gene for a T7-like RNA polymerase which has been

annotated as a mitochondrion-specific RNA polymerase

[70]. In chloroplasts, the plastid-encoded bacteria-type

RNA polymerase is believed to transcribe photosynthesis-

related genes whereas NEP is used for all others [69, 71].

As the apicoplast genome lacks photosynthetic genes,

importing NEP for transcription could be more beneficial

than keeping genes of bacteria-type RNA polymerase

subunits. Consequently, the nuclear-encoded T7-like RNA

polymerase might be targeted to the apicoplast and func-

tion like NEP, though no experimental evidence is

available.

Like those of cyanobacteria and plastids that have a

group-I type self-splicing intron [72], the trnL(UAA) gene

in the apicoplast genome has an intervening sequence at the

corresponding position. By analogy, the insert has been

predicted as a self-splicing intron, though there is no

experimental proof. Unlike other apicomplexans, the api-

coplast trnL(UAA) gene of E. tenella lacks the insertion,

and it seems likely that it was lost specifically in the

Eimeria lineage after it evolved away from the one lead-

ing to Toxoplasma. A gene for a potential reverse

transcriptase associated with retrotransposons and retrovi-

ruses (XP_001238615) is annotated in the nuclear genome

of E. tenella [73], whereas retroelements have not been

annotated in either Plasmodium or Toxoplasma [74].

Whilst there is no evidence that the reverse transcriptase is

expressed in E. tenella and targeted to the apicoplast, the

absence of the potential group-I intron from the trnL(UAA)

gene in this particular coccidian might have something to

do with the presence of the nuclear-encoded reverse

transcriptase.

Translation

The 5S rRNA is a component of the ribosome in almost all

living organisms [75]. In general, plastid genomes contain

the gene for 5S rRNA (rrf) immediately downstream rrl. The

exceptions so far known are dinoflagellates with the mini-

circle-type plastid genome [76], Chromera velia [77] and

apicomplexans. Mammalian mitochondrial genomes lack rrf

and a structural model suggested the mitochondrial rRNA

lack a 5S rRNA-binding domain [78]. However, it has been

reported that the organelle imports nuclear-encoded 5S

Apicomplexan plastid 1289
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rRNA from the cytosol [79, 80]. Whether the imported 5S

rRNA is essential for the function of the ribosomes in

mammalian mitochondria is still unknown [81]. Perhaps the

apicoplast imports the 5S rRNA from the cytosol like

mammalian mitochondria. Otherwise, there might be an rrf

whose sequence is too divergent from others to be recog-

nized. Or, the apicoplast may be a very exceptional plastid

whose ribosomes are independent of 5S rRNA.

Rpl11 (L11) is a ribosomal protein that together with

other ribosomal proteins—S4, L6 and L14 and the stalk

proteins L10 and L7/L12—forms the ‘‘factor binding site’’

in prokaryote type ribosomes, including those in plastids

[82]. The apicoplast genome encodes S4, L6 and L14

proteins and the nuclear genomes of P. falciparum,

T. parva and B. bovis contain genes for L10 and L7/L12,

which are probably targeted to the apicoplast [24, 25, 43].

One rpl11 gene has been annotated in the apicoplast gen-

omes of T. gondii and E. tenella, and the product of the

ORF129 gene in the P. falciparum apicoplast genome

seems to be related to coccidian L11 [11]. These data imply

that ribosomes in the apicoplast of these species probably

have the factor-binding site like other prokaryote ribo-

somes. However, no gene in the T. parva or the B. bovis

apicoplast genome seems to specify a product related to

L11. This might be because piroplasmid rpl11 genes are

too divergent to be identified by a simple sequence simi-

larity search, or their ribosomes might not require the L11

protein.

It is intriguing to see in frame UGA/UAA codons in

some ‘‘genes’’ in the apicoplast genome of coccidians.

