
The AppComposer Web Application for School

Teachers: A Platform for Translating and Adapting

Educational Web Applications

Luis Rodriguez-Gil∗, Pablo Orduña∗, Lars Bollen†,

Sten Govaerts‡, Adrian Holzer‡, Denis Gillet‡,

Diego López-de-Ipiña∗ and Javier Garcia-Zubia∗

∗DeustoTech – Deusto Institute of Technology

University of Deusto, Bilbao, Spain

Email: {luis.rodriguezgil,pablo.orduna,dipina,zubia}@deusto.es
†University of Twente, The Netherlands

Email: l.bollen@utwente.nl
‡École Polytechnique Fédérale de Lausanne, EPFL, Switzerland

Email: {sten.govaerts,adrian.holzer,denis.gillet}@epfl.ch

Abstract—Developing educational apps that cover a wide
range of learning contexts and languages is a challenging task. In
this paper, we introduce the AppComposer Web app to address
this issue. The AppComposer aims at empowering teachers to
easily translate and adapt existing apps that fit their educational
contexts. Developers do not need to provide extensive translations
and configurations of their apps and can simply follow certain
guidelines to make their apps translatable and adaptable by
the AppComposer. Since the AppComposer makes use of the
standard internationalization specification used by OpenSocial,
even external apps can be translated without contacting the
original developer.

I. INTRODUCTION

In today’s world, science and technology are of utmost
importance for the prosperity of any economy. To promote
growth, the world requires initiatives that can bring science
and technology to students, so that they can learn, be motivated
and consider those fields as their career paths [1]. In this
context, the European Commission is funding Go-Lab, a large
scale research project on federated online laboratories which
is meant to promote and support STEM (Science, Technology,
Engineering and Mathematics) among young students [2], [3].
Go-Lab is meant to enable inquiry-based learning at schools by
offering online laboratory experiments and other support tools,
which are to be accessible through OpenSocial web apps on
the Go-Lab Portal [4].1 Some online laboratory apps provide
access to real hardware (e.g. Faulkes Telescope), others to
simulations (e.g. Gear Sketch). Support tools include scaffolds
(e.g. Concept Mapper) and more general tools (e.g. InputBox).
These apps can then be integrated in an inquiry learning space
(ILS) [5], which is an online, collaborative space used for an
inquiry learning activity [3].

Figure 1 illustrates an example of an ILS where a teacher
used the Concept Mapper and the Gear Sketch for her English
speaking class. In order for the Concept Mapper to be used in
another context, such as in a class about Electricity in Spain,

1http://golabz.eu

Fig. 1. An example of an ILS with the Concept Mapper and the Gear Sketch.

its user interface would need to be translated in Spanish and
its predefined concepts would need to be adapted to fit the
domain-specific terminology. Unfortunately, the effort required
for an app developer to provide support for a wide range of
contexts and languages is substantial and teachers usually lack
the coding skills to extend existing apps.

The AppComposer, which is the main contribution of
this paper, precisely addresses this issue by providing the
means for non-technical users (teachers) to translate and
adapt existing apps to meet their particular contexts. With the
AppComposer, developers do not need to provide extensive
translations and configurations of their apps and can simply
follow guidelines to make their apps translatable and adaptable.
Since internationalization is well-specified in OpenSocial, even
external apps can be translated without contacting the original
developer. The AppComposer consists of a Translator and an
Adaptor module. The Translator module, as the name suggests,
is used to translate apps in different languages. Figure 2

Page 889

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

shows the Concept Mapper being translated from English into
Spanish. The Adaptor module allows to configure apps for
different contexts. Figure 3 shows how the Concept Mapper
can be configured so that it can be used in an Electricity class.

Fig. 2. The Concept Mapper being translated in the AppComposer (above)
and the result (below)

Fig. 3. The Concept Mapper being adapted in the AppComposer (above)
and the result (below)

The reminder of this paper is structured as follows. Sec-
tion II reviews the state of the art and Section III discusses
the background. Then Section IV presents the AppComposer,
while Sections V and VI present the Adaptor and the Translator
modules. Finally, Section VII discusses intellectual property
rights and Section VIII wraps up with a conclusion and an
outlook on future work.

