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Reinforcement learning (RL) methods can successfully solve complex optimization problems. Our article gives a systematic
overview of major types of RL methods, their applications at the field of Industry 4.0 solutions, and it provides methodological
guidelines to determine the right approach that can be fitted better to the different problems, and moreover, it can be a point of
reference for R&D projects and further researches.

1. Introduction

Reinforcement learning (RL) has a significant chance to
revolutionize the artificial intelligence (AI) applications
by serving a novel approach of machine learning (ML)
developments that lets the user to handle large-scale
problems efficiently. *ese techniques together with
widespread Internet of things tools have opened up new
possibilities for optimizing complex systems, including
domains of logistics, project planning, scheduling, and
further industry-related domains. Extracting this poten-
tial can result in a fundamental progress of Industry 4.0
transformation [1]. During this digital transformation, the
vertical and horizontal integration will be strengthened,
the flexibility should be raised, and the human control and
supervision need to be focused [2, 3]. Furthermore, the
data produced by the integrated tools are increasing ex-
ponentially that requires a higher level of autonomous
processes and decisions. Reinforcement learning can serve
as a valuable tool in the development of self-optimising
and organising Industry 4.0 solutions. *e main challenge
of developing these applications is that there are several
methods and techniques and a wide range of parameters
that need to be defined. As the definition of these pa-
rameters requires detailed knowledge of the nature of the
RL algorithms, the main goal of this paper is to provide

a comprehensive overview of RL methods from the
viewpoint of Industry 4.0 and smart manufacturing.

On the basis of our best knowledge, there exists no
similar overview article of reinforcement learning methods
in Industry 4.0 applications. Next to the fundamental book
[4], there are several overviews of reinforcement learning
methods from theoretical point of view. A detailed semantic
overview of Industry 4.0 frameworks [5] and a categoriza-
tion of Industry 4.0 research fields are also described. An
overview of key elements of Industry 4.0 researches and
several application scenarios [6] highlighted the wide scope
of smart manufacturing. Although many authors found that
there is a lack of extensive review of Industry 4.0 revolution
from different aspects, according to their persistent work
nowadays, several articles are available in this topic [7]. A
survey on the applications of optimal control to scheduling
in production, supply chain, and Industry 4.0 systems [8]
focused on maximum principle-based studies. Most of the
surveys and review articles of Industry 4.0 declare the im-
portance of optimization, but mostly only general ap-
proaches are discussed, and there are no detailed guidelines
extracted. A comprehensive survey at field of Industry 4.0
and optimization [9] discussed the recent developments in
data fusion and machine learning for industrial prognosis,
placing an emphasis on the identification of research trends,
niches of opportunity, and unexplored challenges. Even if it
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considered several ML methods and algorithms, RL was
mentioned only shortly without extracting its key
fundamentals.

*e above collected facts strengthened our motivation of
preparing a detailed overview of RL applications and
methods used in the field of Industry 4.0. Our main goals
with this are:

Presenting a hands-on reference for researchers who
are interested in RL applications

Giving compact descriptions of applicable RL methods

Serving a guideline to support them easily identify the best
fitting subset of RL methods to their problems and hence
letting them focus on the relevant part of the literature

Our systematic review is based on an examination of the
literature available from Scopus by following the PRISMA-P
(Preferred Reporting Items for Systematic Reviews and Meta-
Analysis Protocols). *e PRISMA-P workflow contains a 17-
item checklist that supports to facilitate the preparation and
reporting of a robust protocol in a standardized way for sys-
tematic reviews. *e literature source list was queried in
February 2021 with the following keywords: TITLE-ABS-KEY
(“reinforcement learning” AND (“smart factory” OR “IOT”
OR “smart manufacturing” OR “industry 4.0” OR “CPS”)).

Both author keywords and index keywords were in-
volved into the analysis. *e keyword processing started
with an extensive data cleansing process by:

Building up a standardized keyword unit (SKU) list and
splitting complex keywords into SKUs

Assigning SKUs to one of the following keyword
classification types:

(i) Principle captured
(ii) Industrial field of application
(iii) Application field of solution
(iv) Mathematical approach of application methodology

Identifying major classification groups by classification
types

781 articles were involved into the analysis. Out of 14,035
original author and index keywords, 2,579 duplications were
filtered out. *e remaining 11,456 keywords were sliced into
45,824 SKUs. Finally, 12,017 keywords were assigned to
classification types that provide the major tendencies and
relations of industrial applications of reinforcement learning
methods. Figure 1 shows the change of the assessed literature
size over the PRISMA steps.

Our article stands for the following major parts:

First, in Section 2, we will give a short general in-
troduction of reinforcement learning framework and
summarize some major mathematical properties be-
hind RL techniques. Furthermore, we will present
a classification of RL methods that lets the reader to
have a map for the further discussions.

As a next step in Sections 3.1–3.3, we will present the
key findings of systematic review and a hands-on
reference for further researches.

*en, in Section 3.4 and in Section 3.5, we will discuss
the conclusions and give a detailed guideline to help the
reader to choose to most adequate RL method for the
different problems.

Finally, in Appendices A–H, we will provide a compact
overview of 18 different RL methods.

2. Theoretical Background of
Reinforcement Learning

In this section, we will summarize the fundamental concept
of reinforcement learning, then we will present a general
classification of RL methods.

*ere are three main paradigms in machine learning:
supervised learning, unsupervised learning, and re-
inforcement learning. In supervised learning, a functional
relationship of a regression model of a classifier is learnt
based on data that represent the input and output of the
model. In unsupervised learning, the hidden structure of the
data is explored, usually by clustering [9].

Reinforcement learning (RL) also refers to learning
problems. As Figure 2 represents the process, an agent takes
observations of the environment; then on the basis of that, it
executes an action (At). As a result of the action in the
environment, the agent will get a reward (Rt) and it can take
a new observation (Ot) from the environment and the cycle
is repeated. *e problem is to let agent learning so as to
maximize the total reward. Reinforcement learning concept
was introduced in ([4], Section 3.1). While in supervised and
unsupervised learning, the model fitting requires a complete
set of observations; in reinforcement learning, the learning
process is sequential.Reinforcement learning is based on the
reward hypothesis which states that all goals can be de-
scribed by the maximisation of expected cumulative re-
wards. Formally, the history is the sequence of observations,
actions, and rewards: Ht � O1, R1, A1, . . . , At−1, Ot, Rt.

781 from DB 2 from other source

783 a�er deduplication

695 screened 18 excluded

677 assessed 8 excluded w reason

669 inc. qualitative

601 inc. quantitative

Figure 1: PRISMA processing flow.
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A state contains all the information to determine what
happens next. Formally, state is a function of the history:
St � f(Ht). Let Gt denote the total discounted reward from
time-step t: Gt � Rt+1 + cRt+2 + . . . � ∑∞k�0 ckRt+k+1.

*e state-value function v(s) gives the expected total
discounted return if starting from state s: v(s) � E[Gt ∣
Stt � ns]. Policy covers the agent’s behaviour in all possible
cases, so it is essentially a map from states to actions. *ere
are two major categories in it: (1) deterministic policy:
a � π(s), (2) stochastic policy: π(a ∣ s) � P[At � a ∣ St � s].
*e action-value function qπ(s, a) is the expected return
starting from state s, taking action a, and then following
policy π: qπ(s; a) � Eπ[Gt ∣ St � s, At � a].

Practically, state-value function is a prediction of expected
present values (PV) of future rewards that allows evaluating the
goodness of states, so it is a map from states to scalars:
vπ(s) � Eπ[Rt+1 + cRt+2 + c2Rt+3 + . . . ∣ St � s]. *e optimal
state-value function v∗(s) is themaximum state-value function
overall policies: v∗(s) � maxπvπ(s). It is easy to find that in
case if an optimal state-value function is known that an optimal
action-value function and an optimal policy can be derived.

