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Abstract: Potentially toxic elements (PTEs) in soils pose severe threats to the environment

and human health. It is therefore imperative to have access to simple, rapid, portable and

accurate methods for their detection in soils. In this regards, the review introduces recent

progresses made in the development and applications of spectroscopic methods for in-situ

semi-quantitative and quantitative detection of PTEs in soil and critically compares them to

standard analytical methods. The advantages and limitations of these methods are discussed

together with recent advances in chemometrics and data mining techniques allowing to

extract useful information based on spectral data. Furthermore, the factors influencing soil

spectra and data analysis are discussed and recommendations on how to reduce or eliminate

their influences are provided. Future research and development needs for spectroscopy

techniques are emphasized, and an analytical framework based on technology integration and

data fusion is proposed to improve the measurement accuracy of PTEs in soil.

Keywords: Spectroscopy, analytical techniques, contaminated soil, potentially toxic elements.

li2106
Text Box
Applied Spectroscopy Reviews, Available online 8 May 2019DOI:10.1080/05704928.2019.1608110

li2106
Text Box
Published by Taylor and Francis. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  The final published version (version of record) is available online at DOI:10.1080/05704928.2019.1608110.  Please refer to any applicable publisher terms of use.



2

Contents

1 Introduction...................................................................................................................................3

2 Reasons for using the term “PTE” instead of heavy metals......................................................6

3 Laboratory/field spectroscopic for PTEs in soil.........................................................................7

3.1 X-ray fluorescence spectroscopy (XRFS)............................................................................7

3.2 Laser induced breakdown spectroscopy (LIBS) ..............................................................12

3.3 Visible and near-infrared spectroscopy (Vis-NIRS) ........................................................17

3.4 Mid-infrared spectroscopy (MIRS)...................................................................................22

4 Data and model fusion methods.................................................................................................24

5 Selection of optimal optical technique for PTE analysis .........................................................27

6 Conclusions .................................................................................................................................29

7 References....................................................................................................................................31



3

1 Introduction

Soil contamination by PTEs is a global concern as they can cause serious health problems to

human and ecosystems (1, 2, 3). While it is usually difficult to list or specify all PTEs found

in soil as there are over 40 chemical elements (4), a list of 21 elements is commonly used for

PTEs. The list includes antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium

(Cr), cobalt (Co), copper (Cu), gold (Au), lead (Pb), manganese (Mn), mercury (Hg),

molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), thallium (Tl), tin (Sn), tungsten

(W), uranium (U), vanadium (V) and zinc (Zn) (5). Among these elements, 8 PTEs, including

Pb, Cr, As, Zn, Cd, Cu, Hg, and Ni are considered as the most commonly elements found at

contaminated sites (6).

Metal ions are non-biodegradable and can accumulate in soft tissues, hence, they are

considered as posing a significant risk to health, and cause of many toxic and physiological

diseases to both humans and livestock (7, 8). This is the case particularly for, but not limited

to, As, Cd, Hg, and Pb, even they are present in relatively low concentrations (9–11). Thus,

there is a need to gain a better understanding and assessment of the distribution and potential

hazards posed by the presence of PTEs in soils, in order to ensure food safety and

environmental and public health protection.

Various analytical techniques have been developed for the detection of PTEs, including

electrochemical (12, 13), voltammetry (14), and optical (15) methods. Laboratory optical

methods include inductively coupled plasma atomic emission spectroscopy (ICP-AES) (also

referred to as inductively coupled plasma optical emission spectroscopy (ICP-OES)),

inductively coupled plasma mass spectroscopy (ICP-MS)), atomic fluorescence spectrometry

(AFS), X-ray fluorescence spectrometry (XRFS), laser-induced breakdown spectroscopy
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(LIBS), neutron activation analysis (NAA), and atomic absorption spectrophotometry (AAS).

These laboratory methods are sufficient for quantitative estimation with good detection

limits, and have been widely used to detect different PTEs in soil samples, with high

sensitivity, selectivity and accuracy (14, 15). However, all these techniques require relatively

expensive instrumentation, the measurement procedure takes as relatively and needed long

time and specialized personnel are necessary to carry out the measurements correctly (14).

Given the limitations and cost of the laboratory methods listed above, there have been

tremendous efforts made to provide accurate rapid measurement techniques for in-situ

measurement (16). Cutting-edge technologies such as portable and powerful computers,

software packages, fibre optics and spatial modelling have contributed significantly to

assessment of the presence, distribution and potential hazards posed by the presence of PTEs

in soils. Contextually, proximal soil sensing offers high sampling resolution combined with

cheaper measurements procedures (16, 17). Proximal soil sensing refers to the use of all field

methods to obtain signals from the soil when the probe is in contact with or close to (within 2

m) the soil (18). It includes electromagnetic induction (EMI), gamma radiometry (GR), and

ground-penetrating radar (GPR), electrochemical sensors, and field spectroscopic methods

such as visible and near-infrared spectroscopy (Vis-NIRS), mid-infrared spectroscopy

(MIRS) and portable X-ray fluorescence spectroscopy (PXRFS) spectroscopy and portable

LIBS. The suitability of these techniques for laboratory and/or the field measurement has

been extensively verified (16, 19).

Since the 1990s, there has been a tremendous increase in the use of portable Vis-NIRS

spectrophotometers for on-site determination of various analytes (17). These portable

instruments are non-destructive, easy to use and offer rapid measurement as there is no

sample preparation needed. These characteristics are all essential for cost-effective in situ

measurement (16, 20). Likewise, MIRS has been successfully used for predicting soil
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parameters including PTEs concentrations (21), despite the complex nature of soil matrix and

the sensitivity of MIRS to moisture content that can impact the accuracy of measurement.

PXRFS has advantages over the traditional methods, in that it offers in situ, rapid detection

and accurate quantification of a wide range of elements present in the soil, with little, or no,

need for sample preparation (19).

In recent years, there has been a remarkable increase in the development of rapid sensor-

based in situ applications of proximal soil sensing technologies to detect and monitor PTEs

contaminants in soils. Among them, PXRFS has been extensively adopted (16, 22). In the last

few years, portable LIBS has been developed to measure PTEs in situ (23–25). Others used

vibrational spectroscopy methods including Vis-NIRS and MIRS to monitor and measure

PTEs in soil also has been used (3, 16, 26, 27). All studies conducted to date agree that field-

based, in situ, spectroscopic techniques offer rapid, non-destructive and cost-effective

methods to determine on-site presence, level and spatial distribution of PTEs prior to

undertaking laboratory-based chemical estimation that might be more accurate but would be

much more expensive and time-consuming. Furthermore, on-site spectroscopic techniques

can provide real-time monitoring and, consequently, helpful information for preliminary site

assessment, and guide further sampling for a comprehensive risk assessment of contaminated

sites. Nevertheless, spectral data analysis requires careful examination to avoid misleading

interpretations. Multi-sensor and data fusion approaches have attracted much attention for

estimating soil properties (28–30); however, this field is still in its infancy as far as accurate

PTE detection and mapping in soils is concerned.

The aim of this paper is to provide a critical review of the potential of those spectroscopy

techniques currently available for the analysis of PTEs in soils, with a particular emphasis on

portable XRFS, LIBS, Vis-NIRS and MIRS methods for on-site measurement. In addition, a
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discussion on the main factors or variables affecting the implementation of these methods is

provided along with suggestions for improving performance and accuracy for in situ

measurement.

2 Reasons for using the term “PTE” instead of heavy metals

The term “heavy metal” has never been precisely defined and has become the subject of a

broad discussion (31–34), implying different things to different people (35). A wide variety

of definitions can be found in the Web of Science and Google Search, including elements that

form soaps upon reaction with fatty acids, have an atomic weight greater than Na (22.9), e.g.,

Al, Co, and Pb elements with a specific gravity of approximately 5.0 or higher, e.g., Pb, Ag,

Cr, Co, Cu, Ni, and Hg; and elements that can be precipitated by hydrogen sulphide in acid

solution, e.g., Ag, Au, Pb, Hg, Bi, and Cu (33).