II. STATE OF THE ART

Education is changing, influenced like many other fields
by the rapid advances of Information Technologies. Through
them, the field of Technology Enhanced Learning (TEL) has
been growing and is expected to keep growing in the future [6],
[7], [8]. One of the technologies that have surfaced are online
laboratories. These labs, which will be described in greater
detail in later sections, allow users to access either remote or
virtual hardware from any part of the world. To apply these
new technologies and conceptions developers and teachers
require tools to create actual pedagogical content for the

students or users. Significant research efforts have already been
dedicated to this kind of tools.

The design of hybrid interactive learning environments for
children and adults is a source of interest for instructional
technologists [9]. School teachers and non-expert programmers
make use of a selection of tools to create new learning
apps or modify existing ones. In content authoring dynamic
elements are mixed smoothly with static documents. Raptivity2

or Zebrazapps3 are examples. Support for mobile platforms has
also attracted some attention [10].

Nowadays, most software editors generate a low level
of interaction in the resulting media. Though UI design for
learning is mainly intended to make people think and perform,
UI design in general is about efficiency [11]. Also, interactivity
is fundamental in order to give students an active role and is a
key feature provided by serious games, simulations and labs in
e-learning scenarios to reinforce teaching of STEM (Science,
Technology, Engineering, and Mathematics) principles [12].

Apps tend to be more interactive than standard Web pages,
but currently the technologies are similar. XML and HTML
make it possible to store the information, in such a way the
final layout can be selected by the user and adjusted to the out-
put device. Internationalization and localization are two other
aspects of software that affect the whole creation process [13].
Also, many apps have been developed with Flash and Java.
These became the de facto standard for interactive Web content
due to the possibility of embedding them and the limitations of
HTML. This is no longer necessarily the case [14]. Among the
disadvantages of non-standard proprietary components such as
these are severe security issues, the need to install them on each
device, and the lack of mobile support. Applications based on
the modern HTML5 stack are now appearing and generally
preferred.

Another trend has been to merge dynamic assets with
lessons that where previously static, through slideshows, wikis,
Learning Management Systems and custom e-learning solu-
tions. Courses provide and include SCORM packages, and try
to make it easy to create and edit content and to not require
server-side components. Sometimes they rely on specialized
editors. In a recent work [15], an analysis of the existing
web application toolkits is provided, and their main features,
requirements and issues explored. It highlights the need to
provide an authoring tool to let teachers build high-quality
interactive applications which are customized to the student’s
cognitive progress within a particular course or session.

III. BACKGROUND

The AppComposer is developed in the context of the
European Go-Lab Project (Global Online Science Labs for
Inquiry Learning at School4), which aims to make online
laboratories more accessible so that they can be used on a large
scale in education. This goal is accomplished by providing
a technical framework through which teachers across Europe
are able to enrich their classroom activities with inquiry-based
learning enabled by online laboratories. A first version of the

2http://raptivity.com
3http://zebrazapps.com
4http://www.go-lab-project.eu

Page 890

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

AppComposer was presented in [16]. The Go-Lab framework
comprises several components which are loosely coupled and
which are related to the AppComposer in different ways. This
section will elaborate on the different components related to
the AppComposer.

A. The Go-Lab portal

The Go-Lab portal [4] aims to supply lab owners with
the means to make their laboratories known and to share
them. Likewise, it aims to supply teachers with the means to
discover useful online labs, supportive apps and ILS published
by other teachers to support their classroom activities. Teachers
can easily create their ILS from an online lab or repurpose
a published ILS. The Go-Lab portal consists of two main
platforms, namely the Lab Repository and the ILS Platform.

The ILS Platform, also known as Graasp5, allows teachers
to create and customize the ILSs for their students. The
AppComposer is integrated with Graasp, because it is meant
to provide the application customization features that teachers
require. This integration includes a single sign-on authentica-
tion system which will be described in more detail in the next
sections, which enables a straightforward use of adapted and
translated applications.

The Lab Repository6 is a repository for online laboratories,
applications and ILS. Each resource has associated metadata
which makes search, discovery and recommendations possible.

Through the Lab Repository API, the AppComposer en-
ables teachers to easily find and select applications to translate
or to adapt.

B. OpenSocial apps

OpenSocial7 is an Application Programming Interface
(API) designed for creating web-based social platforms. Its
primary goal is to provide a common framework that develop-
ers can use to ensure interoperability across different social
networks on the Internet, which act as containers for each
OpenSocial-compliant application. OpenSocial apps must be
delivered through an app container.