Reinforcement learning concept is based on stochastic
processes and on Markov chains. Markov property is fun-
damental of mathematical basis of reinforcement learning
methods. A state is Markov if and only if the P[St+1 ∣ St] �
P[St+1 ∣ S1, . . . , St] condition holds. By definition, a Markov
decision process (MDP) is a tuple of 〈S;A;P;R; c〉, where
S is a finite set of states,A is a finite set of actions, P is a state
transition probability matrix, Pa

ss′ � P[St+1 � s′ ∣ St � s, At �
a],R is a reward function,Ra

s � E[Rt+1 ∣ St � s, At � a], c is
a discount factor, c ∈ [0; 1], and t time-steps are discrete.
*e Bellman equation practically states that state-value
function of an MDP can be decomposed into two parts:
immediate reward and discounted value of successors states:
v(s � St) � Rt+1 + cv(St+1).

Environments can be distinguished by its observability.
Let us denote Sat as the agent’s state at time-step t and Set as the
environment’s state. Environment can be (1) fully observable
if the agent directly observes all states of environment
(Ot � S

a
t � S

e
t), or partially observable if the agent has indirect

observations (Sat � (P[S
e
t � s1], . . . ,P[S

e
t � sn])).

Figure 3 summarizes a classification of reinforcement
learning methods in tree structure. Further details of the
different RL methods are described in Appendix.

3. Overview of the Industry 4.0
Relevant Applications

In this section, we will present the hands-on references in
tabular format based on the results of our data cleansing

process and somemajor results of systematic literature analysis
that will highlight some general trends which is able to lead the
reader to a successfully applicable RL methods by preventing
the usage of inappropriate trials and hence shortening devel-
opment periods. In the final part of the section, we will present
a hands-on guideline to summarize the key conclusions.

3.1. Classification of Applications by Principle Captured.
*emain goal of this section is to give an overview what are the
principal captured problem types that reinforcement learning
was applied for and describe the major tools that gave an
impressive performance for each and every problem category
and finally to highlight some typical issues that needed to be
taken care of during the implementation.

By performing SKU analysis, we identified the most
relevant keywords that are assigned to a principle captured.
In Table 1, the associated publications are listed by principle
captured categories.

Furthermore, Figure 4 shows the principle captured classes
by reinforcement learning methods. Although the related
frequency table does not meet all the required criteria, in
Table 2, a χ2-test, calculation is presented, yet by principle
captured classes, it makes the identification of some significant
deviations from the overall distribution of RL methods
possible.

In the class of prediction, forecasting, and estimation,
planning value function approximation methods and
Markov decision processes are over-represented. *is
lets us to conclude that the complex methods in the
focus are less, which is fully in line with the goal to
understand better the behaviour of the environment
without strong optimization aims.
In the class of detection, recognition, prevention,
avoidance, and protection, the policy gradient methods
are over-represented, while MDPs are under-repre-
sented. *is shows us that researchers are interested
more in complex models with a higher predictive
performance than in basic solutions.
In the classes of evaluation, assessment and allocation,
assignment, and resource management, the multiagent
methods are more in focus, which tells us that this field
is on the way to distribute the tasks to lower level tools
instead of centralized data processes. But while in the
first class, the distribution of further RL methods fol-
lows the overall distribution, and in the second class,
the policy gradient methods are over-represented
which comes from the fact that allocation-related
problems prefer to create an optimal policy.
In the classes of classification, clustering and decision
making and scheduling, queuing, and planning, the
situation is opposite: multiagent methods are under-
represented, whichmeans that researches of these kinds
of operations are still focusing to a centralized solution.

In the class of control, the temporal-difference methods
and Markov decision process contractions and multi-
agent methods are over-represented, while complex
approaches, like policy gradient methods, are under-
represented.

reward

Environment

observation action

Agent

Figure 2: Reinforcement learning framework.
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Discussions of specific parts of RL solution design
problems occur in smaller number of cases, but these
kinds of publication demonstrate the fact that con-
structing an appropriate RL application is not always
trivial. We can highlight state space design
[12, 25, 33, 107, 144, 179, 193, 208, 217,

220, 222, 224, 227, 266, 267] and action space design
[109, 220, 246, 268], reward construction
[14, 76, 110, 199, 220, 226, 246, 269–273], and ex-
ploration strategy planning [86, 274] which can be
determinants from the whole application point of
view.

RLmethods

Multi-objective
RL

Multi-policy
approach

Single-policy
approach

Single-objective
RL

Model-based

Simulation-
based

DYNA-2

Temporal
difference search

Monte-Carlo
tree search

DYNA

Prioritised
sweeping

Model-free

Actor-critic Monte-Carlo Softmax

Policy-based
(Actor only)

Policy gradient

Vanilla

Natural
policy gradient

Eligibility traces

REINFORCE

Evolutionary
Algorithm

Value-based
(Critic only)

Temporal
difference (λ)

Temporal
difference SARSA

(On-policy
temporal

difference)

Q-learning

Monte-Carlo

Dynamic
programming

Asynchronous
dynamic prog.

Valuefunction
iteration

Policy iteration

Iterative Policy
Evaluation

Figure 3: Classification tree of reinforcement learning methods.
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Table 1: Publication reference by principle captured.

Principle captured Referred publications

Prediction, forecasting,
estimation, planning

[10–39]

Detection, recognition,
prevention, avoidance,
protection

[10, 29, 39–71]

Evaluation, assessment [18, 32, 54, 66, 72–81]
Classification, clustering [35, 42, 66, 69, 69, 81–95]
Decision making [11, 13, 17, 20, 21, 24, 38, 43, 61, 62, 66, 69, 82, 89, 93], [96–131]
Allocation, assignment,
resource management

[20, 22, 31, 32, 39, 45, 60, 65, 67, 70, 75, 78, 83, 87, 91, 96, 97, 99, 100], [103, 104, 113, 119, 121, 121, 125,
127, 130], [130, 131, 131–154], [154–156, 156–178], [179–196], [196–202]

Scheduling, queuing,
planning

[12, 19, 21, 24, 32, 72, 87, 88, 91, 93, 96, 99, 110, 113, 122, 125, 131, 150, 151, 160, 184, 188, 203–222]

Control
[12, 14, 15, 18, 23, 27, 31, 36, 37, 40, 56, 69, 70, 91, 93, 99, 101], [105–107, 111, 112, 122, 123, 129, 130],

[149, 150, 167–169, 171, 180], [188, 189, 199, 200, 205, 217], [223–245], [245–265]

Control

Decisionmaking 

Optimization

Utilization
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Resource management
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Figure 4: Distribution of RL methods by principal captured classes.
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3.2. Classification of Publications by Industrial Field of
Application. Similarly, as we have shown in Section 3.1, by
performing SKU analysis, we also identified the most rel-
evant keywords that are assigned to industrial fields. In
Table 3, the associated publications are listed by industrial
field categories.

Similarly, as we presented categories of principal cap-
tured, we also prepared Figure 5 that shows the industrial
field classes by reinforcement learning methods. Although
the related frequency table does not meet all the required
criteria, in Table 4, a χ2-test, calculation is presented, yet by
industrial field classes, it makes the identification of some
significant deviations from the overall distribution of RL
methods possible.

In the class of energy, solar, power, electric, the ap-
plications of Q-learning methods are over-represented,
while more basic methods and policy gradient methods
are under-represented
In the class of telecommunication, communication,
networking, internet, 5G, Wi-Fi, and mobile, the policy
gradient methods are over-represented and there is
a strong focus on the applications of edge computing
In the class of wireless, radio, antenna, and signal, the
applications of Markov decision processes are
highlighted
Similarly, in the class of vehicle, unmanned aerial
vehicle, drone, and aircraft, the applications of Markov
decision process are over-represented together with
policy gradient methods, while themultiagent solutions
are less discussed
In the classes of cyber-physical system, robot and
manufacturing, and factory, the basic dynamic
methods and Q-learning approaches are more popular

Finally, in the class of city and building, the multiagent
methods are over-represented

3.3. Classification of Publications by Mathematical Approach
of Application Methodology. Similarly, as we have shown in
the previous sections, we also performed the SKU analysis for
the third major dimension of keywords which is the meth-
odological approach of the solution. *e most relevant
keywords were identified, and then in Table 5. the associated
publications are listed bymethodological approach categories.