Furthermore the term “Heavy metal” has never been defined by any authoritative body, such

as the International Union of Pure and Applied Chemistry (IUPAC), nor is there any widely

agreed criterion-based definition of a heavy metal, indeed the term “heavy metal” is

considered imprecise at best, meaningless at worst and its use is strongly discouraged (36–

37). It has been suggested by (34) that term “heavy metals” be replaced with, e.g.,

“potentially toxic element(s)/metal(s)” or “trace element(s)/metal(s)”, according to the

context. Because not all trace metals are toxic, the term which has gained acceptance is

“potentially toxic elements” (PTEs).

Indeed, the term PTEs is more inclusive and appropriate than “heavy metal” (33) and will be

used in this paper. While laboratory atomic spectroscopic methods are frequently the choice

for the analyses of PTEs (38–40), the focus of this review is on portable optical spectroscopy

methods: XRFS and LIBS (both atomic spectroscopy), and Vis-NIRS, and MIRS (both

molecular spectroscopy). The discussion will be steered towards the potential implementation
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of these portable spectroscopy techniques for in situ measurement, highlighting the

advantages and disadvantages of each technique. A new approach for multi-spectroscopy

sensor data fusion is suggested, as the optimal solution for in situ detection and mapping of

PTEs.

3 Laboratory/field spectroscopy methods for analysis of PTEs in soil

The laboratory methods for the analyses of PTEs listed above, are both expensive and time

consuming, so the number of samples analysed will invariably be limited, which prevents the

collection of a large number of samples from across the entire site to assess and accurately

map field contamination. Such methods do not usually fulfil the requirement for rapid

measurement and risk assessment of soil contamination. It is necessary to be able to detect

and measure elements posing a danger to health quickly, cost-effectively and in situ. There is

a need for portable, economical and rapid sensing technologies, and this can be achieved by

spectroscopy techniques. This section focuses on portable spectroscopy methods that can be

used in both field conditions and the laboratory; PXRFS, LIBS, Vis-NIRS and MIRS.

3.1 X-ray fluorescence spectroscopy (XRFS)

Several studies and practical applications have demonstrated that XRFS is a suitable tool for

industrial and environmental applications. XRFS is a well-known laboratory technique (41),

which has been widely used since the 1950s for elemental analysis (19). The energy as well

as intensity associated with characteristic-fluoresced radiation from the elements in a given

sample are used to recognize and determine their presence and concentrations (42). When a

single atom is excited by an external energy source, it emits photons of a characteristic

energy or wavelength. The elements present in a given sample may be identified and

quantified by counting the number of photons of each energy emitted (43).
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Fluorescence is a form of luminescence that occurs when the emitted light has a longer

wavelength (lower energy) than the absorbed radiation (19). Elemental identification in a

given sample is based on the relationship between emission wavelength and atomic number,

while the elemental concentration can be estimated from the characteristic line intensities

(number of photons of each wavelength) (44, 45). This has proved to be a highly sensitive

technique for PTEs analysis (46–48) with accurate multi-element analysis of rock samples

(47), and soils matrices (49–53). With recent technological improvements, PXRFS has now

become available, for rapid and cost-effective on-site measurement of soil contaminants (16,

54).

Using portable analytical methods, such as PXRFS, for assessing contamination has many

advantages, including; increased efficiency, cost-effectiveness, convenience and ease of use,

real-time information for on-site decision-making, minimal sample preparation required,

multi-element measurement capability, potential for relatively low detection limits and better

representation of contaminant distribution. (55–58). Such non-destructive testing also has no

negative impact on the environment, PXRFS has been accepted by the environmental

community as valuable technique for analysing environmental samples with several

advantages over other optical analytical methods such as AAS, ICP-AES and ICP-MS (59).

PXRFS has been used for rapid field screening of As contaminants with a strong correlation

between the obtained results, and those from of AAS laboratory analysis (60). In addition,

PXRFS has been successfully used for both in situ and ex situ (laboratory) analysis for the

quantification of Pb, Zn, As, Cd, and Cu in paddy soils near a multi-contaminated mining

area (61). The obtained results for both in situ and ex situ sampling were close to those

obtained by Korean standard laboratory tests (coefficient of determination: R2 close to 1.0)

for Pb and Zn (61). Radu and Diamond (62) compared two PXRFS instruments with AAS

analysis of aqua regia digested soil samples for estimating As, Zn, Pb, and Cu in old mining
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areas of Ireland. The authors reported excellent to very strong correlations (R2 of 0.99 for As,

0.99 for Pb, 0.96 for Cu, and 0.84 for Zn) between the two methods. They recommended

PXRFS due to its speed because there was no need for sample digestion. Kilbride et al. (63)

compared ICP-OES assessment of aqua regia extraction method with two types of field

PXRFS systems (X-ray tube and dual isotope) for determination of As, Cd, Cu, Fe, Mn, Pb

and Zn in selected industrial areas of the UK. These Authors reported a high correlation

between X-ray tube measurements and ICP-OES results for Fe and Pb better than the dual

isotope, whereas higher correlations for Cd, Cu, Mn, and Zn were obtained with the dual

isotope instrument measurements.

There are general limitations faced by users of PXRFS such as the need for official approval

for field measurement, the need for a field expertise (19) and the health risks associated with

X-ray radiation. The complex relationship between the intensity of the characteristic X-ray

emission of an element and its concentration within a material is a limitation on the

measurement which requires a correction to be applied to the measurements (64). However,

internal calibration by the manufacture such as fundamental parameter (FP) overcomes this

limitation and PXRFS produces robust data that accurately reflects material composition (45).

Interference caused by physical-matrix effects (e.g., particle size, and surface conditions),

chemical-matrix effects causing elemental interference (e.g., As and Pb), and moisture

content (>20%) should be considered and minimized (19). Variation in soil samples is a

challenge for PXRFS measurement, inhomogeneity resulting from coarse textures, veins,

phenocrysts, localized mineralization and irregularities of the surface reduce the accuracy of

measurement (65, 66). Similarly, spectral interference between elements such As and Pb

associated with a shared spectral peak reduces the estimation accuracy (67, 68). Moisture

content reduces the PXRFS measurement and needs to be corrected to dry conditions. For

example, Weindorf et al. (69) compared the accuracy of PXRF measurement for soils
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samples under four different moisture conditions: dry, moist, frozen in situ, refrozen in lab.

They reported significantly improved results using linear regression equations (higher R2,

lower RMSE, and slopes closer to 1) by applying a moisture correction factor of elemental

data to dry.

In order to optimise the PXRF measurement and output, Binstock et al. (70) developed a new

protocol for measurements. This consisted of drying and sieving collected samples to <50 μm 

particle sizes. Results for Pb showed no statistical difference between paired ICP-AES and

PXRFS. Figueroa-Cisterna et al. (71) used a combination of ex situ PXRFS with different

multivariate statistical techniques (e.g., cluster analysis (HCA), principle component analysis

(PCA), factor discriminant analysis (FA), and linear discriminant analysis (LDA)) to develop

calibration models for in situ measurement of K, Ca, Cu, Fe, Mn, Pb, Ti, Zn, Rb, and Sr in

Boris Angelo mining area of Central Chile. They concluded that the proposed ex situ

calibration approach could be applied directly without pre-treatment of samples in situ.

Rouillon and Taylor (2016) evaluated the analytical capabilities of PXRFS for the

measurement of contaminated soil samples, achieving excellent correlation between the ICP-

AES measurements and the PXRFS results for most elements (e.g. R2 = 0.999 for Pb and Mn,

R2 > 0.995 for Zn, Cd, and Cu). Both ICP-AES and ICP-MS gave poor measurement

accuracy for Ti and Cr, compared to PXRFS. They concluded that PXRFS is a suitable

alternative tool to ICP-AES in the measurement of Cd, Cr, Cu, Fe, Mn, Pb, Sr, Ti, and Zn in

metal-contaminated soils, and provides a high efficiency solution for high sampling density,

cost-effectively for complete geochemical investigations.

XRFS when coupled with multivariate analysis or machine learning becomes a potentially

powerful tool for rapid and accurate estimation of PTEs and other soil quality parameters.

This is normally called recalibration of the instrument and has been used by several
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researchers to improve the results of XRFS measurement (72–74). For instance, Moros et al.

