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SUMMARY

Full Waveform Inversion updates the subsurface model iter-

atively by minimizing a misfit function, which measures the

difference between observed and predicted data. The conven-

tional l2 norm misfit function is widely used as it provides

a simple, sample by sample, high resolution misfit function.

However it is susceptible to local minima if the low wavenum-

ber components of the initial model are not accurate. A decon-

volution of the predicted and observed data offers an extend

space comparison, which is more global. The matching fil-

ter calculated from the deconvolution has energy focussed at

zero lag, like a Dirac Delta function, when the predicted data

matches the observed ones. We use the Wasserstein distance to

measure the difference between the matching filter and a Dirac

Delta function. Unlike data, the matching filter can be eas-

ily transformed to a distribution satisfying the requirement of

optimal transport theory. Compared with the conventional nor-

malized penalty applied to non-zero lag energy in the matching

filter, the new misfit function is a metric and has solid math-

ematical foundation based on optimal transport theory. Both

synthetic and real data examples verified the effectiveness of

the proposed misfit function.

INTRODUCTION

Full waveform inversion (Virieux and Operto, 2009) is a non-

linear inversion process, and thus, we iteratively update the

subsurface model to reduce the mismatch between the pre-

dicted and observed seismic data. Mathematically, we design

a misfit function that characterizes such mismatch. Designing

a misfit function is an important ingredient of the optimiza-

tion problem: a well-behaved misfit function would release

the requirement for a good initial velocity model or usable low

frequency signal in the data and resolve the so-called ”cycle

skipping” issue. Over the past decade, the least square l2 norm

was widely used as a misfit function for its simplicity and its

potential for high resolution models, but it surfers from ”cycle

skipping”. Recently, new and more advanced misfit functions

were proposed, such as matching filter based misfit function

(Van Leeuwen and Mulder, 2008, 2010; Luo and Sava, 2011;

Warner and Guasch, 2016) and optimal transport misfit func-

tion (Engquist and Froese, 2014; Engquist et al., 2016; Mtivier

et al., 2016; Yang et al., 2018; Yang and Engquist, 2018; Qiu

et al., 2017). Those newly proposed methods transforms the

local, sample by sample comparison, to a global one, trace by

trace, or even traces by traces. As expected, the resulting mis-

fit function shows more convex behavior and can reasonably

mitigate the ”cycle skipping” issue.

A matching filter is computed for each trace by deconvolv-

ing the computed data from the observed data (Luo and Sava,

2011). If the velocity is correct, the resulting matching filter

should resemble Dirac Delta function with energy focussed at

zero time lag. We can design a misfit function by applying

a penalty on the time lag (Luo and Sava, 2011; Huang et al.,

2017) or with an additional normalization term to gain better

convexity (Warner and Guasch, 2016). In principle, all those

approaches try to measure the departure of the matching filter

from a Dirac Delta function.

In this abstract, we propose a new misfit function by combing

the matching filter measurement with optimal transport the-

ory resulting in a more elegant way of measuring the distance

between the matching filter and the Dirac Delta function. Cur-

rent implementations of optimal transport in FWI is limited

to measuring the distance between the predicted and observed

data directly (Engquist and Froese, 2014; Mtivier et al., 2016;

Yang et al., 2018). However, the optimal transport measure-

ment using Wasserstein distance requires the compared vari-

ables be distributions, i.e., they should be positive and their in-

tegration equals 1. As seismic signals are oscillatory, they do

not meet such a criterion. However, transforming the seismic

signal into a distribution (Qiu et al., 2017) directly would ei-

ther alter its amplitude or phase, which would potentially make

the subsequent inversion unstable and possibly inaccurate. In

order to resolve this issue, instead of measuring the distance

between the predicted and computed data directly, we suggest

computing a matching filter between the predicted and com-

puted data and then measure the distance between the resulting

matching filter and the Dirac Delta function. A precondition

would transform the resulting matching filter to a distribution

and since we are not modifying the predicted or observed data

directly, the phase and amplitude of the seismic signal are pre-

served and the following inversion process should be stable

and accurate. Compared with previous approaches for mea-

suring the distance such as using a penalty method, the new

misfit function is a metric and has solid mathematical founda-

tion based on the optimal transport theory.

In the following, we review of the the optimal transport theory

and then propose a misfit function by combing the matching

filter and optimal transport theory. Finally, we use a modified

Marmousi model and a marine real dataset from Australia to

demonstrate the effectiveness of the proposed method.