The most common and widely used container is Apache
Shindig8. The Graasp platform relies internally on a modified
version of this container, and the AppComposer will rely on
Graasp’s instance of Apache Shindig to distribute the published
translations in an efficient and scalable way. This will be
described in more detail in later sections.

IV. APPCOMPOSER

The AppComposer has been designed as a Web platform.9

Figure 4 shows a general overview of its most significant
components. Some components are mostly generic and are
services required for the platform as a whole. The most
significant of these ones are:

5http://graasp.eu
6http://www.golabz.eu/
7http://opensocial.org/
8https://shindig.apache.org/
9The AppComposer is available at http://composer.golabz.eu

Fig. 4. General Overview of the AppComposer components

• The users component provides personal user man-
agement or authentication (either through a user and
password combination or through Graasp).

• The administration component provides privileged
features such as user and application management.

• The publishing component enables the straightforward
publishing of translated and adapted applications.

• The storage component provides a storage layer to
be used throughout the platform, to store information
about users, the application translations, and the ap-
plication adaptations.

Beyond those generic components, which are present, to
some extent, in many Web applications, the AppComposer
provides its actual functionality through the two different Com-
posers that have been described in previous sections. These two
composers, known as the Translator and the Adaptor, will be
described in detail next.

V. TRANSLATOR

The AppComposer Translator is the component of the App-
Composer that lets teachers find and translate an OpenSocial
application for their students to use.

Being available in the local language is often a very strong
requirement for an application to be useful, particularly in
the context of Go-Lab, because its audience are often young
students who do not necessarily understand the language of the
original application. Even with some language proficiency, this
might often add extra complexity and could harm the learning
experience.

Due to practical limitations, it is not possible to create a
translator which is simply able to translate any kind of app.
Thus, in order to be translated, an application must meet some
criteria, which are nonetheless relatively simple:

• It must be an OpenSocial application

• It must conform to the OpenSocial Internationalization
API

The OpenSocial Internationalization API is an XML-based
API through which OpenSocial developers can specify trans-
lation bundles for their applications. Then, in the application’s
code, they can refer to the messages within these bundles using
the API.

Page 891

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

For the Translator to work as expected, developers do not
need to actually translate their applications (that is the purpose
of the Translator), though they can do so if they wish to. They
only need to use that API instead of hard-coding their strings,
so that the Translator can locate which strings to translate.

The OpenSocial Internationalization API can translate ap-
plications for specific languages and territories. However, in
the particular domain of learning it has been noted that the
language of the audience, even within the same country and
territory, varies significantly. It is hence desirable to be able
to also provide different translations to different groups. For
instance, a translation for young (10-13 year old) students,
and a translation for older ones (14-17 years old). Since
OpenSocial can’t do that by itself, the Translator adds support
for it by extending the OpenSocial API and dynamically
generating and serving the OpenSocial XML bundles that
define the contents of the translation. This has a significant
influence in the design of the Translator.

To enable reuse of the translations done by other users,
mostly teachers, it is necessary to provide the means to publish
(host) the translations. For ease of use, especially considering
the potentially non-technical background of the teachers, the
system must do that transparently.

Every use of a translated application involves several
requests. Because thousands of students are expected to use
the translations, if the AppComposer Translator served the
translations itself it would suffer a particularly heavy load. To
avoid this issue, the system has been designed in such a way
that serving the translations to the end-users is done mostly by
the Graasp ILS system, which is better suited for that purpose.
This scheme is described in the following sections.

A. User Workflow

The goal of the AppComposer is to be as simple and
straightforward to use as possible. Most users will not have
a technical background (and they are not expected to). Thus,
to provide an adequate user experience, the workflow tries
to be linear and provides a wizard-like style. Because the
AppComposer is created as a web application, the only tech-
nical requirement is a relatively up-to-date browser. Once the
teachers access the AppComposer website, they can log-in
through the Graasp platform or other means and access the
Translator.

First, they are presented with the application finder screen,
which can be observed in Figure 5. It contains a dynamic list of
applications to translate, which is provided, along with certain
metadata, by the Go-Lab Repository. Through it, or through the
repository itself, the teachers can easily find the applications
they are interested in or discover new applications they did
not know about. Then they only have to select it to begin
the translation process. Alternatively, they can just specify the
URL of an existing OpenSocial application, even if it is not
present in the Go-Lab Portal repository.

Once they have chosen, the Translator will create their own
instance of that application. The system automatically extracts
translation information from the application they have chosen,
and if there is an existing translation for any language, either
in the original application or in the AppComposer, the system
will automatically merge the translations.