Strictly, there is no direct evidence that these genes actu-

ally express proteins. However, the deduced amino acid

sequences resemble those of Plasmodium and piroplas-

mids, especially when each UGA is regarded as a

tryptophan codon, like those in bacteria with extremely

A ? T rich genomes [83]. This implies that the coccidian

genes are not pseudogenes but encode expressed proteins.

As in bacteria, translation termination in plastids relies on

two different types of peptide releasing factors, RF1 and

RF2. Both RFs bind specific nonsense codons—RF1 to

UAA and UAG, whereas RF2 binds to UAA and UGA—

and promote the release of the ribosome from mRNA [84,

85]. As the apicoplast genome lacks a gene for either RF,

correct termination of translation in the organelle depends

on imported RFs. Unlike those of Plasmodium and

piroplasmids, the apicoplast genome of Eimeria and Tox-

oplasma probably contains no gene with UGA as the

termination codon. Perhaps the coccidian apicoplast is free

from a functional RF2 on which the apicoplast genomes of

Plasmodium and piroplasmids apparently depend.

Unlike UGA, UAA is the codon preferentially chosen

for the translation terminator by many genes in the api-

coplast genome. The apicoplast genomes of Eimeria and

Toxoplasma encode the b00 subunit of prokaryote-type

RNA polymerase by the rpoC2 gene that contains one in

frame UAA codon. By contrast, the rpoC2 in the P. fal-

ciparum apicoplast genome requires a frame shift to

produce the right translation product [9]. The coccidian

UAA codons and the P. falciparum frame shift occur in the

same region of poorly conserved sequence. These data

could suggest that the multi-subunit RNA polymerase of

the apicoplast is unique, the b00 subunit being split into two

halves. Indeed, the apicoplast genomes of T. parva and

B. bovis also have split rpoC2 genes and the N and C

terminal halves have been ascribed to separate genes

[24, 25]. Besides rpoC2, there is another in frame UAA

codon in the rps8 gene of the T. gondii apicoplast genome.

Because the amino acid sequence specified by this gene is

conserved between different apicomplexan species, the

gene probably express the polypeptide, though to what

amino acid residue the UAA is translated cannot be pre-

dicted from data available.

Import and maturation of organellar proteins

In plants, nuclear-encoded plastid proteins have a transit

peptide at the N terminus that is cleaved from the matured

form of the polypeptide by a stromal-processing peptidase

(SPP) [86]. Like other secondary plastids, apicoplasts

import nuclear-encoded proteins that have a signal peptide

preceding the transit peptide [34]. The signal peptide is

removed by the signal peptidase as the proteins are co-

translationally released into the ER lumen and the resulting

intermediate form with the exposed transit peptide is tar-

geted to the stroma of the apicoplast [87]. Each membrane-

crossing step is probably mediated by specific translocons

such as ERDA/Der1 [88, 89]. Once the protein reaches the

apicoplast stroma, the transit peptide is cleaved off by SPP

as in primary plastids and the resulting polypeptide is

matured with the help of organellar chaperones.

The gene for a putative SPP is found in the nuclear

genome of each plastid-bearing apicomplexan species but

is absent from Cryptosporidium. Although the SPP gene in

Theileria encodes a protein with an apparent apicoplast

targeting sequence [24, 42], those in P. falciparum and

T. gondii appear to lack the bipartite organellar targeting

sequence. Instead, the SPP gene of both species is preceded

by the gene for apicoplast-targeted porphobilinogen syn-

thase (PBGS) [46, 90], and exons encoding the organellar

targeting sequence of PBGS are utilized to synthesize the

SPP mRNA by alternative splicing [91, 92]. This unique

micro-syntheny occurs even in the nuclear genome of

Babesia spp., though it is absent from T. parva and

T. annulata [24, 42]. One explanation is that the unique

gene expression system for SPP/PBGS is an ancient

feature—probably established in a common ancestor of
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Apicomplexa—and has been kept in each plastid-bearing

lineage thereafter, except for Theileria.