CONVENTIONAL OPTIMAL TRANSPORT: WASSER-

STEIN DISTANCE BETWEEN PREDICTED AND OB-

SERVED DATA

There are several types of misfit functions designed based on

optimal transport theory (Engquist et al., 2016; Mtivier et al.,

2016; Yang et al., 2018). Here, we mainly follow the approach

of Yang et al. (2018). We start with a review of the method

and for details, we refer you to Yang et al. (2018). Consid-

ering the predicted data p(t) for the current available model

and observed data d(t), the optimal transport suggests that we
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can use the Wasserstein distance to design a misfit function as

follows:

J = minT

∫

|t −T (t)|2 p(t)dt, (1)

where T is the transport plan, which maps the mass in distri-

bution of p into d. For a 1D problem, an explicit formula exits

for the Wasserstein distance :

J =

∫

|t −D−1(P(t))|2 p(t)dt, (2)

where D−1 is the inverse function of D, D and P are the cumu-

lative distribution functions: D(t)=
∫ t

0 d(t ′)dt ′,P(t)=
∫ t

0 p(t ′)dt ′.

The optimal transport theory requires that functions d and p be

distributions: d(t) ≥ 0, p(t) ≥ 0 and
∫

d(t)dt =
∫

p(t)dt = 1.

However, the seismic signal is oscillatory with zero mean. Pre-

conditioning of the data is often needed to fulfill this require-

ment, e.g., adding a large value to make the signal nonnegative,

followed by a normalization to make the summation equals 1

(Yang and Engquist, 2018). As we suggested before, for the

conventional optimal transport approach, this modification of

the predicted and observed data would alter the amplitude or

phase of the seismic signal, which may negatively impact the

inversion and cause it to be unstable and inaccurate.

A NEW MISFIT FUNCTION : WASSERSTEIN DISTANCE

BETWEEN MATCHING FILTER AND DIRAC DELTA

FUNCTION

Conventional optimal transport approaches measure the Wasser-

stein distance between the predicted data p(t) and observed

data d(t) directly. In this section, we propose to measure Wasser-

stein distance between a matching filter extracted from decon-

volving the observed data from the predicted data and Dirac

Delta function instead. Thus, at first, given observed data d(t)
and computed data p(t), we compute a matching filter w(t):

d(t)∗w(t) = p(t), (3)

where ∗ denotes the convolution operation. Equation 3 is a

linear equation, and the matching filter can be computed either

in the time domain or in frequency domain as:

w(t) = F
−

[

F [p(t)]F [d(t)]

F [d(t)]F [d(t)]+ ε

]

, (4)

where F and F− denote the Fourier transform and its inverse,

respectively, overline denotes for the complex conjugate, and

ε has a small positive value to avoid dividing by zero. Next,

we measure the Wasserstein distance between the matching fil-

ter w(t) and the Dirac Delta function. In order to full-fill the

requirement of the optimal transport theory, we precondition

and modify w(t) to be a distribution. We suggest to square it

and normalize it as follows:

w′(t) =
w2(t)

∫

w2(t)dt
=

w2

||w||22
. (5)

When the model parameters are accurate, the resulting match-

ing filter reduces to a ”Dirac Delta function”, this means the

”Dirac Delta function” δ (t) is the target. Based on the theory

of optimal transport, we use equation 2 directly and the new

misfit function becomes

J(w′
,δ (t)) =

∫

|t −∆
−1(W ′(t))|2w2(t)dt

||w||22
. (6)

Here, we use ∆ and W ′(t) to denote the commutative distribu-

tion function for Dirac Delta function δ 2(t) and the normalized

matching filter w′(t) respectively. ∆
−1 is the inverse function

for the commutative distribution function ∆. Because of the

singularity involved in Dirac Delta function, in practice, we

use a Gaussian function with a small standard deviation to ap-

proximate Dirac Delta function. For the proposed misfit func-

tion, in discrete form, the adjoint source can be computed as:

δ s =

(

∂w

∂ p

)H (

∂w′

∂w

)H (

∂J

∂w′

)H

, (7)

where H denotes complex transpose, the term
(

∂J
∂w′

)H
is the

same as adjoint source for the conventional optimal transport

misfit function (Yang and Engquist, 2018):

(

∂J

∂w′

)H

=

[

Udiag

(

−2w′(t)

δ (∆−1(W ′(t)))

)

+diag(t −∆
−1(W ′(t))

]

(t −∆
−1(W ′(t))),

(8)

where U is an upper triangular matrix whose nonzero values

are 1. The term
(

∂w′

∂w

)H
can be computed using equation 5:

(

∂w′

∂w

)H

= 2
[

diag(w(t))−w′(t)(w(t))H
)

. (9)

Term
(

∂w
∂ p

)H
can be obtained from the adjoint of equation 4:

(

∂w

∂ p

)H

= F
−diag

[

F [d(t)]

F [d(t)]F [d(t)]+ ε

]

F (10)

COMPARISON WITH AWI

Transforming the time coordinates so that the zero lag is at 0.5,

and the time axis scaled between 0 and 1, the adaptive wave-

form inversion (AWI) misfit function (Warner and Guasch, 2016)

can be expressed as:

JAWI =

∫

|t −0.5|2w2(t)dt

||w||22
(11)