Fig. 5. Application finder screen. Data is provided by the Lab Repository.

Fig. 6. Merge tool screen, through which language owners for an application
can easily review proposed changes

From then on, the teachers have their own instance, and
they can choose the source and target languages (and op-
tionally the source and target groups) and start translating.
Collaboration between users is supported. Each language trans-
lation of a particular application is owned by the first person
who translated it. Teachers can automatically submit their
translation proposals to that owner, who can then merge the
changes after reviewing them, reject them if they are wrong,
or even decide to trust all translation proposals implicitly. The
merge tool is shown in Figure 6.

By default, when publishing the application, the default
translation (which is the translation that owns a language for
an application) will be used. This is the case for Graasp,
which will always serve the owner translation. However, when
teachers, for any reason, do not like the default translation, they
can easily publish their own version to their students.

It is noteworthy that though the teachers need to log-in
to create a translation, students will not need to register or

Page 892

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

Fig. 7. AppComposer design and integration

log-in at any moment. The experience for them is meant to
be as seamless as possible. Once the teachers have translated
and published an application they can simply share a link with
their students and they will immediately be able to access the
translated version of the App through Graasp.

B. Architecture Overview

Figure 7 depicts the general architecture of the system.
As the diagram shows, students, which are the end-users,
will not be in direct contact with the AppComposer. Students
will only make use of the translated apps made available
by the AppComposer in the Graasp ILS. This way, the user
experience is transparent, and end-user requests are handled
by Graasp and are cached by a secondary database to ensure
scalability for the kind of load that is expected.

Teachers and developers, however, will access the App-
Composer directly, even though they will still, in general,
authenticate through Graasp.

The diagram includes two different databases. The first
one is a MySQL instance, and it acts as a primary database.
The AppComposer system relies on SQLAlchemy, a Python-
based ORM, so, actually, most Relational Database Manage-
ment Systems would be supported. This primary database
contains all operational information, including the existing
users and the applications and their data. The aim of the
secondary, MongoDB-based database is to provide an efficient
and scalable means to integrate the AppComposer translations
with Graasp or other external systems. This scheme will be
discussed in detail in the synchronization scheme section.

Fig. 8. The authentication protocol for the single sign-on system

C. Graasp Authentication

One of the goals of the AppComposer platform is to
integrate seamlessly with Graasp. For this, a single sign-on
system is provided. Graasp provides a custom token-based
non-standard system which resembles OAuth.

Figure 8 illustrates this system. Whenever users wish to
authenticate against the AppComposer they are redirected to
Graasp, which gives them a temporal and random token.
This token is then shared with the AppComposer. Then, the
AppComposer, by consulting directly with Graasp, verifies that
the token is indeed valid and belongs to the user. If everything
is right, access is granted. Additionally, if it is the first time
that the user is accessing the system, then it is automatically
registered in the primary database.

In the future, the AppComposer will make use of the newly
developed authorisation Graasp service using the OAuth 2
protocol.

D. Synchronization scheme

As has been mentioned in previous sections, the AppCom-
poser is part of the Go-Lab project. As such, it is expected to
support thousands of students throughout Europe, who should
be able to access the published translations easily and without
delay.

The amount of users and translation requests can be very
high, because each use of a translated application involves at
least a translation request, and each request, in fact, involves
several files. This kind of problem is handled very efficiently
by the OpenSocial application server, i.e. Apache Shindig,
which is used internally by Graasp and which is an Open
Source project designed specifically for that purpose. However,
the AppComposer does not have that aim. To reduce the
potential load on the AppComposer server and to promote
scalability, a particular design has been implemented, in which
the AppComposer provides the translations to Graasp and
Graasp serves them to the end-users.

This is depicted in Figure 9. A significant aspect of this
design is that there is no direct communication between the
AppComposer and the external system. Instead, that communi-
cation takes place through a secondary MongoDB. Thus, when

Page 893

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

Fig. 9. Architecture of the synchronization scheme for the communication
with external systems

users ask Graasp for a translation, Graasp will not ask the
AppComposer, but will instead obtain it from the MongoDB
database, similarly to a cache server.

The secondary database does not replace the primary one in
any way. The primary MySQL database has at all times the full
authoritative information (and in fact, it contains significantly
more information than the secondary one). The secondary
database only contains the translations, stored in JSON and
indexed to provide simple and efficient access.