Protein maturation in organelles requires the type I

chaperonin system that originated from the bacterial

GroESL system [93]. Like proteobacteria, the mitochon-

drion has a system comprised of one species each of Cpn60

and Cpn10. By contrast, the plastid, which shares the same

origin as cyanobacteria, contains a chaperonin system

generally made of two different Cpn60 subunits and Cpn20

[94, 95]. In addition, plant plastids have a Cpn10 that is

supposed to localize in the thylakoid lumen [96]. The

nuclear genome of each plastid-bearing apicomplexan

species encodes two Cpn60, one Cpn10 and one Cpn20

[97]. It has been shown in P. falciparum that one of the two

nuclear-encoded Cpn60 proteins is targeted specifically to

the apicoplast along with Cpn20, while the other Cpn60

and Cpn10 are localized exclusively to the mitochondrion

[97–99]. The type I chaperonin system that involves Cpn20

and only one species of Cpn60 is unique to the apicoplast.

The lack of Cpn10 is probably because the organelle has no

thylakoid. The nuclear genome of the plastid-less Cryp-

tosporidium spp. encodes orthologs of mitochondrial

Cpn60/Cpn10 but lacks genes encoding orthologs of plas-

tidic Cpn60/Cpn20, supporting the strict organelle-specific

localization of the two type I chaperonin systems of plas-

tid-bearing apicomplexan species.

All apicoplast genomes so far analyzed contain the clpC

gene that specifies a member of the HSP100/Clp chaperone

family. These are ATP-dependent protein unfoldases

belonging to the AAA? family, and ClpC belongs to a sub-

group with two nucleotide binding domains (NTD) along

with ClpA and ClpB [100]. The phylogenetically related Clp

proteins of cyanobacteria and plastids are essential for nor-

mal growth [101–103]. In photobionts, ClpC forms a

complex with ClpP peptidase (and related ClpR protein)

in an ATP-dependent manner [104, 105], and the

ClpCP(R) complex proteolyses mistargeted substrates. In

addition, it has been presumed that ClpC bound to Tic110

maintains the solubility of proteins imported to plant plastids

prior to transfer to other chaperones [106] and provides the

driving force for complete translocation into the stroma

[107]. A similar intrinsic chaperone activity preventing

aggregation of unfolded polypeptides and resolubilizing and

refolding aggregated proteins into their native structures, has

been reported for cyanobacterial ClpC [108].

The nuclear genome of apicomplexan species with the

apicoplast encodes genes for ClpP and ClpR with the

apicoplast targeting sequence. Like those of other plastids,

these proteins are supposed to form a ClpCPR protease

complex in the apicoplast. However, ClpC specified by the

gene in the apicoplast genome has only one NTD in

the molecule, unlike other plastidic ClpCs. Nevertheless,

the apicomplexan nuclear genome encodes several

HSP100/Clp family proteins with two NTDs, and some of

them have a putative apicoplast targeting sequence. Per-

haps one of these nuclear-encoded Clp proteins form the

ClpCPR protease complex in the apicoplast whereas others

including the apicoplast-encoded ClpC with only one NTD

are required for different functions. It is known that ClpB, a

paralog to ClpC, and Hsp70 (DnaK) comprise a bi-chap-

erone system that is important for disaggregation and

refolding of intracellular protein aggregates [109]. Like

cyanobacteria, plastids of other organisms in general have

both ClpB and Hsp70 whereas the apicoplast seems to lack

Hsp70. Perhaps, the apicoplast-encoded ClpC is an unusual

ClpB that has evolved to compensate the lack of Hsp70.

Alternatively, the protein might directly acts as a substitute

for the missing Hsp70.

