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Real-world processes may be improved through a combination of artificial intelligence and identification
techniques. This work presents a multidisciplinary study that identifies and applies unsupervised connec-
tionist models in conjunction with modelling systems. This particular industrial problem is defined by a
data set relayed through sensors situated on a robotic drill used in the construction of industrial storage
centres. The first step entails determination of the most relevant structures in the data set with the applica-
tion of the connectionist architectures. The second step combines the results of the first one to identify a
model for the optimal working conditions of the drilling robot that is based on low-order models such as
black box that approximate the optimal form of the model. Finally, it is shown that the most appropriate
model to control these industrial tasks is the Box–Jenkins algorithm, which calculates the function of a
linear system from its input and output samples.

Keywords: unsupervised learning; exploratory projection pursuit; black-box models

AMS 2000 Mathematics Subject Classification Codes: 68T99; 68U99

1. Introduction

The storage of goods under optimal conditions is an important industrial need that often calls for the

modernization or the replacement of existing facilities. Large storage centres often need to be built,

such as auto-carrier storage facilities. The drilling of reinforced concrete slabs, needed to install the

racks in these storage centres, is generally a manual task performed by the workforce. However, this

process may be automated, thereby reducing overall construction costs and shortening assembly

times, through the use of a drilling robot that is able to perform the aforementioned operations and

to use the drilling tool more economically and more efficiently. The robot must be able to calibrate

the position of the drill bits and their diameters, to determine which operations are required (such

as whether to take in, to filter or to recirculate the coolant while drilling), and to test the tool

conditions when automatically changing the drill bit and their diameters. Performing these tasks
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regularly improves assembly quality, and decreases drilling time and wear, all of which adds to

the duration of the drill bit and reduces corrective actions, saving both time and money. These

very real types of industrial problems may be analysed by a combination of conventional and

artificial intelligence (AI) models.

Unsupervised learning can be used initially, in the first step, prior to the establishment of the

model, to analyse the internal structure of the data sets. Consequentially, we need to know whether

the data sets are relevant, i.e., to know whether discrimination between any two different models

in the set is in fact possible. Exploratory projection pursuit (EPP) [5] is a statistical method aimed

at solving the difficult problem of identifying structures in high-dimensional data. In EPP, most

projections of high-dimensional data onto arbitrary lines through most multi-dimensional data

give almost Gaussian distributions [5], which is what usually defines a relevant structure.

Unsupervised learning, and specifically EPP, can be used in conjunction with classical identi-

fication techniques to define a model that can capture the dynamics of the real process. The

former is used to extract the relevant structures and relationships between features, in order to

guarantee that the data set obtained by the sensors during the experiments is sufficiently infor-

mative. Classical identification techniques model the operating conditions, in order to select the

optimum working parameters, which reduce the operating costs of the robot when performing the

aforementioned tasks.

This research presents a two-step procedure designed to identify the optimal conditions of a

pneumatic drill. This paper is organized as follows. Section 2 introduces the neural techniques

used to analyse the data in order to extract the relevant internal structures, which represents the

first step in the modelling process. Section 3 presents the classical identification techniques used

in the system modelling (second step). Section 4 provides details on the problem, the data set

description and an analysis and comparison of the best models and results, following which the

final section presents the conclusions and future research work.

2. EPP extraction of relevant internal structures

Principal component analysis (PCA) originated in work by Pearson [18], and independently by

Hotelling [12]. It describes multivariate data set variations in terms of uncorrelated variables, each

of which is a linear combination of the original variables. Its main goal is to derive new variables,

in decreasing order of importance, which are linear combinations of the original variables and

are uncorrelated with each other. PCA is a well-known technique that can be implemented by a

number of connectionist models [7,17]. It aims to find the orthogonal basis which maximizes the

variance of the data for a given dimensionality of basis. It has been the most frequently reported

linear operation involving unsupervised learning for data compression and feature selection.

The standard statistical EPP method [4,6] provides a linear projection of a data set. The data

projections make use of a set of basis vectors which best reveal the relevant structures of the data.

The relevancy is measured as interestingness, which is usually defined in terms of how far the

distribution is from the Gaussian distribution [19].

One neural implementation of EPP is maximum likelihood Hebbian learning (MLHL) [4,8].