Though the system is designed so that almost at all times
the information in the secondary database is up to date with
respect to the primary one, this synchronization is deliberately
non-transactional and is not necessarily in real-time. It is
synchronized in two ways, which are illustrated in Figure 10.

• When a change occurs (update or removal of a trans-
lation) a synchronization request is queued for the
specific translation. If the secondary DB is available
and ready, the synchronization will be almost instant.

• Periodically a full synchronization will be done. This
guarantees long-term integrity and increases reliability
and fault-tolerance. If a particular update failed, or
even if the whole secondary database were corrupted
or exchanged by an empty database, the system would
recover on its own in a very short time.

This scheme achieves a very high scalability, because the
limit will mostly be set by the MongoDB instance. Because
MongoDB by design supports very heavy loads and can scale
horizontally, it could even be transparently replaced by a
cluster.

Fig. 10. AppComposer Translator synchronization flow

Also, it makes the system more fault-tolerant and secure,
because it decouples the AppComposer from Graasp. If one
of them failed, the other would still work on its own. For
instance, if the AppComposer servers failed, end-users would
still be able to access the last translations through Graasp.
Likewise, if Graasp was not reachable due to heavy loads,
DDoS attacks, or any other issue, the AppComposer could
still be accessed by teachers and customization developers or
even (with limitations) by the students themselves.

VI. ADAPTOR

The AppComposer Adaptor is a tool for adapting applica-
tions. The target is to let web developers create customizable
applications that teachers can easily take, adapt, and publish
for their students. The way to adapt these applications is
centralized through the AppComposer.

Examples of these applications include:

• Customize the domain of certain applications: given a
generic application where users have to interact with
concepts.

• Customize the behaviour of an application: showing a
different set of tabs depending on the purpose of the
teacher, or reducing the level of explanation of certain
parts.

• Customize the user interface of a virtual or remote
laboratory: show only a subset of the experiment
for different purposes. In a laboratory like VISIR

Page 894

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

[17], teachers might want to reduce the number of
electronics components or attached devices (e.g., hide
the DC Power or the Oscilloscope).

A. Basic workflow

Teachers the AppComposer, which essentially uses a single
sign on mechanism with Graasp (so teachers don’t need to be
registered multiple times). Then, they select which application
they want to adapt. When selected, they can also see existing
adaptations for that application, since the adaptation they
are going to create could have already been developed by
somebody else, and seeing existing adaptations could help in
terms of inspiring on new models for adapting the application.
Then, an adaptation panel is displayed, which can be a generic
one with few settings provided by the developer or it can be
completely developed from scratch by the application devel-
oper (see next section). Whenever the adaptation is modified
it is saved automatically and a URL is provided. Teachers can
take this URL and add it as an app on the Go-Lab ILS platform
so students use the adapted version of the application.

New versions of the application should not affect the
adaptations, as long as the developer manages old settings
stored in the AppComposer.

B. Customizable application development

The AppComposer Adaptor provides a Python plug-in
development mechanism which relies on the Flask web mi-
croframework. This plug-in system provides simplified access
to the database, enables the developer to create new URLs,
interacting with the disk, etc. On top of it, other approaches
can be developed and are presented in this section.

1) Pure web applications: Through one of its plug-ins, the
AppComposer enables web developers to keep their applica-
tions in their servers, and provide a lightweight mechanism to
replace certain parameters. Basically, the application developer
only needs to provide the default application configuration
using a special attribute in a script HTML tag, as well as a
description of this configuration in other script with a different
special attribute.

When adapting the application, the AppComposer checks
the configuration description and generates a user interface
with a selection of these options (see Figure 11). This con-
figuration is limited to the extensibility of the description
mechanism, which supports strings, boolean options and lists
of strings.

When publishing the application, every time somebody
attempts to load the application, the AppComposer downloads
the original application and replaces the default configuration
script by an automatically generated one which includes the
options selected by the teacher. This way, while the URL points
to the App Composer, the changes in the original application
are always reflected.

2) Pure plug-ins: Application developers can create their
own native applications in Python. This, however, requires
a deployment in a server. This can be done in the main
AppComposer server by contacting their administrators and
contributing code, or by deploying the AppComposer in a
different server. Independent deployments are discouraged

Fig. 11. Adapting a pure web application. The controls are generated
automatically from the configuration retrieved from the original application.

because they have a potential negative impact in terms of
usability for teachers, since they will need to know where these
external AppComposers are.