The sufB gene, formerly named ycf24, is found in the

organellar genomes of Plasmodium and coccidian species

whereas it is missing in piroplasmids. In E. coli, sufB is

tightly linked with other genes—sufA, sufC, sufD, sufE and

sufS—forming an operon whose transcription is induced

during exposure to hydrogen peroxide [110] and iron

starvation [111]. SufS is a cysteine desulphurase that is

involved in Fe–S cluster assembly and SufE enhances the

function of SufS [112, 113]. SufB forms a ternary complex

with SufC and SufD [114] and stimulates the function of

SufE on SufS [115, 116]. Plastids have inherited Suf pro-

teins form their bacterial ancestor [117], though the genes

have mostly transferred to the nuclear genome. No Suf

genes remain in the plastid genome of Viridiplantae, but a

sufB–sufC cluster is generally found on the genome of red

plastids. The apicoplast genome with sufB appears to be

intermediate as it lacks sufC; the gene is encoded by the

nuclear genome together with other Suf genes.

Like Plasmodium and coccidians, piroplasmids have

several apicoplast proteins requiring Fe–S clusters. But

they lack sufB, sufC, sufD and sufE genes, while sufS gene

is encoded in the nuclear genome. One explanation is that

the piroplasmid apicoplast acquires Fe–S clusters from

outside the organelle importing them by an unknown

mechanism and that SufS is required only for other

metabolisms such as tRNA modification. Alternatively, the

organelle might have a simplified Suf system that would

resemble the mitochondrial Isc system where an Hsp70

takes the place of the SufBCD complex [118]. Perhaps the

ClpC protein encoded by the duplicated apicoplast genes

participates in the system, acting as the functional sub-

stitute for the Hsp70.

Conclusion and remarks

The lineages of Plasmodium and coccidians such as Tox-

oplasma and Eimeria are estimated to have diverged from
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each other about 350–824 million years ago, predating the

divergence of Plasmodium and piroplasmids [74, 119,

120]. The remarkable syntheny of the entire apicoplast

genome between Plasmodium and coccidians is unlikely to

have arisen secondarily by convergence. Probably the

differently organized piroplasmid genomes were generated

by later rearrangements. Despite these changes, the gene

content of the piroplasmid apicoplast genomes is almost

the same as Plasmodium and coccidians, suggesting the

present gene content is the minimum acceptable for these

secondary plastids.

All apicoplast genomes so far analyzed contain clpC in

addition to genes involved in transcription/translation. This

fact could imply that the apicoplast genome exists in order

to express ClpC. Perhaps the apicoplast-encoded ClpC is

the functional substitute for the Hsp70 missing from the

stroma of the organelle. The apicoplast genome of piro-

plasmids contains duplicated clpC genes but lacks sufB

present in the Plasmodium and the coccidian apicoplast

genomes. The mitochondrial Fe–S cluster assembly system

(the Isc system) involves an Hsp70-family protein in place

of the SufBCD complex of the plastidic Suf system [114,

118]. Again, one of the duplicated ClpCs might function as

substitute for Hsp70, compensating the absence of the

SufBCD complex in the Suf type Fe–S cluster assembly in

the piroplasmid apicoplast.

The most distant ancestor of the apicoplast must have

been a photosynthetic primary plastid. However, the

immediate origin of the apicoplast acquired by the ancestor

of Apicomplexa and other related protists is unknown. The

plastid could have been primary or secondary, but it must

have come from an alga with a plastid whose organellar

genome encoded SufB. Recently, the plastid genome was

reported for a previously undescribed alga CCMP3155, a

photosynthetic alveolate that is phylogenetically close to

the Apicomplexa [77]. This plastid genome contains all the

genes in the apicoplast genome, and the order of genes in

the apicoplast genome can be reconstructed from the

CCMP3155 plastid genome with only a small number of

hypothetical rearrangements. These data imply the Api-

complexa and CCMP3155 are close related, though not

necessarily in direct line.

When the plastid-less ancestor of Apicomplexa acquired

its symbiotic alga as secondary plastid, some metabolic

pathways in the organism must have been duplicated.

Competition between duplicated pathways would have

ensued to reduce the redundancy. Heme synthesis was one

such pathway. In general, plastid-bearing organisms syn-

thesize heme exclusively in the plastid using a

characteristic metabolic pathway also used for chlorophyll

synthesis. By contrast, plastid-less organisms have a dis-

tinct heme pathway that involves the mitochondrion and

the cytosol. Probably because the plastid pathway is

sufficient to supply all required heme, organisms with a

photosynthetic secondary plastid, such as diatoms, main-

tain the complete plastid-localized heme pathway, losing

the non-plastid pathway (Fig. 2). Like other plastid-bearing

organisms, apicomplexans such as P. falciparum have an

algal-type PBGS that localizes in the apicoplast [46, 90].