(73) evaluated the feasibility of using partial least squares regression (PLSR) for modelling of

XRFS spectra of estuarine sediments to predict the concentrations of Al, As, Cd, Co, Cr, Cu,

Fe, Mg, Mn, Ni, Pb, Sn, V, and Zn from 116 samples. They reported an average prediction

error of ±37% for the 14 elements and residual predictive deviation (RPD) values ranged

from 1.1 to 3.9. Towett et al. (72) developed simple linear models for estimating total

element concentrations of Al, Cr, Cu, Fe, Ga, K, Mn, Ni, Ti, V, and Zn in soil samples

collected from across sub-Saharan Africa using an S2 PICOFOX™ spectrometer (Bruker

AXS Microanalysis GmbH, Germany). The results revealed that XRFS accurately determined

the studied total element concentrations (R2 > 0.80). Kaniu et al. (74), used XRFS (with

isotope source) spectrometer coupled with PLSR method and artificial neural network (ANN)

for non-destructive analysis of soil nutrients needed for soil quality indicator assessment

(SQIs). They reported that PLSR was more accurate for analysing C, N, Na, P and Zn (R2 >

0.9) with low standard error of prediction (SEP) of 0.05%, 0.01%, 0.01%, and 1.98 µg g-1,

respectively, while for Mg, Cu and Fe the ANN analysis was better suited with R2 > 0.9 and

SEP of 0.08%, 4.02 µg g-1, and 0.88 µg g-1, respectively. However, these methods have not

received sufficient attention in PXRFS measurement. Machine learning can handle the

overlapping spectral futures, nonlinearity in the spectral response and matrix effects,

generally improving the model prediction accuracy of PTEs, a statement that needs be

approved by further research. A summary of case studies that used XRFS for the estimation

of PTEs in soil matrices from different regions is presented in Table 1. The majority of

reported results are based on specific calibrations provided by the manufacturers of the PXRF

devices, whereas only two studies reported recalibration results using spectra analysis with

PLSR (75) and cubist regression method (30).
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For PXRFS measurements in Table 1, we see that median R2 values, ranging between 0.91

and 0.98 can be observed in Table 1 for Zn, As, Pb, Cu, Cd, Mn, and Fe, whereas less

accurate estimations were found for Cr and Ni (median R2 = 0.87 and 0.52, respectively). The

measurement accuracy of Fe and Pb is among the highest (median R2 = 0.98). Minimum

values of R2 for in situ measurement As and Zn were 0.70 and 0.81, respectively (56).

However, the in situ results were rather poor (median R2 of 13% and 20% for Zn and As,

respectively), suggesting the former measurement mode can be only used for screening and

not for quantitative estimations. Further studies should confirm whether or not the

performance of PXRFS can be improved when fresh soil samples are used. Table 1 also

shows that accuracy of PXRFS measurements of processed samples (air-drying and sieving)

are better than those reported for in situ measurements using fresh soil samples without any

sample pre-processing (56).

3.2 Laser-induced breakdown spectroscopy (LIBS)

LIBS is one of the most promising tools for elemental analysis (76, 77). LIBS is an atomic

emission spectroscopy technique whereby a high energy laser (typically 108-1010 W/cm2),

usually pulsed, is focused onto a sample surface as a means of generating a plasma with a

temperature high enough (∼8000 K) for the ablated material to dissociate and a volume of

excited atoms and/or ions expands rapidly into a state of so-called phase relaxation when the

atomic and molecular emission lines characteristic of the elements present can be observed

(78, 79). A charge-coupled detector (CCD) or intensified CCD is subsequently used to

collect, spectrally resolve, and detect the light emitted. The detector is gated, deferring

detection until the state of phase relaxation is reached - to optimise the signal-to-noise ratio of

the acquired spectrums. The individual peaks that characterise the spectrums represent the

elements that comprise the sample and consist of three principal parameters: spectral shape,
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wavelength, and intensity. These parameters vary according to the emitting elements but will

be modified by the surrounding environment.

LIBS is a reliable technique that can be employed in a range of challenging contexts to

directly sample several different material types (76, 77). The fact that the laser plasma is

formed by specifically directed laser light gives it a range of important properties; e.g. the

ability to focus the pulse on a very specific region, thereby creating a specifically defined

area for analysis. Such an ability is very useful for a number of different applications,

including spatial mapping of elements (micro-analysis). In addition, it is possible not only to

transmit the laser pulse via an open-path (line-of-sight), but to use fibre-optics to generate a

plasma located on a remote target. As such, it is highly suitable for elemental analysis.

Another significant advantage is that LIBS can be merged with other analysis techniques to

improve detection competences. It is also possible to improve the excitation capabilities of

laser plasma by using auxiliary power sources that remotely add energy into the plasma; for

example, a CO2 laser (23).

By generating the LIBS plasma on a sample that is located within a microwave cavity, it is

also possible to introduce microwave energy (77). Having the option to improve the

emissions that are produced by the elements that form the LIBS plasma represents a

significant development because it has the potential to augment detection competences and,

through doing so, expand its applicability. Recent signal enhancement schemes such as the

double-pulse method (a second laser pulse is timed to “hit” the plasma released by the first

pulse, increasing the heating effect and amplifying the signal) and orthogonal pulse method (a

second laser is oriented to be orthogonal to the first, and by timing the initial and orthogonal

laser pulses even greater signal amplification can be obtained), however, this achieved signal

enhancement with double-pulse LIBS in either configuration, they are element and matrix

dependent (77).
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The LIBS plasma technique is not without its limitations. For example it is not always

possible to control the various operational parameters to optimise the analytical capabilities

of LIBS. The ablated mass and nature of the plasma that is generated vary according to the

operational parameters that are employed including the distance between the lens and the

sample, the power density of the laser pulse, and the pressure and composition of the

environment in which the plasma is formed (77, 80). The analyte signals are directly

influenced by changes in these parameters in addition to the relative intensities of the

emission signals. This undermines the effectiveness of the quantitative analyses and ability to

use element ratios to identify materials. It is possible to generate LIBS plasma in intense

conditions; however, the nature of the conditions has a direct and significant impact on the

character of the spectrum changes. In some cases, there may be a requirement for alternate

analytical lines and it can be challenging to calibrate for quantitative analysis. The analysis of

bulk materials, especially when they are inhomogeneous, can also be challenging due to the

minute mass involved in a single LIBS measurement. Effective LIBS analyses that rely on

ablation to generate the atomised material followed by the subsequent excitation of the atoms

depends on both the sampling, the laser parameters and the physical and chemical properties

of the studied sample (77, 81). Effects in LIBS play a significant role in quantitative analysis

using LIBS include the grain size, moisture content and the chemical matrix effect the on the

LIBS emission lines (77, 82). This effect is often more severe in LIBS than in ICP methods

because of the high density of the materials contained within the small laser plasma (77).

Therefore, methods to amend matrix effects in LIBS are very important for quantitative

analysis.

LIBS has been employed successfully for the qualitative and quantitative analysis of various

elements in samples of diverse origin and nature, including soils (25, 83–85). Good

calibration results were obtained for the determination of PTE concentrations with detection
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limits in the 10 mg g-1 range. The analysis of PTEs in soils has been investigated using LIBS

in combination with established laboratory-based analytical technique such as ICP-OES, ICP-

MS, GF-AAS, and AAS (86–88). Generally, LIBS-based analysis was reliable and results

reasonably correlated with the other traditional analytic methods, encouraging authors to

conclude that LIBS is a rapid and useful tool for screening and estimation of PTE

contamination (86, 87, 89, 90). For example, the accuracy of LIBS for determining total

contents of PTEs (e.g. Cr, Cu, Fe, Mn, Ni, Pb and Zn) in 20 reference soil samples has been

compared with the results obtained by ICP-AES and AAS methods (86). Results showed that

mean values of the relative standard deviation (RSD %) of metal concentrations measured by

LIBS were generally much higher, with the exception of Cr, than the corresponding values

obtained by ICP, and are comparable with, or lower than the RSD % values obtained in other

studies. Authors report that the results obtained indicate that PTE concentrations measured by

LIBS oscillate much more around the mean value, and often overestimate compared to the

corresponding concentrations measured by ICP (86).