The MLHL-based method has been widely used in the field of pattern recognition [2–4,8] as an

extension of PCA [7,17]. It identifies interestingness [4,6,8] by maximizing the probability of the

residuals using specific probability density functions that are non-Gaussian, which analyse the

fourth-order statistic or the kurtosis.

An extended version of this model is the cooperative MLHL (CMLHL) [2] model. CMLHL,

which is based on MLHL [4,8], adds lateral connections [2,3] which have been derived from the

rectified Gaussian distribution [19]. It is able to identify the independent factors of a data set, but

does so in a way that captures some type of global ordering in the data set.
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Consider an N-dimensional input vector (x), an M-dimensional output vector (y) and a weight

matrix W , where the element Wij represents the relationship between input xj and output yi .

Then, as shown in [2,3], CMLHL can be performed as a four-step procedure: first, the outputs are

calculated, see Equation (1), then the prediction is obtained Equation (2). Finally, the generated

error, calculated with Equation (3), is used to train the neural network by means of Equation (4).

Feed-forward step yi =

N
∑

j=1

Wijxj , ∀i (1)

Lateral activation passing yi(t + 1) = [yi(t) + τ (b − Ay)]+ (2)

Feedback step ej = xj −

M
∑

i=1

Wijyi, ∀j (3)

Weight adjustment step "Wij = η · yi · sign(ej )|ej |
p−1 (4)

Where t is the temperature, [ ]+ is necessary to ensure that the y-values remain within the positive

quadrant, η is the learning rate, τ is the “strength” of the lateral connections, b is the bias parameter,

p is a parameter related to the energy function [2,4,8] and A is a symmetric matrix used to modify

the response to the data [2]. The effect of this matrix is based on the relation between the distances

separating the output neurons.

3. System modelling using conventional identification algorithms

3.1 The identification criterion

The identification criterion consists in evaluating which group of candidate models is best adapted

to the data set prepared for the experiment and which best describes it; i.e., given a certain model

M(θ∗) its prediction error may be defined by Equation (5). The aim is to obtain a model that

complies with the following premise [13]: a good model is one that makes good predictions, and

which produces small errors when it is applied to the observed data, i.e., on any one data set Zt ,

it will calculate the prediction error ε(t , θ ), Equation (5), in such a way that, for any one t = N ,

a particular θ̂N (estimated parametrical vector) is selected, so that the prediction error ε(t, θ̂N ) in

t = 1, 2, 3, . . .N , is minimized.

ε(t, θ∗) = y(t) − ŷ(t |θ∗) (5)

The estimated parametrical vector θ̂ that minimizes the error, Equation (7), is obtained from

the minimization of the error function VN (θ, ZN ). This is obtained by applying the least squares

criterion to the linear regression, i.e., by applying the quadratic norm ℓ(ε) = 1/2ε2, Equation (6).

VN (θ, ZN ) =
1

N

N
∑

t=1

1

2
(y(t) − ŷ(t |θ))2 (6)

θ̂ = θ̂N (ZN ) = arg min
θ∈DM

VN (θ, ZN ) (7)

Black-box structures [13] have the advantage of only requiring very few explicit assumptions

with regard to the pattern that is to be identified, but that in turn makes it difficult to quantify the

model that is obtained. The discrete linear models may be represented through a combination of
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deterministic and stochastic models, as in Equation (8), in which, u(t) is the input, y(t) is the

output, G(q−1) is the transfer function from u(t) to y(t), H(q−1) is the transfer function from

e(t) to y(t), and q, q−1 are forward and backward shift operators. The term e(t) (white noise

signal) includes the modelling errors and is associated with a series of random variables, of mean

null value and variance λ.

y(t) = G(q−1)u(t) + H(q−1)e(t) (8)

The structure of a black-box model depends on how the noise affects the model [13]: H(q−1).

Thus, if this term is 1, then the FIR (finite impulse response) and OE (output error) models are

applicable; whereas a great range of models are applicable if it differs from zero: ARX (autore-

gressive with external input), ARMAX (autoregressive moving average with external input), BJ

(Box–Jenkins) and ARMA (autoregressive moving average) being the most common.