The main advantage of this plug-in systems is that there
is no restriction in the software development. Developers can
keep secrets (such as keys to external services), store addi-
tional information per user, interact directly with the database,
optimize and cache certain parts, etc.

3) Future plug-ins: Further plug-in types will be added
to increase the extensibility of the system. One is currently
under development, and it is focused on making it easy to
customize remote laboratories. It relies on gateway4labs [18],
a software system that integrates existing remote laboratories
in OpenSocial. The remote laboratory provides an HTML file
that provides a customization panel (e.g., Figure 12), where the
remote laboratory developer creates the whole customization
in an HTML iframe. This panel provides the desired settings
to the AppComposer. Finally, the AppComposer generates a
link to the final gateway4labs system including a link to the
desired configuration (hosted in the AppComposer), which is
provided to the laboratory upon reservation request. This way,
teachers can adapt the laboratory (using a panel provided by

Page 895

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

Fig. 12. Adapting a remote laboratory. Red parts will not be displayed.

the laboratory developer), and use the customized version in
the Go-Lab ILS platform.

Other types of plug-in will also be included to make the
development process easier. For example, providing a tool
that enables application developers to provide a customized
version of the adaptation panel is also desirable, so external
developers can provide a fine-grained configuration manager
of their application.

VII. INTELLECTUAL PROPERTY RIGHTS

As described, teachers can use the AppComposer to cus-
tomize an application (either through translation or adaptation).
In principle, this can potentially lead to intellectual property
rights issues. However, they are limited. In the case of the
Translator, no input is actually required from the original
developer. The actual modifications to the application are
limited to adding references to new language bundles, and
the application needs to support internationalization by itself.
However, there could still be issues if the original developer
didn’t want the application translated. In the case of the Adap-
tor, the application needs to be made explicitly compatible by
the original developer. Thus, there should be no issues.

VIII. CONCLUSIONS & FUTURE WORK

The Go-Lab platform and the AppComposer are currently
undergoing a pilot evaluation, which makes the software avail-
able and actively used by real teachers and students in schools
around Europe. In the future, the usability and usefulness eval-
uation results that are gathered through these pilots will be used
to improve the platform and its user experience. With regard
to usability evaluation, an expert evaluation is also planned,
where usability experts analyse the user interface using heuris-
tic rules and common UI patterns and practices. Additional
new features are also planned. Particularly, significant efforts
will be dedicated to further integrate the AppComposer with
the rest of the components in the Go-Lab ecosystem. This will
likely involve:

• Providing a consistent workflow through the tools
(mainly through Graasp, the AppComposer and the
Lab Repository)

• Streamlining the user experience by providing a con-
sistent look and feel

• Extending the integration between the Lab Repository
and the AppComposer so that Apps can be found
in the Repository and translated or adapted with the
click of a button straight from the Lab Repository;
and enabling the AppComposer to know whether an
application in the repository meets the requirements
for translation or adaptation.

• Making the authentication interaction between Graasp
and the AppComposer more transparent for the user,
which will be possible through OAuth2.

ACKNOWLEDGMENT

This research was partially funded by the European Union
in the context of the Go-Lab project (Grant Agreement no.
317601) under the Information and Communication Technolo-
gies (ICT) theme of the 7th Framework Programme for R&D
(FP7). This document does not represent the opinion of the
European Union, and the European Union is not responsible
for any use that might be made of its content.

REFERENCES

[1] T. De Jong, M. C. Linn, and Z. C. Zacharia, “Physical and virtual
laboratories in science and engineering education,” Science, vol. 340,
no. 6130, pp. 305–308, 2013.

[2] T. de Jong, S. Sotiriou, and D. Gillet, “Innovations in stem education:
the go-lab federation of online labs,” Smart Learning Environments,
vol. 1, no. 1, pp. 1–16, 2014.

[3] D. Gillet, T. de Jong, S. Sotirou, and C. Salzmann, “Personalised learn-
ing spaces and federated online labs for STEM education at school,”
in 2013 IEEE Global Engineering Education Conference (EDUCON),
Mar. 2013, pp. 769–773.

[4] S. Govaerts, Y. Cao, A. Vozniuk, A. Holzer, D. G. Zutin, E. S. C. Ruiz,
L. Bollen, S. Manske, N. Faltin, C. Salzmann et al., “Towards an online
lab portal for inquiry-based stem learning at school,” in Advances in

Web-Based Learning–ICWL 2013. Springer, 2013, pp. 244–253.