Due to the large amount and complexity of the information provided by a LIBS spectrum,

chemometric approaches are now commonly used for processing the data (91–93) which

open a new avenue for semi-quantitative and quantitative analysis beyond the traditional

univariate approach. Several studies have addressed the use of chemometrics for PTEs based

on LIBS spectral data (24, 89, 94). For example, the estimation of Al, Ba, Ca, Fe Mg, Na, and

Si in situ has been investigated using 59 measured spectra of weathered terrestrial samples

using a portable LIBS instrument in the ultraviolet (UV) and infrared (IR) spectral ranges

coupled with a PLSR method (89). The LIBS results were compared with energy depressive

X-ray fluorescence spectrometer (ED-XRF) and Raman spectroscopy. The results of LIBS-

PLSR models for the tested elements ranged between r values of 0.77 (for Al) and 0.92 (for

Mg) in the UV spectral range, and r values of 0.48 (for Fe) and 0.74 (for Si) for the IR
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spectral range (89). Authors concluded that the obtained results were in agreement with the

range of composition measured by XRFS. LIBS data coupled with an ANN was used for

determination of Cu in 59 spectra from a heterogenic set of reference soil samples and their

respective Cu concentration (24). The ANN provided remarkable prediction accuracy for Cu,

although portable instrumentation was employed. The authors reported a limit of detection

(LOD) of 2.3 mg dm−3 of Cu and a mean squared error (MSE) of 0.5 mg dm−3 for the

predictions (24). The performance of LIBS spectral data for determination of Cd under air

and Argon (Ar) conditions were analysed and compared (94). PLSR and least-squares

support vector machine (LS-SVM) models of Cd under both conditions were constructed.

Results showed that the LS-SVM model for an Ar environment provided the best

performance of prediction with R2 of 0.98, and root mean square error of prediction

(RMSEP) of 0.034 mg kg-1. The authors concluded that LIBS combined with LS-SVM for an

Ar environment condition could be a useful tool for the accurate prediction of Cd for

environmental monitoring (94).

Table 1 summarizes some of the available studies on the application LIBS for predicting

PTEs in the soils. Compared with XRFS, few papers are available reporting results obtained

by LIBS. The use of multivariate statistical analyses is still limited to the commonly used

PLSR, with a very limited application of machine learning methods (94). Spectral data pre-

processing is not regularly applied, although standard normal variate (SNV) and wavelet

methods are used to correct the spectral information, and reduce noise in order to improve the

prediction performance (89). The highest correlation coefficients were found for the total

concentrations of Zn (0.99), Pb (0.99), and Cu (0.98) (25). LIBS can also be used for mobile,

and rapid semi-quantitative analysis and screening of PTEs in soils using the traditional

calibration curve method (25).
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3.3 Visible and near-infrared spectroscopy (Vis-NIRS)

Visible and near-infrared (Vis-NIR) spectroscopy has proved to be a useful tool for soil

analysis (95). Once a soil medium is subjected to a light source, part of the light is absorbed,

part is scattered and part diffusely reflected from the soil. The final shape of the soil spectra is

a reflection of both the light scattering and absorption phenomena that differs due to the

sample physical and chemical characteristics, respectively. The working principle of the

absorption Vis-NIR spectroscopy stems from activating chemical bonds by irradiating

mineral mixtures thereby creating resonance vibration, either by bending or stretching of the

molecular bonds. These types of vibrations result in light absorption, in different levels,

having a particular power quantum related to the difference between two energy levels. Since

the energy quantum is actually straight-forwardly associated with frequency, the resulting

absorption features of the spectrum curve can be used for analytical purposes (95). In the

visible (Vis) range (400–780 nm), absorption bands related to soil colour are due to electron

excitations, which assists the measurement of soil organic matter content (SOM) and

moisture content (MC). Within the NIR range (780 – 2500 nm), overtones of OH and

overtones and combinations of C-H + C-H, C-H + C-C, OH+ minerals, and N-H of

fundamental vibrations (e.g., C–H, N–H, O–H, C–O, Si–O) that occur in the MIR spectral

range (2500–25000 nm or wave number of 4000–400 cm−1) (96, 97). These are the major

spectral features essential for the detection and quantification of key soil properties having

direct spectral responses e.g., MC, SOM, clay minerals, and total nitrogen (98). These

properties can be accurately predicted with Vis-NIRS with appreciable accuracy, compared to

properties with indirect spectral responses (e.g., P, K, Mg, Ca, Na, CEC, pH) that are potentially

predictable through covariation with properties having direct spectral responses in the Vis-NIR

spectral range (95). The NIR overtones and combinations are of broad bands that overlap but

10-100 times weaker compared with the MIR spectrum where fundamentals are more
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resolved, permitting the structure of a sample to be better elucidated (95, 99, 100). The higher

energy of NIR radiation and the relatively low absorptivity of water makes NIR spectroscopy

as a better technique when wet soils and sediments samples are analysed, compared with

MIR spectroscopy (99, 100). Due to the overlaps among overtones and combinations due to

their broad bands, advanced chemometrics and machine learning tools are used to extract

quantitative and qualitative information. Overall, Vis-NIRS is widely adopted to determine

SOM, minerals, texture, nutrients, and PTEs in soils (95, 100).

The potential of NIR reflectance spectroscopy coupled with PLSR was investigated by

Kooistra et al. (101) for the assessment of soil contaminated by Cd and Zn in river

floodplains in the Netherlands (101). The authors reported a coefficient of determination (R2)

of 0.88 and 0.90 and root mean square error in cross validation (RMSECV) of 0.68 and 80.97

mg kg-1, for Cd and Zn, respectively. Also, the prediction of PET (As, Cd, Cu, Fe, Hg, Pb, S,

Sb, and Zn) concentrations in soil samples was performed based on Vis-NIRS coupled with

an ANN and stepwise multiple linear regression analysis (SMLR) (7). The authors reported

high prediction accuracy results for six out of the nine elements, with R2 values of 0.84, 0.72,

0.96, 0.95, 0.87 and 0.93 for As, Fe, Hg, Pb, S, and Sb, respectively, for SMLR. No

successful correlations were obtained for Cd (0.51), Cu (0.43), and Zn (0.24). Siebielec et al.

(102) based on full Vis-NIR spectra (400-2500 nm) of soil samples collected from a wide

range of pH, organic carbon and soil textures, reported good prediction using PLSR models

with R2 of 0.97, 0.94, 0.80, 0.99 and 0.96 for Fe, Cd, Cu, Ni and Zn, respectively. Wu et al.

(103) used a Vis-NIR spectrometer coupled with univariate regression and principal

component regression (PCR) analyses for predicting Hg concentration in agricultural soils

from the Nanjing region in China. The authors used some pre-treatments such as Kubelka–

Munk transformations, absorbance and derivative to optimize the prediction of Hg

concentration, achieving the best results by using the PCR regression with the Kubelka–



19

Munk transformation with R2 of 0.69, and RMSEP of 0.15 mg kg-1. They found a positive

correlation between Hg concentration and the absorption of goethite and clay minerals, and

they suggested that Hg-sorption by clay-size mineral aggregates in soils was the mechanism

explaining the successful prediction of Hg having spectral featureless (103). The capability of

Vis-NIRS (400–2,500 nm) coupled with PLSR was evaluated for the measurement of AS in

forest soil (104). PLSR was also used to estimate AS concertation in soil samples (105),

reporting R2 of 0.69–0.71, RMSEP of 1.64–1.61 and RPD of 1.70–1.80 for the best

calibration model. Authors pointed out the impact of soil organic matter (OM) content on the

model prediction accuracy. Estimating and mapping the distribution of PTEs in soils using

Vis-NIRS combined with SMLR and enter-MLR (EMLR) was conducted by Choe et al.

(106). The best results for predicting AS and Cu were achieved with EMLR models with R2

values of 0.60 and 0.81, respectively. The authors provided a distribution map (contours) of

As and Cu concentrations resulting from the EMLR models, which exhibited identical spatial

patterns to a map produced based on the reference measured values of As and Cu (106).