The structure may be represented in the form of a general model Equations (9) and (3.1), where

B(q − 1) is a polynomial of degree nb, which can incorporate pure delay nk in the inputs, and

A(q − 1), C(q − 1), D(q − 1) and F(q − 1) are autoregressive polynomials of degree na , nc,

nd and nf , respectively. It is also possible to use a predictor expression, for the on-step prediction

ahead of the output ŷ(t |θ) (10). The values of na , nb, nc, nd , nf and nk are parameterized.

A(q−1)y(t) = q−nk
B(q−1)

F (q−1)
u(t) +

C(q−1)

D(q−1)
e(t) (9)

ŷ(t |θ) =
D(q−1)B(q−1)

C(q−1)F (q−1)
u(t) +

[

1 −
D(q−1)A(q−1)

C(q−1)

]

y(t) (10)

A(q−1) =

na
∑

i=1

1 + ai(q
−1), B(q−1) =

nb
∑

i=1

bi(q
−i), C(q−1) =

nc
∑

i=1

1 + ci(q
−1),

D(q−1) =

nd
∑

i=1

1 + di(q
−1), F (q−1) =

nf
∑

i=1

1 + fi(q
−1) (11)

3.2 Modelling procedure for optimal performance of the drilling robot

The best model must be selected in order to estimate the optimal settings of the drilling robot. The

identification procedure includes establishing the identification techniques [9,10,13,15,16,20],

the selection of the model structure, the estimation of the suitable polynomial degree [11,21], the

identification criterion, and the optimization techniques in order to generate the final model.

Furthermore, the identification procedure includes a validation stage, which ensures that the

selected model meets the necessary conditions for estimation and prediction. Three tests were

performed to validate the model: residual analysis ε(t, θ̂(t)), by means of a correlation test between

inputs, residuals and their combinations; final prediction error (FPE) estimate as proposed by

Akaike [1]; and finally, the graphical comparison between desired outputs and the outcome of the

models through the simulation of one (or k) previous step(s).

4. Real-world application: the drilling robot industrial problem

This section presents the real-world application solved in this study. In this case, a company

that constructs storage centres needs reinforced concrete slabs to be drilled in order to erect the

facilities. A pneumatic drilling robot fitted diamond drill bits is used to drill holes in the concrete

slabs. The problem lies in how to select the most appropriate operating conditions in each case,
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so as to maximize the lifetime of the diamond drill bits and to reduce the operating costs. Up until

the present, company technicians have manually fixed the operational settings.

Several steps must be carried out, in order to model the optimal conditions for the robot.

First, a representative real-world data set must be generated by using sensors. Second, in the pre-

processing stage, the relevant selection of internal structures must be made. Finally, the model

must be generated on the basis of the most important variables and the relationships that have

been identified. Each of these steps is detailed as follows.

4.1 Generation of the data set

The first task involved the generation of the data set that reflected the most appropriate operating

conditions. Several data gathering experiments were performed using the drilling robot to drill

into reinforced concrete slabs. The number of samples of the experimental data set is limited

by economic constraints due to the high cost of the diamond drill bits. The guidelines on cutting

reinforced concrete considered in [14] were followed for the design and capture of the experimental

data, which were gathered from both the drilling tool and the drilling material, in order to identify

the optimal conditions related to aspects such as:

• A drill bit that only engages a concrete slab.

• A drill bit that engages a concrete slab and a small portion of a steel rebar.

• A drill bit that engages a steel rebar and a concrete slab.

The final data set included several input variables: wear on the drill bit, the force applied by the

drilling robot, and so on. The data set was gathered by drilling reinforced concrete slabs. Eighty

samples were taken, which is a relatively small number due to aforementioned costs.

4.2 Extraction of the relevant internal structures

As detailed in Section 2, PCA and CMLHL, which were both applied to this real-life problem,

are instrumental in identifying the internal structure of the data. They were applied to the data set

in order to select the features that best described the relationships between the robotic conditions

and in order to establish whether the data set was sufficiently informative. The results of applying

both methods (PCA to the left, and CMLHL to the right) are shown in Figure 1.

As may be seen, both methods have identified four different clusters and a clear internal

structure based on an initial classification relating to the speed factor. It may be affirmed that

CMLHL (Figure 1 – right-hand figure) provides a sparser representation than PCA (Figure 1 –

left-hand figure), due to the combined use of the MLHL-based method and the application of

lateral connections.