If we look back to the original definition of the optimal trans-

port in equation (1) where T (t) would define the mass trans-

port plan from distribution w′(t) to a Delta distribution. As the

Delta function has only energy at time t = 0.5, the transport

plan is fixed to be T (t) = 0.5. In this cases, our misfit function

would reduce to AWI exactly by setting the transport plan in

equation (6) to be 0.5, i.e., ∆
−1(W ′(t)) = 0.5. However, for

real applications, in which the seismic signal is band limited,

we could use band limited delta function rather than a singu-

lar one. In this case, ∆
−1(W ′(t)) provides the best transport
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plan for the given approximated target Delta function. In short,

our objective function is derived from optimal transport theory,

and thus, has a more general form. On the other hand, AWI

was derived from differential semblance analysis (DSO) con-

cept, combined with a normalization factor that helped con-

vergence. Well, our objective function demonstrates that the

normalization factor is necessary. Figures 1a and b show the

role of ∆
−1(W ′(t)) for different choices of near zero lag func-

tions as objectives for optimal transport, compared to setting it

to 0.5 as in AWI. In both figures, we use a matching filter given

by a random function. We can see from Figure 1a that when we

approximate the Dirac Delta function with a Gaussian distribu-

tion of relatively large standard deviation, the resulting penalty

would increase, followed by a decrease, while AWI continues

to increase (equals to (t−0.5)2). When we make the Gaussian

thin (low standard deviation of the distribution) and it becomes

more singular as shown in Figure 1b, as we discussed before it

would reduce to AWI with almost the same penalty.

EXAMPLES

In this section, we apply our approach to invert for the modi-

fied Marmousi model. The true velocity vtrue shown in Figure

2a extends 2 km in depth and 8 km, laterally. The initial ve-

locity is shown in Figure 2b. The dataset is modeled using 80

shots with a source interval 100 m and 400 receivers with an

interval of 20 m. We use a free surface boundary condition in

the modeling and this adds more nonlinearity and makes the

dataset more challenging for inversion . The source wavelet

is a Ricker wavelet with a 10 Hz peak frequency. We mute

the data below 3 Hz to verify that our proposed method is ca-

pable of overcoming the cycle skipping for data free of low

frequency. We invert the dataset in the time domain using the

proposed misfit function and the conventional l2 norm misfit

function, with the highest frequency equal to 5 Hz,10 Hz and

20 Hz, sequentially. The final inverted result for the l2 and pro-

posed method are shown in Figures 2c and 2d, respectively.

From the result, we can see that the proposed method better

recovers the true model both in the shallow and deeper parts

compared to the l2 norm conventional FWI, as l2 norm fails in

many areas dues to cycle skipping especially at depth.

The second example is a marine real data set from offshore

Australia (Sun and Alkhalifah, 2018). The offset range is from

160 to 8200 m. The initial velocity model converted form

RMS velocity is given in Figure 3a. We perform the inver-

sion using the proposed misfit function with a low pass filter

applied to the data equal to 3 Hz, 5 Hz, 10 Hz, 20 Hz, 40 Hz,

sequentially. During the inversion, TV regularization is used

to reduce the noise. The inverted model is shown in Figure

3b. The updated model shows consistent structures and high

resolution due to the high frequency inversion and TV regu-

larization. In the left panels of Figures 4a and 4b, we show

one selected common shot gather from the initial and inverted

models. We compare it with the recorded shot gather at the

same location in the right panel. Clearly, the observed model

reproduces the data that batter matches the observed data, es-

pecially at the larger offsets where cycle skipping usually hap-

pens, and it is evident for the initial model. Considering the

initial velocity model is obtained from a crude RMS velocity,

we attribute the reasonable good result to the proposed misfit

function ability to handle cycle skipped data.

CONCLUSION

We proposed a misfit function, which utilizes a matching fil-

ter between the observed and predicted data, and uses the op-

timal transport concept to build a model that transforms the

matching filter to a form that makes the predicted data fit the

observed one, and that is a Dirac Delta function. The match-

ing filter, unlike data, is better suited to be transformed to a

distribution, which is required for the optimal transport. The

resulting objective function derived using the Wasserstein dis-

tance provides a much wider basin of attraction than newly

developed objective functions dedicated to avoiding the cycle

skip problem. A Marmousi synthetic and an offshore real data

examples verified the effectiveness of the proposed method in

resolving cycle skipping problem.
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(a)

(b)

Figure 1: A comparison between the penalty term of our pro-

posed misfit function and AWI when set the approximated

Dirac Delta function to be a Gaussian function with (a) a large;

and (b) a small standard deviation.
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Figure 2: a) The true Marmousi velocity; b) the initial velocity;

the inverted model based on c) the l2 norm misfit function ; (d)

the proposed misfit function.

(a)

(b)

Figure 3: a) The initial model ; b) The inverted model.

(a)

(b)

Figure 4: Right panel is the shot record of the real seismic data

while left panel is the modeled one from a) the initial model ;

b) the inverted model.
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