In order to better predict low concentrations of As, Cu, Pb, and Zn metals in agricultural

soils, a comparison was made between PLSR and genetic Algorithm-PLSR (GA-PLSR) has

been made (107). Results showed that the GA-PLSR model outperformed the PLSR models

with R2 of cross-validation (R2cv) of 0.60–0.69 for the four metals analysed while the R2cv of

PLSR ranged between 0.49 and 0.58 (107). The authors attributed the Vis-NIRS

measurement of studied PTE (having no direct spectral responses) to be due to co-variation

with OM, as both heavy metals and OM have the same spectral features (e.g., same

significant wavelengths) (107). The feasibility of using Vis-NIRS to predict PTEs (Cr, Zn,

Cu, Ni, and Pb) in several soil types using PLSR was reported for a collection of samples

from Bulgaria (27). The results revealed that the best prediction obtained was with the Cu

model. However, the prediction of Zn, Pb and Ni models were less accurate, and the results
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for Cr in both cross-validation and prediction were the worst (27). The authors found that the

values of both RMSECV and RMSEP increased when the number of samples in the

calibration set (cross-validation) was decreased. They concluded that Vis-NIRS is a useful

tool to predict PTEs in soil samples, on the condition that a large number of samples was

used in the calibration. A case study to monitor the suitability of Vis-NIRS for predicting

concentration of PTEs based on PLSR and support vector machine regression (SVMR), using

samples from mining dumpsites in the Czech Republic was reported in (108). The best

prediction of As was obtained with the SVMR model with the first derivative pre-treatment

(R2 = 0.89, RMSEP = 1.89 mg kg-1, RPD = 2.63), where acceptable prediction was obtained

for Cd and Cu (R2 = 0.66 and 0.81, RMSEP = 0.0.8 and 4.08 mg kg-1, RPD = 2.0 and 2.5,

respectively).

Vis-NIRS has been reported as a rapid, non-destructive and cost-effective tool for estimating

the concentration of PTEs in soil (3, 16). Nevertheless, the actual correlations obtained

between Vis-NIR spectra and the PTEs are not necessary based on the direct response of

these element in the Vis-NIR spectrum (3, 16). The majority of the reported studies have

proposed that the calibrations obtained were based on indirect correlations, between the

measured metals and other soil properties, having direct spectral features in the NIR spectral

range such as clay, organic carbon, and iron oxides (3, 16, 109). Therefore, caution is

necessary before applying the contaminate-based model to a different sample matrix.

Wu et al. (109) explored the impact associated with surrogate calibrations. The authors

compared soil samples naturally rich in Cd and Zn with the spiked soil samples with Cu and

Zn, concluding that the Vis-NIR spectrum is sensitive to sample handling as wells as the

orientation of the sample relative to the Vis-NIR instrument. They could not find

distinguishable effect in respect of the presence of PTEs on the Vis-NIR spectrum (109),

which supports the hypothesis of “surrogate” correlation for PTEs, and suggests that even in
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highly contaminated soils PTEs may not be identifiable over the OM absorption bands in the

Vis-NIRS region (109). However, there are several cases of successful application of NIR

spectroscopy to measure PTEs in soils, which necessitates further research to explain the

physico-chemical relations between the PTEs and other soil properties (e.g., SOM, and clay

minerals), having a direct spectral response in the NIR spectral range.

Previous research has shown that sample preparation (drying, grinding, sieving) before

scanning with NIR spectroscopy affected the measurement accuracy of soil fertility

parameters (95). Likewise for PTEs, according to published literature sample preparation has

a clear effect on measurements. The effect of sample preparation such as homogenization,

drying, grinding, and sieving on estimating the accuracy of cyanide concentration using a

hand held NIR instrument and PLSR was investigated by Sut et al. (110). The authors found

that the root mean square error of measured cyanide concentrations was larger for unprepared

fresh soil samples (RMSE > 2400 mg kg-1), compared to prepared samples in the laboratory

(RMSE > 1750 mg kg-1). They concluded that the direct in situ measurements yielded high a

LOD, which, in laboratory, can be improved by sample preparation, with the sample

preparation actually resulting in reducing the influences of light scattering, soil moisture and

particle size on accuracy of measurement. They also found that the prediction of cyanide

concentration in processed soil samples (dried and sieved) (R2 = 0.41) was improved after

grinding (R2 = 0.86).

More case studies concerning the use of NIR spectroscopy for the estimation of PTEs in soil

matrices are provided in Table 1 for different countries over the world. The full Vis-NIR

spectral range of 350-2500 nm was used in the majority of the reported studies. Spectral data

pre-processing was used intensively to improve the prediction results, among which the first

derivative (FD) and continuum removal (CR) methods were the most used. The PLSR linear

multivariate analysis was the most common method used for modelling. In general,
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comparable prediction accuracies were found for the chalcophile elements (As, Cu, Pb and

Zn), compared to the siderophile elements (Co, Fe, Mn and Ni). The highest prediction

performance was for the total concentrations of Pb (R2 = 0.94) and Ni (R2 = 0.93) (Table 1).

The successful prediction of these elements can be attributed to the relationship between

these elements and carbonate (111). Fe minerals are the main parameter determining the

prediction accuracy (7, 103, 112), in addition to clay minerals and SOM (102, 113), all

having direct spectral responses in the NIR range (95).

3.4 Mid-infrared spectroscopy (MIRS)

MIRS is a rapid and cost-effective techniques developed over the last 40 years for soil

analysis (114). Fundamental vibrations of chemical bonds e.g., C–H, N–H, O–H, C–O, Si–O

take place in the MIR electromagnetic range (2500–25000 nm or wave number of 4000–400

cm−1) (97), and can provide extensive and wealth information about the chemical and

physical properties of the sample components (115). The MIRS spectra can reveal essential

information related to both organic and some inorganic compounds. However, the complexity

of soil matrices, and the relatively low concentrations of PTEs usually do not show

absorption features in MIR spectrum (16), but they are bound to spectrally active soil

components (e.g., OM and clay minerals) and as a result modify the resultant spectral

features (21). However, compared to the Vis-NIRS, the MIRS offers more informative

spectrum with well delineated absorption bands (97, 116). By using MIRS, it has been

demonstrated that particular markers exist in soil MIR spectrum for minerals and

organometallic complexes (117).

Many reports on the use of MIRS for the measurement of key soil physical and chemical

properties can be found in the literature. For example, MIRS has been successfully used to

estimate soil total carbon, organic, and inorganic carbon, providing more accurate estimations

than Vis-NIRS (118, 119). Recent research has revealed that the MIR can be used to measure
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PTEs in soil (97, 102). In their study, Siebielec et al. (102) used 70 soil samples collected

from the mining area of Tarnowskie Gory (Upper Silesia, Poland) for predicting Fe, Cd, Cu,

Ni, Zn, and Pb concentrations based on the combined spectral range of NIRS and MIR

spectra (2500 to 25000 nm) coupled with the leave-one-out PLSR cross-validation procedure.

They achieved accurate calibrations between Fe, Cd, Cu, Ni, and Zn and MIR spectra with R2

of 0.97, 0.94, 0.80, 0.99, and 0.96 for those metals, respectively, but Pb had a low correlation

with R2 = 0.66, and the calibrations using NIRS were less accurate tan those based on MIR.

By testing 4130 European agricultural soils, Soriano-Disla et al. (97) found that that MIRS

was a powerful tool for predicting the concentrations of PTEs in soil. Given that the

bioavailability of PTEs in soil is basically ruled through the interactions between the trace

elements species and existing anionic functional groups, the MIRS method can be used

successfully for estimation PTEs bioavailability. The feasibility of using MIR to determine

Cr using tannery sludge in tropical soils has been tested (120). The authors reported changes

in soil spectral signal due to metal adsorption to soil components, demonstrating differences

between relatively contaminated-free and highly contaminated soils. The authors pointed out

that MIRS outperformed Vis-NIRS for measuring Cr, suggesting that the OM content played

a more substantial role of the determination of spectral characteristics than mineralogical

compositions, especially those that have high OC content. Very recently, the feasibility of

Vis-NIRS and MIRS handheld (In particular the 4300 Handheld Fourier Transform Infrared

(FTIR) Spectrophotometer) for quantification of PTEs (Al, As, Ca, Cu, Fe, K, Mn, Na, Ni,

Pb, and Zn) in 203 soil samples collected from Saxony, Germany, were investigated (21).