Having analysed the overall global results, an interesting internal structure was identified from

the existence of four clearly different groups (Figure 1 – left-hand figure). When the data set was

considered sufficiently informative, the second step in the process began. This step accurately

and efficiently optimizes the model of the robotic drilling system, through the application of

several conventional modelling systems. In the first phase, it was evident from the original data

set that only four variables were relevant when estimating wear on the tool: the force applied by

the drilling robot, the rotation speeds of the drill bits, the flow of coolant to the bit head and the

drilling time. These four variables were used as input in the second step of the process.

Both methods were able to perform an initial classification based on data relating mainly to the

speed factor. Evidently, CMLHL (Figure 1 – right-hand figure) provides sparser representation

than PCA (Figure 1 – left-hand figure) as the four more expansive clusters revealed by CMLHL

provide more visual information.After studying the internal structure of the four CMLHL clusters,
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Figure 1. The CMLHL projection on the right shows a wider data spread than the PCA projection on the left. The three
axes of this 3D representation are the “the strength applied to the drilling robot”, “the drilling time used” and “the speed
of the bits of the drilling robot”.

it was evident that the classification was mainly based on the speed factor, and also to a lesser

extent on the strength applied and the drilling time.

4.3 System identification to model the optimal conditions for the drilling robot

The different training methods for the model were implemented in Matlab© making use of tool-

boxes – function libraries for Matlab – the System Identification Toolbox and the Control System

Toolbox. The experiment followed the identification procedure detailed in Section 3.2: the model

structures were analyzed in order to obtain the models that best suited the data set. The Akaike

information criterion (AIC) was used to obtain the best model and the delay for each model

structure. A total of 36 techniques were carried out to obtain the models, which included:

• The frequency response analysis based on the spectrum analysis, and the fast Fourier transform

(FFT) to determine the data dynamics.

• The FIR method correlation analysis, which was used to determine the steady-state conditions.

• The black-box models synthesis: up to 31 different combinations of model structures and

optimization techniques were considered – such as least squares, the QR factorization method

for ARX models and the RARMAX recursive normalized gradient algorithm [13,20].

• Three different residual analyses based on cross-correlation were performed: residual analysis

between the residual R̂N
ε (τ ), between the residual and the input R̂N

εu(τ ) and the non-linear

residual correlation R̂N
ε2u2(τ ).

Several well known and widely used indexes in system identification [13,16,20] were applied

to validate the models:

• The percentage representation of the estimated model. This index is calculated as the normalized

mean error for the one-step prediction (FIT1), for the ten-step prediction (FIT10) and with the

∞-step prediction (FIT). The FIT is known as simulation in classical system identification.

• The graphical representation of the FIT1, ŷ1(t |m); the FIT10, ŷ10(t |m); or the FIT, ŷ∞(t |m).

• The loss function or error function (V ): the numeric value of the mean square error that is

computed with the estimation data set.



301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

International Journal of Computer Mathematics 7

• The generalization error value (NSSE): the numeric value of the mean square error that is

computed with the validation data set. Q2

• The FPE: the average generalization error value computed with the estimation data set.

The graphical representations of the ŷ1(t |m) and ŷ∞(t |m) for different models are shown in

Figure 2. The x-axis shows the number of samples used in the validation of the model and the

y-axis represents the normalized output variable range. That is, the normalized wear of the tool.

The validation data set includes 20 samples, which are distributed in 0.1 s intervals.

Figure 2. Representation of system output, simulated output and one-step-ahead prediction for four black-box models.
The order of the structure of the model is na = 4, nb = 2, nc = 3, nd = 2, nf = 4, nk = 3 [4, 2, 3, 2, 4, 3] according to
the model type. The solid line represents the output variable and the dashed line represents estimated output.
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Table 1. Indicator values for several proposed models.

Model Indexes

Black-box OE model with nb = 2, nf = 4, nk = 2, which is estimated using the
prediction error method. The model selection is based on the best AIC (the structure
that minimizes the AIC).