However, they lack algal enzymes required for synthesiz-

ing substrate for PBGS in the plastid [121] and have ALA

synthase, which is found exclusively in the plastid-less

organisms, in the mitochondrion instead [46]. This fact

might suggest that chlorophyll synthesis in the ancestral

apicoplast in the ancient Apicomplexa in which the

selection took place had already become dispensable. In

other words, the alga from which the apicoplast originated

could have been non-photosynthetic, contrary to the com-

monly held belief. Even so, the apicomplexan ancestor

must have benefited from the acquired plastid as it would

be a useful source of various metabolites even when non-

photosynthetic [122]. Why then has the plastidic PBGS

been maintained instead of the non-plastidic one? One

possible explanation is that the algal PBGS gene could not

be lost because it was inserted by chance within the SPP

gene to make the unique PBGS/SPP gene cluster.

N-type only
(

loss of P-type

loss of N-type

(Perkinsus, ciliates, 
Oomycetes, etc.)

(plastid loss ?)Non-plastid-type
(mt+cyt)

P-type only
(photosynthetic

algahost
chromalveolates)

P+N
Partial loss of 
both types

Plastid-type
(plastid) P/N hybrid

(Plasmodium,
Algal genes

Toxoplasma,
Eimeria,

transferred to
the nucleus

Host dependent (Cryptosporidium, piroplasmids, etc)

etc.)

Fig. 2 Evolution of heme biosynthesis in organisms with secondary

plastids (hypothesis). The plastid-less ancestor had a non-plastid

(N) type heme pathway whereas the algal endosymbiont, which

donated the secondary plastid, had a distinct pathway in the plastid

(P). Algal genes were transferred to the host nuclear genome one by

one. The ancestral organism with a secondary plastid initially had

both P- and N-type pathways, but subsequently, one of the two was

selected and the other wiped out as redundant. Because chlorophyll

synthesis depends on the P-type heme pathway, photosynthetic

organisms chose the P-type, throwing the N-type away. By contrast,

organisms that were not dependent on photosynthesis kept the N-type;

this was often accompanied by loss of the plastid. The apicomplexan

ancestor was non-photosynthetic and would lose the P-type. However,

the gene complex of PBGS and SPP in the nuclear genome made the

loss incomplete, giving rise to a unique P/N hybrid heme pathway

(thick line). Thereafter some apicomplexans lost the entire pathway
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The proteome of the apicoplast of piroplasmids has

shrunk considerably compared to those of Plasmodium and

coccidians. This is probably because piroplasmids have

acquired alternative sources of some metabolites that used

to be supplied from the apicoplast. Apicoplast DNA is

apparently missing from C. parvum [13] and the fact that

the nuclear genome of C. parvum lacks genes that are

required for the biogenesis of the apicoplast such as Cpn60

and SPP [123] suggests that the species completely lacks

the apicoplast as an organelle. Gregarinasina, one of the

major apicomplexan subclasses that contains at least 1,600

species [2, 124], has been shown to be closely related to the

genus Cryptosporidium. Some if not all Gregarinasina can

lack the apicoplast like Cryptosporidium. Indeed, it was

reported that G. niphandrodes lacks apicoplast DNA [14].

To investigate the past and future of the apicoplast, the

genome of many more apicomplexans should be studied,

especially those placed phylogenetically between Plasmo-

dium and T. parva/B. bovis as well as those belonging to

Gregarinasina. The analysis of non-apicomplexans closely

related to Apicomplexa also is essential. To elucidate the

functions of present day apicoplasts, it is critical to estab-

lish an isolation method, as biochemical and proteomic

analysis of the purified organelle is definitely required.
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