The authors used PLSR methods with different spectral data pre-processing, namely, first and

second derivatives, multi scatter correction (MSC), continuum removal (CR) and standard

normal variate (SNV). The authors reported a high performance for the model of MIR-spectra

with multi-scatter correction (MSC), and SNV-pre-processing with very good to good
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prediction for Al, Fe, K and Ni models (R2 = 0.70-0.88). It was concluded that MIR

spectroscopy is a reliable and promising alternative approach for the estimation of metal

contents in soil. Table 1 summarizes the most important studies on applying the MIRS for

predicting PTEs in soil. Compared with Vis-NIRS, few articles are available reporting

predictions of PTE concentrations in soils by MIRS. A wide range of pre-processing methods

(e.g., CR, MSC, and SNV) were used to correct the spectral information, reduce noise and

scattering effects, to improve the prediction performance. In general, PLSR was the common

calibration method. Better predictions were found for the total concentrations of siderophile

elements, compared to the chalcophile elements (see Table 1). The highest correlation

coefficients were found for the total concentrations of Ni (R2 = 0.98), Zn (0.96), and As

(0.92) (21). The successful prediction of these elements can be attributed to the fact that the

spectral features in the MIR-region are mainly caused by fundamental molecular vibrations

(21).

(Table 1)

4. Data and model fusion methods

Soil studies are usually considered as a multifactorial problem and it is worth exploring and

measuring the same samples simultaneously using several analytical tools (platforms)

processing with on or a set of models. Although research on individual proximal sensors has

demonstrated potential, no individual sensor (or technique) is able to completely characterize

soil complexity. Soils are typically characterized by high variability on all scales that can be

monitored using different sensor systems. Each sensor offers an exclusive perspective on one

aspect of a soil system that will change both temporally and spatially. Consequently,

requiring a single sensor to perform more than one function in these circumstances is almost

unfeasible (136). Data fusion is the combination of data from different sources to produce

more rigorous data than could be obtained from a single system or sensor (16). Sensor fusion
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can be a sensible option to integrate diverse variations across scales and different soil

properties. Multi-model fusion or ensemble methods are a useful tool for improving

predictions, and the data fusion approach has been applied extensively in agriculture in recent

years (137–139). Such an approach has not been yet tested for PTE analysis but sensor data

and multi-model fusion methods have the potential to improve performance when estimating

PTEs in soil using various complementary sensors and a set of rigorous models.

The optimal goal of the fusion technique is to gain high quality and reliable information,

providing better and greater in-depth understanding (140). Fusion techniques are expected to

deduce inferences that are potentially more accurate than if they were achieved by a single

sensor or model. Fusion of data from multiple sensors and/or sets of models provides several

advantages over data from a single sensor such as robustness, accuracy, extended feature

coverage and harmonizing information on particular phenomena (30, 140, 141). The fusion

technique can be categorized into two major types: (1) proximal sensor data fusion in which

data from different sensors are applied jointly into to a single multivariate or machine

learning method; (2) multi-model fusion, in which models are combined to provide the

optimal prediction. (see Fig.1).

Measuring with multiple sensors such as portable/handheld Vis-NIRS, MIRS, and PXRFS is

versatile and provides a larger amount of data. This progress in data acquisition offers the

possibility of a better understanding of soil contamination and improved analysis. Vis-NIRS,

MIRS, and PXRFS have been used independently for determination of PTEs in soil sample

data, but model fusion is still new in environmental studies particularly, for PTE

determination, and has attracted no or little attention in the literature. Wang et al. (29)

successfully combined Vis-NIRS and PXRFS for the quantification of soil nitrogen and

carbon. Likewise, Chakraborty et al. (142) combined Vis-NIRS spectra and PXRFS to
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develop an optimised model for the rapid prediction of petroleum hydrocarbons in soils.

Towett et al. (143) combined MIRS and PXRFS to predict soil properties and distributions of

available Al, Cu, Fe, Zn and Mn from sub-Saharan Africa soils using RF regression. The

authors reported a very good prediction for Al (R2 = 0.86), poor prediction for Mn (R2 =

0.56), and very poor predictions for Cu, Fe, and Zn (R2 = 0.43, 0.40, and 0.04, respectively).

The authors found that the prediction of some elements was strongly improved by adding

XRFS data to the MIR data.

Multi-model fusion can improve the overall model prediction accuracy. Combining different

model outcomes in this way is termed as model ensemble or averaging (144). This

combination of models reduces the variances of predictions found with individual models,

hence, the combined predictions typically outperform those from individual models. The

majority rule (simple averaging) is the common model fusion technique, which integrates all

models by using an equally weighted averaging technique that integrates several ensemble

methods (141). For instance, Chakraborty et al. (142) applied a model fusion technique by

using Vis-NIR based penalized spline regression (PSR) method followed by PXRFS

elemental based RF regression, which resulted in improved prediction accuracy of total

petroleum hydrocarbon (TPH) estimation in contaminated soil. The PSR was used to fit the

training set (containing Vis-NIR spectra only) and RF was used to fit the residual of the

PXRF elemental data. The authors found that the combined modelling approach produced

better results compared to individual model outputs. In another study, O’Rourke et al. (30)

investigated the combined approach of Vis-NIRS, MIRS, and PXRF data to improve the

accuracy in estimating PTEs in soil. These authors again found integration between Vis-

NIRS, MIRS, and PXRFS resulted in better determination of (As, Cd, Co, Cu, Hg, Mn, Ni,

and Zn) distributions in soil than could be obtained using any one spectral method. The

authors further argued that the multi-sensor data fusion approach can be an alternative to
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traditional wet chemistry analyses, and is potentially suited for large scale routine soil

monitoring.

(Figure 1)

5. Selecting of optimal optical technique for PTE analysis

In order to select the most suitable optical technique for the determination of PTEs in soil,

information such as analysis time, cost per sample, portability and ease of field application,

robustness, repeatability, prediction accuracy and the final application of results should be

available. One example is, when time is not a significant issue and accuracy is of prime

importance, here laboratory techniques are the ideal option, as their accuracy is higher than

portable field devices. However, in this case pre-processing of soil samples could also

enhance the prediction accuracy and enable more reliable results to be obtained.

With recent advances in proximal soil sensing and data mining techniques, portable field

equipment is now available that can carry out measurements in situ for rapid detection and

screening with good to acceptable accuracy. However, it is important to note that there are

many challenges associated with field spectroscopy, among others, surface roughness,

texture, moisture content, plant residues and gravels are the parameters with the most

negative effects. Compared to laboratory spectroscopy, field spectroscopy requires extra

attention to eliminate the effects of external (environmental) variables. Recent advances in

pre-processing algorithms to eliminate these external factors, such as external parameter

orthogonalization (EPO) and direct standardization (DS) are recommended by many studies

(145, 146). Moreover, data mining techniques such as machine learning methods when

combined with EPO and/or DS can deal with both linear and non-linear sources in the data

set and improve prediction accuracy (95, 147, 148). It can be hypothesised that the
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combination of multi-sensors using data fusion approach together with EPO and DS is the

ultimate solution for optimal prediction accuracy for in situ measurement of PTEs. Future

work is needed to confirm this assumption, although developments in agriculture has already

demonstrated its general validity.

For decision-making, important factors such as analysis run time, cost per sample,

operational skills required and portability need to be considered. The portable vis-NIRS,

MIRS, LIBS, and PXRFS are cost-effective, time-saving, and provide sufficient accuracy in

screening and monitoring PTE contamination levels in soil when compared to laboratory

analytical methods (16, 21). Portable field measuring techniques enable the collection of a

high number of samples that can cover the entire contaminated area in a relatively short

period, which is crucial for effective hazard assessment and remediation action planning

(149–151). High-resolution sampling offers a better understanding of the spatial distribution

of the area being studied by using geostatistical spatial interpolation and the Geographic

Information System as a mapping tool. This offers accurate elemental maps and derivation of

interpretive hazard maps for rapid and accurate remediation actions (151). In this context,

Suh et al. (150) developed an inexpensive, rapid and accurate mapping system for soil

subjected to Cu contamination using in situ PXRFS data corrected by reference Cu values

obtained from ICP-AES analysis at a mine site in South Korea. The authors reported accurate

prediction of Cu concentrations similar to those of ICP-AES with an excellent R2 values of

0.99. They concluded that the method is effective for mapping soil contamination if the

PXRFS databases and laboratory measurement (e.g., ICP-AES) are integrated (150). One

example of potential use of portable sensors is fusion between PXRFS and portable vis-NIRS

data for accurate and rapid prediction of PTEs (75), which can be integrated with satellite and

unmanned aerial vehicle-based hyperspectral imagining systems for large scale investigations

(152, 153).
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Table 2 shows the main factors to be considered in the decision-making process when

selecting analytical techniques for PTEs analysis. These factors can be linked to cost (device

and sample), detection (targeted analytes and LOD), the measurement scale, and the

operator’s skills. For example, the LIBS provides a wide range of analysis (more than 20

elements) at acceptable LOD (1-10 mg g−1). However, the initial cost for the device

($35,000-50,000), the cost per sample ($15-30), and the fact this a non-established

handheld/portable device for in situ measurements, limit the use of such a method for field

measurement.