FIT: 91.56%; FIT1: 91.56%

FIT10: 91.5%; V : 0.04

FPE: 0.02; NSSE: 0.0003

Black-box OE model with nb = 2, nf = 4, nk = 3, which is estimated using the
prediction error method. The model selection is based on the best AIC (the structure
that minimizes the AIC).

FIT: 96.33%; FIT1: 96.33%

FIT10: 96.33%; V : 0.05

FPE: 0.02; NSSE: 0.00005

Black-box BJ model with nb = 2, nc = 3, nd = 2, nf = 4, nk = 2, which is estimated
using the prediction error method. The model selection is based on the best AIC (the
structure that minimizes the AIC).

FIT: 94.56%; FIT1: 94.69%

FIT10: 94.1%; V : 0.005

FPE: 0.009; NSSE: 0.0001

Black-box BJ model with nb = 2, nc = 3, nd = 2, nf = 4, nk = 3, which is estimated
using the prediction error method. The model selection is based on the best AIC (the
structure that minimizes the AIC).

FIT: 97.7%; FIT1: 98.98%

FIT10: 98.98%; V : 0.02

FPE: 0.02; NSSE: 0.00001

Table 2. Function and parameters that represent the behaviour of the drilling robot. The polynomial degrees of the BJ
model are nb = 2, nc = 3, nd = 2, nf = 4, nk = 3 [2, 3, 2, 4, 3].

Parameters and polynomials

B1(q) = −0.04883 q−3
− 0.01538 q−4 D(q) = 1 − 0.4843 q−1

− 0.3384 q−2

B2(q) = −0.000169 q−3 + 9.223e − 005 q−4 F1(q) = 1 − 0.4102 q−1
− 0.1256 q−2

− 0.03927 q−3 + 0.04401 q−4

B3(q) = −0.145 q−3 + 0.1575 q−4 F2(q) = 1 − 1.158 q−1 + 0.3967 q−2 + 0.01603 q−3
− 0.1476 q−4

B4(q) = −0.0001203 q−3 + 0.0001846 q−4 F3(q) = 1 − 1.241 q−1 + 0.412 q−2
− 0.006801 q−3

− 0.1674 q−4

C(q) = 1 + 0.6335 q−1 + 0.5132 q−2 F4(q) = 1 − 1.556 q−1 + 0.6325 q−2
− 0.3091 q−3 + 0.3692 q−4

+0.3435 q−3 e(t) is white noise signal with variance 0.11

From the above graphs, it may be concluded that both the OE and the BJ models are capable of

simulating and predicting the behaviour of the drilling robot, as they both comply with the indi-

cators and, respectively, are capable of modelling 96.33% and 97.70% of the true measurements.

Table 1 shows a comparison of the estimations and predictions for the best models, as a function

of the model, the estimation method and the indexes. It was also found that the longer the system

delay nk , the higher the percentage representation of the estimated model. Table 2 shows the final

BJ model.

The model may be used to predict the wear of the drill bits and also to determine the optimal

conditions needed to minimize the same parameter. Bearing in mind that this is a polynomial

model, if all but one of the input variables are fixed, then the remaining variable can be calculated

and fixed in order to minimize wear on the tool.

5. Conclusions and future work

This paper has presented an investigation to identify the most appropriate modelling system to

solve a real-life industrial problem: the drilling robot. Several methods were investigated to achieve

the best practical solution to this challenging problem. This paper shows that the BJ model is better

adapted than the other models in this case, insofar as it is able to identify the best conditions and

to predict future circumstances. The BJ model can be used to estimate the wear of the tool, but

also to fix an input variable in order to minimize the wear of the tool when the rest of the input

variables are given.

Furthermore, a two-step procedure has been designed to obtain and to validate the model: a

first step, which applies unsupervised connectionist architectures to identify the relevant internal
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structures of a data set, to establish whether it is informative enough, and then to identify the

most significant variables to be used in the second step. The second step uses conventional system

identification techniques to identify the most appropriate model. The aim of this procedure is to

reduce the time spent searching for the most appropriate model, which is achieved in the first

phase, when the relevant structures are identified. Were the data set not informative enough, a

further set of experiments would have to be performed with the drilling robot.

Future work will focus on the study and application of other modelling systems. This modelling

system will also be applied to the automation of similar industrial problems that are of interest.
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