Although it is not feasible to summarize all the different
methodological approaches in details, we would like to
highlight some specialities of selected cases to demonstrate
how widely RL approaches are used and motivate re-
searchers to find a solution for their problems from a new
perspective.

As we described in Section 2, reinforcement learning
methods are based on Markov property and hence it is
fundamental to model the problems as Markov decision
processes (MDPs), which is far not trivial in several cases. By
formulating an MDP, we need to take care about state space
design, especially guaranteeing that a state representation
contains all the relevant information to evaluate a situation,
or with other words anytime, when the system is in the same
particular action, the environment will take its response by
the same characteristic for a particular action [96, 104, 191,
203, 313, 346].

Actor-critic methods are model-free learning methods
that learn both the optimal policy for taking an action and
the value function for most accurate evaluating of the
current state. Most of the publications discuss mainly dis-
tributed autonomous IoTdevice networks. In these cases, the
focus is shifted towards the learning and knowledge transfer
solutions:

Stochastic model of cloud-based IoT for fog computing
computation offload and radio resource allocation [97].

Centralized joint resource allocation solution for
handling shortage of frequency resources of cellular

Table 2: χ2-test table of principle captured classes by RL method types.

Principle captured
Markov
decision
process

Multiarmed
bandit

Dynamic
Temporal
difference

Value function
approximation

Policy
gradient

Multiagent
Edge

computing

Prediction,
forecasting,
estimation, planning

1.96 −0.58 0.12 −0.32 3.08 0.31 −0.39 −4.17

Detection,
recognition,
prevention, avoidance,
protection

−3.09 1.51 −1.11 −0.17
0.9988, 0.9782,
0.97850.39

0.9935,
0.8769,
0.87852.2

−1.38 1.65

Evaluation, assessment −0.82 0.63 −0.08 −0.62 −1.21 −0.6 2.96 −0.27

Classification,
clustering

−3.61 0.56 1.28 1.41 1.54 0.65 −2.88 1.05

Decision making 3.1 2.47 −0.84 1.73 0.95 0.02 −10.82 3.39

Allocation,
assignment, resource
management

−2.69 −1.95 0.21 −11.18 −4.74 2.08 10.54 7.74

Scheduling, queuing,
planning

2.17 −1.33 −2.17 1.24 1.61 −0.04 −2.63 1.16

Control 2.67 −1.34 2.35 7.52 −1.72 −4.93 4.27 −10.82
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systems by using a neural network embedded re-
inforcement learning algorithm [176].

Determining optimal sampling time for IoTdevices for
energy harvesting by saving batteries. Hence state space
contains continuous quantities, a linear function ap-
proximation was used and a set of novel features were
introduced to represent the large state space [349].

A bio-inspired RL modular architecture is able to
perform skill-to-skill knowledge transfer and called
transfer expert RL (TERL) model. Its architecture is
based on a RL actor-critic model where both the actor
and critic have a hierarchical structure, inspired by the
mixture-of-experts model [392].

Deep reinforcement learning-based cooperative edge
caching approach [338].

Multiple IoT devices are sending data parallel, but in
general, they do not provide additional information to
the existing knowledge. So, it is not necessary to per-
manently send data. By using actor-critic method, it
can be determined which data packages need to be sent
to prevent redundant or irrelevant communication
[221].

Mobile edge computing and energy harvesting
framework of centralized training with decentralized
execution by adopting MD-hybrid-AC method [120].

Asynchronous advantage actor-critic method for mobile
edge computing because computation offloading cannot
have good performance in many situations, but the
optimal algorithm can be chosen to use on IoTside [196].

Optimization of the robustness of IoT network to-
pology with a scale-free network model which has good
performance in random attacks. A deep deterministic

learning policy (DDLP) is proposed to improve the
stability for large-scale IoT applications [337].

IoT devices have lack of storage capacity, therefore
a jointly cache content placement and delivery policy for
the cache-enabled D2D networks was constructed. [17].

A federated reinforcement learning architecture was
presented where each agent working on its independent
IoT device shares its learning experience (i.e., the
gradient of loss function) with each other [237].

By applying multiagent methods, there are multiple ways
to organize learning:

Local learning and no centralized knowledge (see
Figure 6(a))

Local knowledge deployment, local learning, and
central knowledge collection

Local knowledge deployment and local learning with
knowledge transfer to close neighborhoods (see
Figure 6(b))

Local knowledge deployment and centralized learning
(see Figure 6(c))

3.3.1. Centralized and Federated Methods. As Internet of
things (IoT) services and applications are growing rapidly,
most of the current optimization-based methods lack a self-
adaptive ability in dynamic environments. To handle these
challenges, learning-based approaches are implemented
generally in a centralized way. However, network resources
may be over-consumed during the training and data trans-
mission process. To solve the complex and dynamic control
issues, a federated deep reinforcement learning-based

Table 3: Publication reference by industrial field of application.

Industrial field Referred publications

Energy, solar, power, electric

[14, 17, 18, 23, 31, 32, 37, 45, 51, 53, 70, 72, 75, 75, 80, 81, 83, 85, 88, 100],
[101, 107, 108, 118, 123, 133, 134, 136, 144, 145, 154, 159, 161, 165, 167, 168, 171],
[174–177, 179, 183, 188, 192, 198, 200], [204, 208, 210, 213, 216, 221, 222, 225–227],
[230–232, 234, 235, 240, 243, 246, 248, 252, 255, 257, 259], [264–266], [275–310]

Telecommunication,
communication, networking,
internet, 5G, Wi-Fi, mobile

[12, 17, 22, 28, 33, 35, 38, 39, 41, 45, 50, 50, 51, 65, 70, 72, 75, 75, 82, 83, 87, 88, 90], [91, 95, 100],
[102, 104, 106, 109, 112, 120, 121, 133, 134, 136, 137, 141–143, 145],

[146, 151, 157, 159, 160, 165–171, 174, 175],
[177–179, 181, 187, 188, 190, 196, 197, 200, 201, 203, 206, 207, 211, 214, 218, 223],

[234, 236, 239, 243, 245, 248, 252, 254, 258, 275, 277–279], [284, 286–292, 294, 297, 300],
[305, 306, 309–343]

Wireless, radio, antenna,
signal

[14, 18, 28, 32, 33, 38, 41, 45, 46, 51, 64, 68, 70, 72, 82, 83, 85, 86, 91, 94, 96, 100],
[102, 104, 106–109, 128, 131, 135, 136, 140, 141, 145, 151, 158, 160],

[164, 166, 168, 170, 173, 178, 179, 188, 191, 198, 200, 201, 203, 206, 207, 209, 215–218, 223, 230],
[234–236, 239, 243–245, 248, 248],

[251, 252, 254, 255, 257, 272, 275, 277, 279, 284, 286, 288, 293, 299, 300, 302, 304, 305, 307–309],
[311, 312, 315–318, 321, 323, 328–336, 340, 341, 343–351]

Vehicle, unmanned aerial
vehicle, drone, aircraft

[10, 68, 79, 90, 91, 151, 161, 170, 181, 183, 197, 217, 220, 223, 228, 229, 232, 244, 257, 259, 266],
[272, 277, 282, 299, 305, 309–311, 313, 320, 325, 336, 341, 352–354]

Cyber-physical system, robot
[15, 21, 43, 50, 56, 66, 69, 73, 74, 107, 109, 112, 122, 131, 149, 188, 189, 209, 224, 225, 229, 233],

[238, 241, 242, 247–249, 258, 264, 266, 268, 282, 288, 305, 350, 354–359]

Manufacturing, factory [19, 36, 69, 79, 93, 99, 123, 128, 149, 205, 209, 228, 247, 279, 347, 359–362]

City, building [18, 31, 45, 66, 140, 174, 201, 204, 213, 235, 244, 282, 292, 332, 340, 355, 363–368]
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cooperative edge caching (FADE) framework is presented.
FADE enables base stations (BSs) to cooperatively learn
a shared predictive model by considering the first-round
training parameters of the BSs as the initial input of the local
training and then uploads near-optimal local parameters to
the BSs to participate in the next round of global training [16].