On the other hand, portable spectroscopy systems such as vis-NIRS, MIRS, and PXRF are of

much lower instrument cost ($30,000-40,000) with per sample cost ($10-20) (Table 2). The

targeted analytes of these portable techniques cover the majority of PTEs (26 elements), with

PXRFS able to provide real-time measurement in the field with good accuracy (R2 = 0.80)

(56). Regarding operational skills, vis-NIRS, MIRS and PXRF spectroscopy all require low

to medium skills, whereas laboratory methods such as ICP-MS, OES, and AES require

medium to high skills, and NAA requires a high level of skill. This highlights an advantage

for portable techniques in that they do not need highly expert personnel for in situ

measurement and to provide hazard maps in less than one day (150).

(Table 2)

6. Conclusions

There are several well-established standard laboratory techniques for determining the

concentration and distribution of potentially toxic elements (PTEs) in soils. The methods

offer a diverse sensitivity range, are highly accurate down to trace level detection.

However, there are drawbacks such as sample extraction and analytical time required,

cost, and relatively high level of technical expertise needed. Thus there is a growing
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demand for in situ and real-time detection/measurement tool. This has contributed to the

development of new portable/handheld devices such as visible and near infrared (Vis-

NIR), mid infrared (MIR), laser-induced breakdown spectroscopy (LIBS), and X-ray

fluorescence (XRF) spectrometry, which offer rapid measurement and allow for the high

density sampling necessary for quantification and mapping of PTEs to support decisions

for e.g., land reclamation. However, there are still limitations related to soil matrix

properties such as variation in moisture content and soil texture that can reduce the

prediction accuracy. To overcome these issues, advanced pre-processing algorithms such

the external parameter orthogonalization (EPO) and direct standardization (DS) coupled with

machine learning techniques such as support vector machine (SVM) or the random forest

(RF) can be used. An artificial neural network (ANN) that can cope with nonlinearities in the

spectral responses of the soil can eliminate the influence of these variables and improve

prediction accuracy. Moreover, data fusion technique that merge data from different

sensors, or predictions of different models, can improve estimation accuracy. However,

much research is still needed in the area of portability and real-time prediction based on

spectroscopic techniques that can speed up the field measurement, and maybe

revolutionise the way we conduct risk assessment or site investigation.
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Table 1 Summary of case studies for estimation of potentially toxic elements (PTEs) concentrations in soils using visible and near-infrared spectroscopy (Vis-NIRS), mid-1

infrared (MIRS), and X-ray fluorescence spectroscopy (XRFS), and laser-induced breakdown spectroscopy (LIBS) in soil matrices from different regions over the world.2

3

Elements Country
Samples

No

Spectral
range
(nm)

Pre-
processing

Range
(mg kg−1)

Regression
technique

R2 RMSE RPD Reference

Vis-NIRS
Cd Netherlands 69 400-2500 FD+ NM – PLSR 0.88 0.72 - (113)

Zn – 0.90 112.52 -

As Spain 214 350-2500 AB+ FD 7–442 ANN, MLR 0.85, 0.83 SEP=0.007-0.007 3.28, 3.83 (7)

Cd 0.05–14.8 0.49, 0.51 0.085,0.07 0.96, 1.23

Cu 17.5–521 0.44, 0.54 0.09, 0.085 0.84, 1.23

Hg 0.01–13.9 0.92, 0.95 0.033, 0.027 4.30, 5.77

Sb 196–3362 0.92, 0.92 0.028, 0.033 4.55, 4.66

Pb 17.5–3331.5 0.94, 0.94, 0.028, 0.031 5.89, 5.30

Zn 94.0–3887.0 0.22, 0.23 0.08, 0.08 0.51, 0.59

Fe Poland 70 400-2498 MSC 0-160.0 PLSR 0.87 RMSD=9.2 (102)

Cd 0-38.0 0.54 5.13 -

Cu 3.0-78.0 0.61 10.3 -

Pb 0.0-6800 0.45 839.0 -

Ni 3.0-77.0 0.84 6.21 -

Zn 0-4500 0.67 526.0 -

Hg China 105 380-2500 AB, K-M 0.04–1.26 PCR 0.71 0.l5 - (121)

As China 120 900-2500 MSC 5.57–47.07 PLSR 0.65 1.65 - (103)

Cr 0.76 5.60 -
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Cu 9.60–73.40 0.62 7.61 -

Hg 0.04–1.26 0.59 0.117 -

Ni 10.60–57.50 0.86 2.21 -

Pb 22.30–208.00 0.66 4.97 -

Zn 43.90–625.00 0.62 13.6 -

As China 61 380-2300 CR 6.13–13.30 PLSR 0.72 0.86 1.90 (112)

Cd 0.22–0.54 0.20 0.05 1.23

Co 11.5–19.7 0.80 0.93 218.0

Cr 60.8–104.0 0.85 4.20 2.50

Cu 26.5–55.3 0.67 3.74 1.74

Ni 27.3–50.6 0.81 2.32 2.35

Pb 21.4–42.8 0.55 3.58 1.49

Zn 68.8–120.0 0.56 8.20 1.45

As Spain 49 350-2500 CR+ NM 292.2–826.9 SMLR, EMLR 0.84,0.88 0.12, 0.11 2.36, 2.56 (122)

Pb 1412.7–
18,811.3

0.53, 0.61 0.38, 0.37 1.36, 1.39

Zn 200.9–728.1 0.54, 0.59 0.22, 0.23 1.39, 1.38

As South
Korea

22 400-2400 CR 52.4–1493.8 SMLR, EMLR 0.37, 0.59 SEP= 0.27, 0.25 -, - (106)

Cu 21.9–252.6S 0.24, 0.81 0.21, 0.12 -,-

Pb 56.8–152.5 -, 0.27 -, 0.15 -,-

As China 33 350-2500 FD, CR 19.33–403.77 PLSR 0.61 0.24 (123)

Cu 31.83–190.51 0.39 0.20

Fe 28.14-64.20 0.43 0.12

Cu Germany 109 400-2500 MSC 8-1823 0.75 151.4 - (124)

Pb 0-605 0.75 58.1 -



45

Zn 40-1322 0.81 117.5 -

Fe - 0.84 4960 -

Mn - 0.70 363.3 -

Pb USA 24 350-2500 8-1823 0.74 - (111)

Zn 0-605 0.76 -

Cu 40-1322 0.81 -

Cd - 0.42 -

Mn - 0.80 -

Cu 30 350- 2500 AB+ FD 1.670–332.18 UR 0.79 17.85 - (125)

Pb 2.480–50.920 0.65 0.91 -

Zn 73.76–269.53 0.61 22.51 -

Zn 43.90–625.00 0.62 13.6 -

Ni 120 380-2500 – PLSR, MARS 0.75, 0.93 2.94, 229 1.99, 2.56 (126)

Cr – 0.71, 0.83 5.54, 4.29 1.96, 2.54

Cu 0.55, 0.77 6.49, 4.62 1.49, 2.09

As 0.40, 0.53 1.14, 1.00 1.28, 1.46

Zn 0.48, 0.68 14.78, 11.41 1.37, 1.78

Pb 0.38, 0.60 5.92, 4.67 1.25, 1.59

Cd 0.69, 0.80 0.04, 0.04 2.45, 2.45

As 122 350-2500 FD-UVN 3.800–16.600 PLSR 0.45 1.60 1.13 (127)

Cd Non 0.081–1.441 0.30 0.16 0.97

Cr Non 30.990–113.90 0.98 19.46 1.01

Cu Non 9.100–55.500 0.92 5.45 1.54

Hg FD-UVN 0.030–0.330 0.83 0.048 1.23

Pb UVN 11.120–89.680 0.68 5.94 1.11
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MIRS
Fe Poland 70 2500-