[5] M. J. Rodriguez Triana, S. Govaerts, W. Halimi, A. C. Holzer,
C. Salzmann, A. Vozniuk, T. de Jong, S. Sotirou, and D. Gillet, “Rich
open educational resources for personal and inquiry learning. agile
creation, sharing and reuse in educational social media platforms,”
in International Conference on Web & Open Access to Learning, no.
EPFL-CONF-203595, 2014.

[6] Y. Beldarrain, “Distance education trends: Integrating new technologies
to foster student interaction and collaboration,” Distance Education,
vol. 27, no. 2, pp. 139–153, Aug. 2006.

[7] U. Hoppe, M. Milrad, C.-K. Looi, P. Dillenbourg, M. Scardamalia,
N. Balacheff, E. Soloway, C. Norris, R. D. Pea, J. Cherniavsky,
C. Patton, T. Brown, M. Sharples, K. Kinshuk, S. Hsi, J. Roschelle, and
T.-W. Chan, “One-to-one technology-enhanced learning: an opportunity
for global research collaboration,” Research and Practice in Technology

Enhanced Learning, vol. 1(1), pp. 3–29, 2006.

[8] K. Kumaran and V. Nair, “Future trends in e-learning,” in Distance

Learning and Education (ICDLE), 2010 4th International Conference

on. IEEE, 2010, pp. 170–173.

[9] L. P. Rieber, “Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and
games,” Educational technology research and development, vol. 44,
no. 2, pp. 43–58, 1996.

Page 896

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

[10] L. Serafimov, “Html5 support in mobile learning tools,” in Conference

proceedings of” eLearning and Software for Education”, no. 02, 2012,
pp. 283–286.

[11] M. W. Allen, Michael Allen’s Online Learning Library: Successful e-

Learning Interface: Making Learning Technology Polite, Effective, and

Fun. Wiley. com, 2011, vol. 3.

[12] H. Leemkuil, T. Jong, and S. Ootes, “Review of educational use of
games and simulations.” 2000.

[13] S. Auer, M. Weidl, J. Lehmann, A. J. Zaveri, and K.-S. Choi, “I18n
of semantic web applications,” in The Semantic Web–ISWC 2010.
Springer, 2010, pp. 1–16.

[14] L. Rodriguez-Gil, P. Orduña, J. Garcı́a-Zubia, I. Angulo, and D. López-
de Ipiña, “Graphic technologies for virtual, remote and hybrid laborato-
ries: Weblab-fpga hybrid lab,” 2014 10th International Conference on

Remote Engineering and Virtual Instrumentation (REV), pp. 163–166,
2014.

[15] M. Latorre, A. Robles-Gómez, L. Rodrı́guez-Gil, P. Orduña, E. San-
cristobal, A. C. Caminero, L. Tobarra, I. Lequerica, S. Ros,
R. Hernández, M. Castro, D. Lopez-de Ipiña, and J. Garcia-Zubia, “A
review of webapp authoring tools for e-learning,” in Accepted to Global

Engineering Education Conference (EDUCON), 2014 IEEE. IEEE,
2014.

[16] L. Rodriguez-Gil, M. Latorre, P. Orduna, A. Robles-Gómez, E. San-
cristobal, S. Govaerts, D. Gillet, I. Lequerica, A. C. Caminero, R. Her-
nandez et al., “Opensocial application builder and customizer for school
teachers,” in Advanced Learning Technologies (ICALT), 2014 IEEE 14th

International Conference on. IEEE, 2014, pp. 31–33.

[17] I. Gustavsson, J. Zackrisson, L. Håkansson, I. Claesson, and T. Lagö,
“The visir project–an open source software initiative for distributed
online laboratories,” in Proceedings of the REV 2007 conference, Porto,

Portugal, 2007.

[18] P. Orduña, S. Botero Uribe, N. Hock Isaza, E. Sancristobal, M. Emaldi,
A. Pesquera Martin, K. DeLong, P. Bailey, D. López-de Ipiña, M. Cas-
tro, and J. Garcı́a-Zubia, “Generic integration of remote laboratories
in learning and content management systems through federation pro-
tocols,” in 2013 IEEE Frontiers in Education Conference, Oklahoma
City, OK, USA, Oct. 2013, pp. 1372–1378.

Page 897

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