Although the first researches have focused on designing
learning algorithms with provable convergence time, but
other issues, such as incentive mechanism, were explored
later: a deep reinforcement learning-based incentive
mechanism has been designed to determine the optimal
pricing strategy for the parameter server and the optimal
training strategies for edge nodes [147].

3.3.2. Hierarchical Methods. Hierarchical approaches are
applied primarily to solve communication channel or in-
formation processing capacity issues. *e model structure
usually follows the structure of the information path. In
a two-layer approach, a local IoT device needs to transfer
information to a local hub and then the local hub transmits
the collected information to the central decision maker. In
this case, separated models can be set up for both layers to
find optimal scheduling order for communication.

A new crowd sensing framework is introduced based on
hierarchical structure to organize different resources and it
is solved by using deep reinforcement learning-based
strategy to ensure quality of service [88]. A hierarchical

Energy

Solar

Power

Electric

Communication

Communication and networking

Internet

Telecommunication

5G

Wi-Fi

Mobile

Wireless

Radio

Antenna

Signal

Vehicle

Unmanned aerial vehicle

Vehicle-to-vehicle

Drone

Aircra�

Cyber Physical System

Robot

Manufacture

Factory

Manufactoring

Industry 4.0

Agriculture

Education

Healthcare

City

Building

Wearable

Game

0 20 40 60 80 100

Markov Decision Process

Dynamic Programming

SARSA

Centralized

Deep deterministic policy gradient

Deep reinforcement learning

Double deep Q-network

Multi-agent

Edge computing

Gradient Descent

Multi-armed Bandit

Q-learning

Deep Q-network

Actor-critic

Imitation

Distributed

Cooperative

(%)

Figure 5: Distribution of RL methods by industrial field classes.
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correlated Q-learning (HCEQ) approach is presented to
solve the dynamic optimization of generation command
dispatch (GCD) for automatic generation control (AGC)
[231]. An enhanced version of a bio-inspired reinforcement
learning modular architecture is presented to perform skill-
to-skill knowledge transfer and called transfer expert RL
(TERL) model. TERL architecture is based on a RL actor-
critic model where both the actor and critic have a hier-
archical structure, inspired by the mixture-of-experts
model, formed by a gating network that selects experts
specializing in learning the policies or value functions of
different tasks [392]. A new cloud computing model is

proposed that is hierarchically composed of two layers:
a cloud control layer (CCL) and a user control layer (UCL).
*e CCL manages cloud resource allocation, service
scheduling, service profile, and service adaptation policy
from a system performance point of view. Meanwhile, the
UCL manages end-to-end service connection and service
context from a user performance point of view. *e pro-
posed model can support nonuniform service binding and
its real-time adaptation using metaobjects by intelligent
service-context management using a supervised and re-
inforcement learning-based machine learning framework
[150]. A new cooperative resource allocation algorithm is

Table 5: Publication reference by methodological approaches.

Approach Referred publications

Markov
decision
process

[12, 23, 24, 37, 64, 70, 75, 84, 96, 100, 101, 104, 127, 130, 133, 138, 144, 153, 165, 167, 170, 177, 188, 191, 199],
[203, 207, 211, 212, 214, 217, 220, 231, 252, 256–259, 263, 264, 272, 274, 281, 291, 309, 313, 320, 340, 343, 346], [369–376]

Multiarmed
bandit

[61, 66, 102, 198, 351, 377, 378]

Dynamic
programming

[16, 19, 27, 52, 68, 70, 84, 90, 93, 107, 119, 120, 132, 135, 141, 145, 155, 156, 161, 162, 189, 191, 198, 201, 207],
[209, 212, 222, 236, 242, 247, 254, 258, 259, 278, 280, 288, 289, 304, 306, 313, 321, 331, 340, 347, 357, 371, 372, 379, 380]

Q-learning
[10, 17, 24, 44, 47, 50, 64, 68, 70, 80, 81, 83, 91, 92, 94, 101, 110, 116, 124, 125, 127, 129, 133, 145, 152, 172, 179],
[180, 183, 187, 201, 203, 205, 206, 208, 210, 212, 215, 219, 222–225, 227, 231, 242, 244, 246, 248, 250, 254, 262],

[264, 280, 282, 283, 291, 294–296, 321, 326, 327, 343, 347, 353, 356, 366, 367, 372, 374, 381–386]
SARSA [14, 127, 240, 246, 280, 384]
Deep Q-
network

[17, 47, 83, 99, 125, 133, 190, 210, 254, 291, 294, 347, 387]

Deep
deterministic
policy gradient

[229, 260, 338]

Gradient
descent

[26, 28, 216, 388]

Deep
reinforcement
learning

[19, 20, 32, 41, 47, 50, 60, 75, 77, 84, 88, 90, 95, 98, 100, 103, 117, 131, 134, 147, 154, 159, 165, 168, 176, 179, 182],
[193, 199, 201, 207, 210, 220, 221, 223, 236, 241, 260, 261, 273, 275, 281, 294, 299, 301, 302, 305, 309, 311, 317, 323, 333, 338, 341, 346, 352,

355, 361, 363, 375, 380, 389–391]
Actor-critic [15, 17, 33, 97, 120, 176, 196, 221, 237, 337, 338, 349, 392]
Double deep Q-
network

[47, 83, 125, 210, 254, 294, 387, 393]

Imitation [226, 265, 355]

Multiagent
[32, 60, 70, 77, 103, 145, 163, 168, 173, 175, 176, 188, 195, 200, 209, 218, 219, 225, 231],

[245, 251, 263, 267, 280, 289, 323, 330, 338, 344, 361, 367, 377, 394, 395]
Distributed [45, 56, 60, 73, 91, 119, 133, 145, 187, 261, 282, 348, 394]
Centralized [60, 147, 187, 243, 296]
Cooperative [16, 81, 170, 200, 338, 344]
Collaborative [45, 137, 174, 196, 237, 248, 325, 381, 396]

Table 4: χ2-test table of industrial field classes by RL method types.

Principle captured
Markov
decision
process

Multiarmed
bandit

Dynamic
Temporal
difference

Value function
approximation

Policy
gradient

Multiagent
Edge

computing

Energy, solar, power,
electric

0.52 1.7 −12.77 21.87 0.94 −11.54 2.05 −2.77

Communication,
networking, internet, 5G,
Wi-Fi, mobile

−8.61 −3.51 6.29 −18.79 2.23 13.24 −3.14 12.29

Wireless, radio, antenna,
signal

5.77 3.07 −1.73 −6.62 1.33 −1.76 2.68 −2.73

Vehicle, unmanned aerial
vehicle, drone, aircraft

8.44 −1.39 −2.32 −2.89 −2.49 5.9 −6.94 1.68

Cyber-physical system,
robot

−1.75 0 8.14 3.86 −2.23 −2.14 1.97 −7.86

Manufacturing, factory −3.33 −0.55 4.16 1.36 1.23 −2.54 1.52 −1.84
City, building −1.05 0.69 −1.77 1.21 −1.01 −1.17 1.87 1.23
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presented which couples reinforcement learning networks
and prediction neural networks for accurate mobile targets
tracking. Specifically, a hierarchical structure that performs
collaborative computing is designed for alleviating com-
puting pressure of front-end devices which are supported
by edge servers [397]. A slightly different approach is
applied at a resilient control problem studied for cyber-
physical systems (CPSs) under the denial-of-service (DoS)
attack. *e term resilience is interpreted as the ability to be
robust to the physical layer external disturbance and
defending against cyber layer DoS attacks.*e overall resilient
control system is described by a hierarchical game, where the
cyber security issue is modeled as a zero-sum matrix game,
and physical minimax control problem is described by a zero-
sum dynamic game. In virtue of the reinforcement learning
method, the defense/attack policy in the cyber layer can be
obtained, and additionally, the physical layer control strategy
can be obtained by using the dynamical programming
method [398]. Further publications in hierarchical RL topics
are related to balancing timeliness and criticality when
gathering data from multiple sources [116], ubiquitous user
connectivity, and collaborative computation offloading for
smart cities [248].

3.3.3. Distributed and Parallel Methods. It can be stated with
certainty that the biggest potential of industrial applications is in
intelligent devices. In this context, intelligence means some kind
ability for taking autonomously decisions and furthermore being
able to perform learning steps locally. *ere were made sig-
nificant efforts to develop functional solution to reach this goal.