25000
MSC 0.1–160 PLSR 0.97 4.10 (102)

Cd 0.1–35.0 PLSR 0.94 1.82

Cu 0.1–78.0 0.80 7.52

Pb 0.1–6800 0.66 662

Ni 0.5–75.0 0.98 1.88

Zn 0.5–4500 0.96 191

Cu Australia 49 2500-
25000

0.01–7.2 Cubist 0.14 0.65 1 (128)

Fe 2.6–500 0.49 35.30 1.3

Mn 0.67–152 0.15 18.66 1

Zn 0.05–11 0.15 0.90 1

As China 111 8000-
25000

SNV 3.73–16.51 PLSR 0.92 1.75 (129)

Cu 8.70–196.7 0.80 1.14

Zn 24.2–577.3 0.95 1.56

Pb 7.10–767.0 0.56 1.08

Cr 25.9–79.0 0.81 1.36

Al 34
European
countries

3130 2500–
20000

De-trend 329–65090 PLSR 0.83 0.13 2.4 (130)

Fe 380–133926 0.79 0.16 2.2

Ni 0.05–2475 0.77 0.24 2.1

Zn 1.50–1396 0.60 0.19 1.6

Cu 0.30–395 0.55 0.26 1.5

Mn 1.60–14969 0.54 0.27 1.5

Pb 1.60–1309 0.42 0.24 1.3

Se 0.08–6.8 0.40 0.19 1.3

Cd 0.005–7.5 0.40 0.29 1.3
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Hg 0.002–3.1 0.33 0.29 1.2

Ag 0.001–3.9 0.30 0.3 1.2

Ba Brazil 100 2500–
16,666

Absorbance 14.3–65 PLSR 0.91 16.1 3.4 (131)

Co 2.1–3.7 0.90 0.6 3.2

Cu 1.5–3.8 0.69 0.3 1.8

Mn 118.9–204.4 0.94 39.2 4.2

Ni 3.5–5.5 0.66 6.9 1.7

Zn 13.5–98.4 0.49 11.6 1.3

Al Germany 100 2500–
15,000

SNV +FD 4000–130,000 0.85 6672.48 (21)

As CR 1.9–2000 0.05 195.24

Cu CR 2.7–780 0.09 57.91

Fe SNV 1700–85,000 0.88 5405.27

Mn CR 33–3300 0.41 393.54

Ni MSC 2.5–81 0.70 7.84

Pb SNV FD 7.7–4200 0.00 438.31

Zn SNV 6.8–1700 0.22 184.56

PXRFS
Pb UK 81 5-40398 linear

regression
0.97 (63)

Cd 0-447 0.46

As 2.0-5646 0.87

Ni 1.0-84.0 0.34

Zn 3.0-25389 0.88

Mn 6.0-38267 0.74
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Fe 482-91566 0.97

Cu 3.0-5140 0.88

Pb USA 76 152-3590 linear
regression

0.98 4.1 (70)

Pb Ireland 17 80-30000 linear
regression

0.99 (62)

AS <LOD-1230 0.99

Cu 10-910 0.95

Zn 260-9000 0.84

Cd South
Korea

30 linear
regression

0.96 (61)

Pb 0.97

Cu 0.94

Zn 0.76

As 0.97

Ti Australia 75 0.95 (22)

Cr 72 0.87

Mn 75 0.99

Fe 75 0.98

Ni 27 0.51

Cu 75 0.99

Zn 75 0.99

As 45 0.97

Sr 75 0.97

Cd 23 0.99

Pb 75 0.99
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Al Ireland 322 0.6-9.7 Cubist 0.88 0.6 2.11 (30)

As 0.7-51.6 0.55 5.22 0.58

Ba 44.3-1178.9 0.90 40.35 1.66

Cd 0.01-5.0 0.86 0.23 0.57

Co 0.7-58.7 0.80 2.86 0.84

Cr 5.5-221.7 0.87 8.52 1.73

Cu 1.8-104.0 0.93 3.77 1.71

Fe 0.2-5.4 0.98 0.14 4.96

Hg 0.01-1.0 0.59 0.05 0.40

Mg 0.1-1.5 0.61 0.14 0.71

Mn 16.0-10287.0 0.90 316.41 0.90

Mo 0.1-14.4 0.82 0.52 0.57

Ni 1.7-176.0 0.84 5.84 1.27

Pb 5.2-123.0 0.82 7.21 1.02

AS UK 75 0.70 (56)

Zn 0.81

Cr China 111 Wavelet 0.99 (132)

Zn 0.99

Pb 0.99

As 0.98

Zn China 301 59.0-4194 PLSR 0.99 28.9 9.35 (75)

Ni 2.0-114 0.37 33.0 0.36

Cu 8.0-297 0.95 12.37 2.88

Pb 15.0-159 0.92 12.0 2.53
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As 1.0-53.0 0.73 6.56 0.92

Cu Italy 294 8-485 Linear
regression

0.95 (133)

Ni 13-194 0.93

Zn 50-2477 0.97

LIBS
Cr Italy 20 400-700 nm RSD %

1.64
(134)

Cu 9.11

Fe 3.02

Mn 5.56

Ni 14.18

Pb 5.32

Zn 11.55

Cu Brazil 59 ANN 0.96 0.50 (24)

Cr Italy 6 0.92 (135)

Al Spain 19 without PLSR 0.77 0.30 1.57 (89)

Ba FD + SNV 0.78 0.90 1.64

Ca MMN 0.80 0.10 1.66

Fe FD + SNV 0.85 0.02 1.91

Mg SNV 0.92 0.50 2.63

Si SNV 0.86 0.10 1.96

Cd China 50 Wavelet 211.9–232.9
nm

PLSR 0.97 0.051 (94)

Wavelet LS-SVM 0.98 0.034
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Cu
China 25

0.98
LOD (mg kg-1)
6.28

(25)

Pb 0.99 8.64

Zn 0.99 8.55

4

stepwise-MLR; MARS, multivariate adaptive regression splines; UR, univariate regression; AB, absorbance; CR, continuum removal; FD, first derivative; SEP, standard5

error of prediction; UVN, unit vector normalization; K-M, Kubelka−Munk; MSC, Multiplicative scatter correction; SNV, standard normal variate spectra.6
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Table 2. Advantages and limitations of most common laboratory and field optical and spectroscopic techniques for determining potential toxic elements (PTEs)

in soil samples.

Price range
(1000$)

Targeted
analytes

Sample
matrix

Cost
per

sample
($)

Limit of
detection

Accuracy
range

Advantages Limitations References

PXRF

25-40 26 Solid 10-20 mg kg-1 1-10% Fast, non-
destructive,
accuracy and
precision increase
with higher
element
concentration,
capable of
analysing a large
range of elements
from F to U, and
well suited for the
analysis of highly
homogeneous
materials.

Sensitive to matrix
effect, relatively
expensive to run,
and analysis is
slower.

(19, 50–52, 55, 56, 154)

LIBS

35-50 10-15 Solid 15-20 mg kg-1 1-10% Fast, destructive,
accuracy and
precision increase
with higher
element
concentration,
capable of
analyzing a large
range of elements,
and well suited for

Sensitive to matrix
and water content
effect, relatively
expensive to run.

(24, 77, 82, 89, 94)
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Price range
(1000$)

Targeted
analytes

Sample
matrix

Cost
per

sample
($)

Limit of
detection

Accuracy
range

Advantages Limitations References

the analysis of
highly
homogeneous
materials.

Vis-NIRS

20-40 - All
matrices

10-20 - - Fast, non-
destructive,
potable, and
suitable for on-line
measurement,
accuracy and
precision increase
in more
homogeneous
materials.

Sensitive to matrix
effect, needs to be
calibrated with
reference samples,
effects of moisture,
texture are moderate
on accuracy.

(16, 27, 29, 106, 107)

MIRS

30-40 - All
matrices

10-20 - - Very fast, non-
destructive,
portable, allows in
situ measurement,
accuracy and
precision increase
in more
homogeneous
materials

Sensitive to matrix
effect and soil
moisture, needs to
be calibrated with
reference samples,
and effects of
moisture, texture are
high on accuracy
and larger than in
the Vis-NIRS

(21, 30, 120, 143, 155)

Vis-NIRS = visible and near-infrared spectroscopy; LIBS = laser-induced breakdown spectroscopy; MIRS, mid-infrared spectroscopy; PXRF = portable x-ray

fluorescence spectroscopy; LOD = limit of detection.