Computation offloading can provide a solution for the
issue of the high computation requirement of resource-
constrained mobile devices. *e mobile cloud is the well-
known existing offloading platform, which is usually far-end
network solution, but this can cause other issues, such as
higher latency or network delay, which negatively affects the
real-time mobile Internet of things (IoT) applications.
*erefore, a deep Q-learning-based autonomic management
framework is proposed as a near-end network solution of
computation offloading in mobile edge [133].

Another way to extend single reinforcement learning
applications is to handle multiple objectives. *ere are two
major solution practices to handle such kind of problems.
*e most obvious idea is to construct a mixed reward
function that returns a combined result according to the
different objectives [161, 259, 370]. Another possible way is
to combine multiobjective ant colony optimization methods

Environment

Agent Agent Agent

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n

Policy improvement

(a)

Environment

Agent

Agent

Agent

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n

Observation sharing

(b)

Environment

Agent Agent Agent

Central controller

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n

O
b

se
rv

at
io

n

Policy sharing

(c)

Figure 6: Cooperation concepts of multiagent learning systems. (a) Full local learning. (b) Knowledge sharing. (c) Centralized learning.
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with RL techniques like deep reinforcement learning or
double Q-learning algorithms [83, 142].

3.4. General Trends of RL Applications. Before the beginning
of Industry 4.0 revolution, the general methodology was

based on centralized data collection, data processing, and
predictive model development solutions. By spreading In-
ternet of things (IoT) devices, it turns possible to delegate
more computational task to them.*is kind of potential gets
being exploited by reacting to another major issue which is
the lack of communication capability. On the one hand, the

Yes

Q-01:State space is defined
according to Markov property?

No

C-01: If no, then it is necessary to rework state space definition.

Q-02: Action space is defined by taking
care about agent’s potential reactions?

Yes

R-02: Only the feasible actions need to be involved into the action space to simplify it, which can
significantly speed up learning convergence. Furthermore, the effects of an action in a particular

state should be based on the same deterministic or stochastic behaviour.

Yes

Q-03: Is there any reason that
blocks to perform simulation?

No C-03: Applying a virtual environment is usually the most cost e cient option, but it can be
only as accurate as the virtual environment is. �at lets the model-based methods to the ones

with the highest potential. To do this there ward function and the state transitions need to
be defined. (In some cases a regular cross-validation to the real environment can be used.)

Yes

Q-04: Is it feasible to run trial-
and-error learning process?

No Q-05: Is it possible to learn
from external experience?

Yes No

Q-06: State and action space sare both
discrete with a small number of possible values?

R-06: �e complexity of potential space state and possible action combination strongly determines
the applicable RL methods.�ere are naturally discrete problem types and situations when the

state definition becomes to discrete because of measurement limitations.
Yes No

C-07: Complete updates would be too computation in-
tensive, hence approximator functions are required.

Q-07: Reward values are available im-
mediately a�er actions were made?

R-07: �ere are situations when the results of an action can be processed immediately, but in
other cases the rewards depend on a complete sequence of actions and can be determined only at

the end of the episode.
Yes No

C-09: Learning steps can be performed only at the end of the episodes.

Q-08: �e length of the episodes are limited?

Yes No

C-10: Learning steps need to be performed step by
step a�er receiving rewards of each and every action.

Q-09: �ere are only a single RL
agent or separated multiple ones?

No

C-08: Full optimal value-functions and/or policy can be determined.

R-01: Reinforcement learning methods exploit Markov property, hence it needs to ensure that
each and every potential states contain all the relevant information that can have any influence on

the outcomes, so on the rewards and on the state transitions.

R-03: If the rewards and the state transitions can be determined (in deterministic environment)
or can be simulated (in stochastic environment), then the learning process can be done in a virtual

environment.

R-05: Even if it is usually quite limited, but it is also an option for learning to observe
an external system in use.

C-11: Multi-agent solutions are suggested. �ere are techniques with centralized knowledge
sharing methods and also with distributed methods depending on problem properties.

C-04: RL methods require to learn from own experience or to observe an environment in
use with rewards and state transitions. If these are both not feasible, RL cannot be an option.

R-09: Sharing the knowledge and experience between RL agents can improve the learning
performance, but it is not applicable in single agent and in separated setups.

R-08: In some cases the episodes can be taken extreme long or it cannot be guaranteed that
episodes end within a limited time period.

R-04: If an RL agent is able to decide on the next action and hence to discover unknown or
undervalued actions, then trial-and-error learning process can be an option.

No

C-02: If no, then it is suggested to rework action space definition.

C-05: Only off-policy methods can be applied.

C-06: On-policy methods can be also applied.

Figure 8: Guideline process to determine appropriate RL method to use.
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communication between IoT devices and central servers or
nodes are relative energy intensive processes; on the other
hand, there are significant limitations on communication
channels or frequencies.

By distributing computational tasks to IoT devices, a fun-
damental change gets required: it is not possible to assign as
much human effort to data processing and predictive model
development supervision as before during the centralized era.
*is was the major reason of appreciating RL methods because
it provides a general self-learning framework that basically
requires no manual or human interactions to maintain.

*e early researches focused on the applicability of re-
inforcement learning techniques with single agents. *en,
more and more complex problems were solved, and the
multiagent solutions started to analyze. In the last years, the
focus of the researchers is shifting to multiagent structures.
*e set-up of the agents and their goals or reward functions
are showing very creative solutions. At a new wave of re-
searches, the agents are defined with different roles often
with attacker-defender objectives and let each of the agent to
be trained an optimal strategy according to it. *en, the
stability and robustness of the system can be analyzed and
the weakest items can be purposefully improved.

As Figure 7 demonstrates, the number of Industry 4.0-
related reinforcement learning-based researches dynamically
increases, and there is no sign for expecting a slowing in it.

3.5. Discussion and Guideline Process to Determine Appro-
priate RL Method to Use. On the basis of the previous
section, it can be highlighted that there are several ways and
methods how reinforcement learning can be applied for
Industry 4.0-related problems, and it is far not trivial which
one can provide a successful solution.

We prepared a questionnaire and we presented it in
a decision flow diagram in Figure 8. Our primary goal was to
set up a method to help the readers in formulating their RL
tasks. *e first questions of the questionary-based process
verify whether state and action spaces are appropriately
defined and how the reward can be obtained. *e further
questions systematically narrow down the set of applicable
RL methods. *e possibility of using simulation or learning
from own experience can determine the general learning
mechanism. In contrast, the nature of reward propagation
can determine a smaller subset of the RLmethods that can be
applicable. Even if the conclusions are soft-defined, a user
with some basic knowledge of RL methods can easily in-
terpret them, or it can be a basis of some RLmethods selector
wizard. We believe that researchers will have fewer failed
attempts by using our guideline, and the time-to-solution
can be reduced significantly.

We should keep in mind that the whole reinforcement
learning concept is based on Markov decision processes. A
direct conclusion is that the state space should be con-
structed in a way that all the potential states should contain
all the relevant information that can have any influence on
the outcomes. Moreover, the action space should be con-
structed similarly: the effects of an action in a particular state
should be based on the same deterministic or stochastic

behaviour. *is will let the RL agent to learn the effect
mechanism behind.

Once the state and action spaces are defined, it needs to be
investigatedwhether performing simulations is an option or not.
If we are able to determine the environment’s behaviour when
an action is made in a particular state, so deriving the reward
value and the state transition, then an extensive learning process
can be executed by using model-based RL methods in a cost-
efficient way without significant risk of applying untrained
agents. *e general rule is also true in this case: the RL solution
will be as adequate as the simulation is. If there is an option to
validate the simulation outcomes to the real environment, then
this can help to ensure the validity of the solution.

4. Conclusions

As we pointed out that reinforcement learningmethods have
a high potential also in Industry 4.0 applications which is
a common agreement of researchers, one of the biggest
reasons behind is that smart tools require a high level of
optimizations which cannot be satisfied with human in-
terventions. *is continuously raises the demand of self-
learning solutions, and RL techniques have been proven
their efficiency at multiple fields. A major goal of our article
was to give an overview of RL applications at the field of
Industry 4.0. As a first step, we served a high-level overview
of the general RL framework and a classification of RL
methods to easily see through the possibilities, while we also
presented a more detailed summary of the most widely used
RL methods of Industry 4.0 applications in Appendix.
*erefore, our publication can serve a starting point of
further researches for RL applications.

*en, we highlighted the results of our systematic literature
overview of reinforcement learning applications at the field of
Industry 4.0. An extensive keyword analysis drove us to
identify some typical patterns by choosing an adequate RL
method for some particular combinations of principal captures
and industrial fields. Although there are no unique optimal RL
methods, there are RL methods that provide efficient solution
for some problems. Our summary can be used as a hands-on-
reference for further researches and it can help researchers to
shorten the preparation time for their researches.

Furthermore, we prepared a questionnaire that provides
a methodology to set up the reinforcement learning system in
a proper way and to choose an appropriate method for the
learning problem that the researcher is facing to.We believe that
an extension of our questionnaire can be a basis of a wizard tool
that enables the user to find the most fitting RL method for the
learning task and guiding through the set-up processes. On the
other hand, by knowing the key properties of the different RL
methods, it becomes faster to adopt an existing one or tomodify
it to fit the specific needs and hence develop an own RLmethod.

We hope that our article lets the researchers strengthen to
decide using RLmethods for further applications as numerous
successful applications show the high efficiency of them.

Appendix

In Appendix, we will describe one by one the major methods
of reinforcement learning by highlighting their properties
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and evolutionary stages by following David Silver’s approach
from the simplest ones to the more complex ones.

A. Dynamic Programming

Dynamic programming (DP) covers a decision process by
breaking it down into a sequence of elementary decision steps
over time. “Dynamic” refers to the sequential approach, while
“programming” refers to its optimization objective.

In this section, all the methods work with the assumption
that the environment is perfectly known. Iterative policy
evaluation method is described for learning state-value
function of a given policy Π, then value iteration method is
used to determine optimal state-value function although
actions are taken according to any given policy Π, and last
but not least, policy iteration is presented to derive an
optimal policy to the environment.

In general, there is limited usage of dynamic pro-
gramming algorithms both because of its assumption to
know the environment perfectly and its high computational
requirements. On the other hand, dynamic programming
methods provide the essence of ideas that are used in ad-
vanced methods in an easily understandable form.

Iterative Policy Evaluation. Let us assume that a policy π
is given and actions are taken according to it. *e goal is to
determine state-value function vπ by iterative application of
Bellman backup: v1⟶ v2⟶ . . .⟶ vπ . At each and
every iteration steps, the state-value function should be
updated in the following way:

vk+1(s) � ∑
a∈A

π(a ∣ s) R
a
s + c ∑

s′∈S
Pass′vk s′( ) . (A.1)

*e second term shows the cumulative rewards from
state s by taking action a and applying a single Bellman
decomposition while the first term provides the probability
of taking action a by following policy Π. It can be proven
that with weak conditions, the proposed state-value function
update will converge to vπ(S) ([4], Section 4.2).

Value Iteration. Iterative policy evaluation method can
be extended to find an optimal state-value function v∗(s).
*e main idea behind that iteration should be done by
starting from the final reward and working backward. Let us
assume that the solution of subproblem v∗(s′) is known.
*en, by the solution of the next iteration step, v∗(s) can be
found by one-step look-ahead:

v∗(s)←maxa∈A R
a
s + c ∑

s′∈S
Pass′v
∗ s′( ) . (A.2)

It can easily be seen that for finite state space S, the de-
termination of optimal state-value function for all the available
states can be done in finite number of steps ([4], Section 4.4).

Policy Iteration. *e iteratively learnt knowledge can be
extracted by improving the policy by acting greedily with
respect to vπ∗ . *is practically means to pick that action a
from a particular state s which maximizes the sum of im-
mediate reward ras and discounted state-value cvπ∗(s′) of the

successor state s′ ([4], Section 4.6). *e learning process of
policy iteration is demonstrated on Figure 9.

B. Model-Free Prediction Methods

Unlike in dynamic programming, in model-free methods,
perfectly known environment is not necessary, only expe-
rience samples are required or with other words just se-
quences of states, actions, and rewards, no prior knowledge
of the environment.

In this section, Monte-Carlo learning method is presented
for learning simply by averaging the experience, and then
temporal-difference learningmethod is discussed to let the agent
learn by more frequent but smaller steps by applying boot-
strapping techniques, while temporal-difference (λ) learning
method is described as an extension of temporal-difference
method’s one-step learning to multiple-steps learning.

Monte-Carlo Learning. Monte-Carlo (MC) agent solves
the reinforcement learning problem by applying average
sample return, so it learns from complete episodes. Hence, it
needs to be guaranteed always to terminate episodes; oth-
erwise, the learning process cannot be performed. MC uses
the simplest idea by assigning empirical mean of returns to
a specific state ([4], Section 5.1).*ere are twomajor types of
MC methods:

First-visit MC: only the first visit of a state will be
involved into the calculation during an episode. Let us
assume that state s is visited first time at time period t.
Let us denote Gt as the total return from time period t
and N(s) the number of times that state s is visited
while S(s) is the sum of Gt returns up to the current
episode. In this case, the state-value estimate will be the
empirical mean: V(s) � S(s)/N(s). As experience
grows, so as N(s)⟶∞, the long-term mean will
converge to the state-value function: V(s)⟶ vπ(s).

Every-visit MC: all the visits of a state will be involved
into the calculation during an episode. Formally, the
main difference to first-visit MC is that N(s) needs to
be incremented at every time period t whenever state s
is visited.

From computational point of view, it is important to
mention that empirical mean is determined incrementally in
practice. Let us denoteV(n)(s) as the value-function estimate
while S(n)(s) is the cumulative sum of returns after episode n,
then G(n)t is the total return in episode n from time period t
when state s is visited and assume that state s is visited kth
times overall.

V(n)(s) �
1

k
S(n)(s) �

1

k
∑n
i�1

S(i)(s) �
1

k
∑n−1
i�1

S(i)(s) +
1

k
G(n)t

��
1

k
(k − 1)V(n− 1)(s) +

1

k
G(n)t � V(n− 1)(s)

+
1

k
G(n)t − V(n− 1)(s)( ).

(A.3)

Figure 10 demonstrates the learning process of Monte-
Carlo method. As we can see, the learning step is performed
at the end of an episode.
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Temporal-Difference Learning. Temporal-difference
(TD) agent learns from incomplete episodes by applying
bootstrapping. Comparing to MC learning, TD uses best
guess of total return, or formally Rt+1 + cV(St+1) instead of
episodic experience Gt to calculate value function estimates
(V(s)). *is single difference indicates that TD agent can
perform a learning step after each and every actions ([4],
Section 6.1), as Figure 11 shows. As a consequence, it can be
applied at never ending episodes.

Temporal-Difference (λ) Learning. *ere are in-
termediate solutions between TD that performs VF estimate
updates after 1-step return and MC that performs updates
only at the end of an episode (practically∞-step return).*e
main idea behind is to apply normalized geometric series
(1 − λ)λn− 1 for weighting n-step returns G(n)t ([4], Section
7.1). In this case, value function estimate will use a weighted
total return of Gλ

t � (1 − λ)∑∞n�1 λn− 1G(n)t . It can be shown
that TD(0) is equivalent to every-visit MC learning and
TD(1) is equivalent to original TD learning methods. Fur-
thermore, TD (λ)methods can be applied both forward and
backward. *e algorithms shown in this section can be used
whether

In offline mode: value function estimate updates are
accumulated within episodes but applied only at the
end of the episode, or

In online mode: value function estimate updates are
accumulated within episodes and can be applied
immediately.

A unified view of model-free prediction techniques is
shown in Figure 12. First, it was created by Richard Sutton,
but this version is prepared by David Silver. It highlights the
two most important dimensions of learning methods: the
vertical dimension represents the depth of the updates, while

the horizontal dimension represents the width of the
updates.

C. Model-Free Control Methods

In the previous section, model-free prediction methods were
summarized. *ese are methods that learn from other’s
experience so acting policies were managed from the ex-
ternal and called off-policy learning. In contrast, on-policy
learning lets the algorithm to make actions on the basis of
their own policy. Hence, a major objective steps to the front,
to optimize policy.

In this section, ϵ-Greedy policy iteration is described to
combine exploitation of the current knowledge of optimal
decisions and exploration of unknown new potentials.
Furthermore, on-policy temporal-difference control method
known as SARSA method is presented by applying boot-
strapping techniques to speed-up the learning process.
ϵ-Greedy Policy Iteration Control. ϵ-Greedy policy iter-

ation covers a combined solution. On the one hand, MC
method is applied to learn the action-value function Q(s; a).
On the other hand, the agent can act greedily which means
that it will choose the most optimal action on the basis of the
actual action-value function Q(s; a). *is kind of action
policy exploits only the current experience and does not
support to explore alternatives. With a small change in the
strategy, this kind of issue can be solved: let the agent act
randomly with probability ϵ and greedily with probability
(1 − ϵ) ([4], Section 5.4):

π(as) �

1 − ϵ + ϵ
m
, if a � argmaxa′∈AQ s, a′( ),

ϵ
m
, otherwise.

 (A.4)

π V

π* V*

evaluation:V Vπ

improvement: π greedy (V)

…

Figure 9: Learning by policy iteration method.

State S1 State S2 State St State Sn
Action A1 Action A2 Action An-1

Value function
update

next episode

… …

Figure 10: Monte-Carlo learning method.
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On-Policy Temporal-Difference Control Method, Aka
SARSA Method. Similar to model-free prediction methods,
there is also an algorithm to let agent learn from incomplete
episodes by applying bootstrapping ([4], Section 6.4). In this
case, ϵ-Greedy policy iteration method needs to be modified
in the following way: instead of using MC method, TD
learning should be applied for learning the action-value
function Q(s; a) that makes possible to perform a learning
step after each and every actions and acting according to the
most updated action-value function in a similar way than at
ϵ-greedy policy iteration. *e SARSA name comes from an
acronym: state s⟶ action a⟶ reward r⟶ state
s′⟶ action a′. By following SARSA method, action-value
function update should look like
Q(s; a)←Q(s; a) + α(r + cQ(s′; a′) − Q(s; a)). It can be
proved that under certain conditions, SARSA action-value
function converges to optimal action-value function:
Q(s; a)⟶ q∗(s; a).

D. Off-Policy Learning

*ere are several situations when the learning process is not
based on just own experience. Formally, this means that
target policy π(a ∣ s) or state-value function vπ(s) or action-
value function qπ(s; a) is determined by observing results of
an external behaviour policy μ(a ∣ s).

In this section, importance sampling is shown to de-
termine the most accurate of the learning objective, and then

Q-learning is described as an effective alternative to get the
function iteration with a lower variance.

Importance Sampling. One possible way to handle the
difference of target and behaviour policy is importance
sampling when a correction multiplier shall be applied by
processing observations ([4], Section 5.8). If MC learning is
combined with importance sampling, then value function
update will look like (St)←V(St) + α(G

π/μ
t − V(St)). But

because corrections are made at the end of an episode, the
product of multipliers can drive to a dramatically high
variance and hence MC learning is not suitable for off-policy
learning.

*erefore, TD learning seems much more adequate to
combine with importance sampling, because correction
multiplier should be applied for only a single step and not for
a whole episode:

St( )←V St( ) + α
π At ∣ St( )
μ At ∣ St( ) Rt+1 + cV St+1( )( ) − V St( )( ).

(A.5)

Q-Learning. Another possible way to handle the difference
of target and behaviour policy is to modify the value function
update logic as Q-learning does ([4], Section 6.5). Assume that
in state St, the very next action is derived by using behaviour
policy: At+1 ∼ μ(· ∣ St). By taking action At+1, immediate re-
ward Rt+1 and the next state St+1 will be determined. But for
value function update, let us consider an alternative successor
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backups
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backups
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programming

Temporal
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Exhaustive
search
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Deep
backups

bootstrapping, λ Shallow
backups

Figure 12: Unified view of model-free prediction techniques.

State S1 State S2 State St State Sn

Value function
update

Value function
update

Value function
update

next episode

Action A1 Action A2 Action An-1
… …

Figure 11: Temporal-difference learning method.
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action on the basis of target policy: A′ ∼ π(· ∣ St). *erefore,
the importance sampling will be not necessary and Q-learning
value function update will look like Q(St;At)⟵
Q(St;At) + α(Rt+1 + cQ(St+1;A′) − Q(St;At)).

In a special case, if target policy π is chosen as a pure
greedy policy and behaviour policy μ follows ϵ-greedy policy,
then the so-called SARSAMAX update can be defined as
follows:
Q(S;A)←Q(S;A) + α(R + cmaxa′Q(S′; a′) − Q(S;A)).
Last but not least, it was proven that Q-learning control
converges to the optimal action-value function:
Q(s; a)⟶ q∗(s; a).

E. Value Function Approximation

*e reinforcement learning methods discussed in the pre-
vious sections represented value functions by lookup tables,
but in practice, it is not feasible operating with state-level or
state-action-level lookup tables. On the one hand, it would
be very memory- and computation-intensive, and on the
other hand, the learning process would be too slow if the
state and/or action spaces are large. *e solution for large
problems is to estimate state-value and action-value func-
tions with function approximation: v̂(s;w) ≈ vπ(s), and
similarly, q̂(s; a;w) ≈ qπ(s; a).

*ere are many kinds of function approximation
methods that can be applied: linear combination of features,
neural network, decision tree, and Fourier bases. In this
section, the first two types of methods are discussed.*e first
gradient descent method is presented that can be effectively
combined with Monte-Carlo or temporal-difference
methods for value function approximations, and then deep
Q-network is described that serves a more sample-effective
way from learning.

Value Function Approximation by Gradient Descent. A
well-known tool for function approximation is gradient
descent ([4], Section 9.3). Let us denote J(w) as a differ-
entiable function of parameter vector w. Define the gradient
of J(w) as ∇wJ(w) � (zJ(w)/zw1, . . . , zJ(w)/zwn, )

T. To
find a local minimum of J(w), parameter w needs to be
adjusted in the direction of negative gradient by
Δw � −1/2α∇wJ(w) where α is the learning step-size
parameter.

An effective solution is to use gradient descent with
linear combination of features, because in this case, the
formulas become much simpler. Value function repre-
sentation will look like v̂(S;w) � x(S)Tw � ∑ni�i xi(S)wi,
while objective function to minimise mean-squared error
between true value function and its approximation can be
calculated by the formula of J(w) � Eπ[(vπ(S) − x(S)Tw)2].
It is proven that stochastic gradient descent with linear
combination of features converges to global optimum.
Furthermore, the update rule is quite simple:
∇wv̂(S;w) � x(S), and then Δw � α(vπ(S) − v̂(S;w))x(S).
*e result shows that parameter w adjustment stands for
three components: learning step-size, prediction error, and
feature value. In practice, the true value function is usually
not known but a noisy sample of it is known at different
methods:

For MC method, the target is Gt and hence parameter
update Δw � α(Gt − v̂(St;w))∇wv̂(St;w).
For TD(0) method, the target is the TD target Rt+1 +
cv̂(St+1;w) while parameter update

Δw � α Rt+1 + cv̂ St+1;w( ) − v̂ St;w( )( )∇wv̂ St;w( ).
(A.6)

For TD (λ), the target is λ-return Gλ
t and parameter

update Δw � α(Gλ
t − v̂(St;w))∇wv̂(St;w).

Whichever method is chosen, the RL learning process
needs to update the value function approximation with the
same frequency than at the original method.

Deep Q-Network. Even if gradient descent-based value
function approximation methods can be very calculation-
effective and updates can be managed incrementally, these
are less sample-effective which means that the information
that could be extracted from an observation will be not
necessarily exploited.

*ere are batch methods that are working with expe-
rience replay. Preliminary all the observed experiences
should be collected. Let us denote D as the consisting ex-
perience of state-value pairs: D � 〈〈s1; v

π
1〉, . . . , 〈sn; v

π
n〉〉.

Artificial observations can be generated by random sampling
from experience history: 〈s; vπ〉 ∼ D. *erefore, stochastic
gradient descent can be applied on it:
Δw � α(vπ − v̂(s;w))∇wv̂(s;w). In this way,wπ converges to
optimal least square solution.

One of a most commonly used RL methods was born by
combining experience replay and Q-learning with period-
ically frozen target policy:

(1) By using behaviour policy, action at can be taken
according to ϵ-greedy policy

(2) Transitions should be stored in replay memory D as
〈st, at, tt+1, st+1〉

(3) *ere can be generated random mini-batch samples
of transitions (s, a, r, s′) from D

(4) On the basis of them, Q-learning targets will be
determined by using fixed parameters w−

(5) Minimise mean-squared error between Q-network
and Q-learning targets:

Li wi( ) � Es,a,r,s′ ∼ Di
r + cmaxa′Q s′, a′, w−i( )([

− Q s, a, wi( ))2].
(A.7)

F. Policy Gradient

In contrast to value-based methods where optimal action
can be determined on the basis of learnt value function in
a particular state, policy gradient methods approximate
directly the optimal policy: πθ(s, a) � P[a ∣ s, θ].

It is necessary for an objective function J(θ) to measure
the goodness of fitting policy πθ to the optimal policy. In this
case, policy-based RL becomes an optimization problem to
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find optimal θ according to J(θ). *ere are methods that use
gradient as gradient descent, conjugate gradient, or quasi-
Newtonmethod and there are methods that do not use as hill
climbing, simplex, or genetic algorithms. In general, these
kinds of methods show better convergence properties and
can work effectively with high-dimensional or continuous
action spaces, and last but not least, they can learn stochastic
policies. On the other hand, policy gradient methods typi-
cally converge to a local rather than global optimum. It is
important to highlight that value functions can be also used
to learn the optimal θ parameter, but once it is learnt, value
functions are not necessary to select optimal action.

Softmax. Let J(θ) be a policy objective function. Policy
gradient descent algorithms search for a local optimum in
J(θ) by ascending the gradient of the policy: Δθ � α∇θJ(θ).
By assuming that policy πθ is differentiable and its gradient is
∇θπθ(s, a), likelihood ratios can be transformed to the
following form: ∇θπθ(s, a) � πθ(s, a)∇θπθ(s, a)/πθ(s, a) �
πθ(s, a)∇θlog πθ(s, a), where ∇θlog πθ(s, a) is called score
function.

Softmax policy method is based on the approach of
weighting actions by using linear combinations of features
ϕ(s, a)Tθ ([4], Section 13.2). *erefore, the probabilities of
actions are proportional to exponentiated weights:
πθ(s, a)∝ eϕ(s,a)

Tθ. *e score function looks like
∇θlog πθ(s, a) � ϕ(s, a) − Eπθ

[ϕ(s, ·)].
Gaussian/Natural Policy Gradient. In continuous action

spaces, Gaussian policy is a natural option. In this case, the
mean is a linear combination of features: μ(s) � ϕ(s, a)Tθ.
By fixing variance as σ2, the policy will be Gaussian:
a ∼ N(μ(s), σ2). *e score function will look like
∇θlog πθ(s, a) � 1/σ2(a − μ(s))ϕ(s).

Monte-Carlo Policy Gradient Method Aka REINFORCE.
Monte-Carlo policy gradient method or with more popular
name the REINFORCE algorithm updates θ parameter by
using stochastic gradient ascent. It is strongly based on-
policy gradient theorem that generalizes likelihood ratio
approach to multistepMDPs by replacing immediate reward
rwith long-term values ofQπ(s, a)with weak restrictions on
J(θ). *e key idea behind that the locally optimal policy can
be found by gradient ascent on the objective function as
follows: θt+1←θt + α∇θtlog πθt

(st, at)vt, where vt is an un-
biased sample of Qπ

θt
(st, at).

Actor-Critic Policy Gradient. In practice, REINFORCE
still has high variance. To handle it, action-value function
can be also estimated:Qw(s, a) ≈ Qπθ(s, a). In this way, there
are two sets of parameters:

Critic: it updates action-value function parameters w

Actor: it updates policy parameters θ according the
actual version of critic

Updates should be done at each elementary steps as
follows:

Sample reward: r �R
a
s

Sample transition: s′ ∼ Pas
Sample action: a′ ∼ πθ(s, a′)
δ � r + cQw(s′, a′) − Qw(s, a)

θ � θ + α∇θlog πθ(s, a)Qw(s, a)

w⟵w + βcϕ(s, a)

s⟵ s′
a⟵ a′

G. Model-Based Methods

Model-free methods learn value function and/or policy
directly from their experience of a real environment. *e
accuracy of the knowledge of RL can be raised by extending
the experience collection process. *is can be reached either
by setting up an artificial virtual environment due to de-
fining reward and state transition functions that describes
the real environment well or by building an own model that
approximates the real environment by learning its history.

If it is assumed that the state space S and action spaceA
are known, then modelM � 〈Pη;Rη〉 is a representation of
MDP 〈S;A;P;R〉 if St+1 ∼ Pη(St+1 ∣ St, At) and
Rt+1 �Rη(Rt+1 ∣ St, At). Learning model from experience is
a supervised learning problem. Figure 13 presents the basic
concept of model-based learning methods.

First, the model should learn and therefore an internal
simulation environment can be defined. *en, using the
model representation, the model-free RL methods can be
used. So, model-based techniques differ from model-free
techniques by using internal model representation to derive
rewards and state transitions.

H. Multiagent Learning Systems

At Industry 4.0 applications, usually not a single RL agent is
set up, but multiple ones. Multiagent RL topic addresses the
sequential decision-making problem of multiple autono-
mous agents that operate in a common or quite similar
environment, each of which aims to optimize its own long-
term return by interacting with the environment and
a central system and/or other agents.

Markov Games. One way to generalize MDPs for ap-
plying multiple agents is Markov games (MG) or also known
as stochastic games. Formally, Markov game can be defined
as a tuple 〈N,S, Ai{ }i∈N, P, Ri{ }i∈N, c〉, where
N � 1, . . . , N{ } denotes the set of N> 1 agents, S denotes
the state space of all the agents, and A

i denotes the action
space of agent i ∈N. By introducingA � A

1 × . . . ×A
N, let

P: S ×A⟶ S be the transition probability function from
any state s ∈ S to a particular state s′ ∈ S for a joint action of
a ∈ A, while Ri: S ×A × S⟶ R is the reward function
that determines the immediate reward by starting from state
s, by taking action a and by moving to state s′. Last but not
least, c ∈ [0, 1) is the discount factor. Figure 14 shows the
general framework of Markov games.

MG problems can be classified by knowledge sharing
strategies between agents and central system and their goals:
whether they can learn from each other or is it worth to share
observations or policies with each other or their goals are
conflicting. *e main categories are

Cooperative agents problem
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Conflicting agents problem

Mixed problem

In a fully cooperative setting, all agents have the very
same or identical reward function: R1 � R2 � . . . � RN � R.
*is is also referred as multiagent MDP (MMDP). With this
approach, the state- and action-value functions are identical
to all agents, which thus enables the single-agent RL algo-
rithms to be applied, if all agents are coordinated as one
decision maker. *e global optimum for cooperation now
constitutes a Nash equilibrium of the game.

Nash equilibrium (NE) characterizes an equilibrium
point π∗, from which none of the agents has any incentive to
deviate. As a standard learning goal for MARL, NE always
exists for discountedMGs, but may not be unique in general.
Most of the MARL algorithms are contrived to converge to
such an equilibrium point.

We believe that our summary of the major re-
inforcement learning methods gave a useful and efficient
overview of the concept behind. As our literature overview
shows there are numerous further modifications and ex-
tensions over the basis of the basic methods. By following
our questionnaire in Figure 8, it becomes easier to determine
the relevant area of RL methods that can provide an ap-
propriate solution to be fitted to their learning problems.
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