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Abstract—Cloud computing is a powerful new technology that 

is widely used in the business world. Recently, we have been 

investigating the benefits it offers to scientific computing. We 

have used three workflow applications to compare the 

performance of processing data on the Amazon EC2 cloud 

with the performance on the Abe high-performance cluster at 

the National Center for Supercomputing Applications (NCSA). 

We show that the Amazon EC2 cloud offers better 

performance and value for processor- and memory-limited 

applications than for I/O-bound applications.  We provide an 

example of how the cloud is well suited to the generation of a 

science product: an atlas of periodograms for the 210,000 light 

curves released by the NASA Kepler Mission. This atlas will 

support the identification of periodic signals, including those 

due to transiting exoplanets, in the Kepler data sets. 

Keywords-cloud computing; high-performance computing; e-

Science; formatting; exoplanets; periodograms; light curves; 

transiting planets; image processing; image mosaics 

I. INTRODUCTION  

Vast quantities of data are made available to scientists at 
an ever-accelerating rate, and sophisticated and innovative 
approaches to data discovery, data mining and analysis are 
being developed to extract the full scientific content 
contained in this data tsunami. The e-Science paradigm is 
enabling the synthesis of new data products through the re-
processing and re-sampling of existing data products. In this 
paper, we investigate the applicability of cloud computing to 
scientific applications. Cloud computing in this context 
refers to pay-as-you-go, on-demand compute resources made 
available by a third-party provider. 

We study the cost and performance of one cloud service 
provider, Amazon EC2 (http://aws.amazon.com/ec2/), in 
running workflow applications. We investigate the 
performance of three workflow applications with different 
I/O, memory and CPU requirements on Amazon EC2, and 
compare the performance of the cloud with that of a typical 
high-performance cluster (HPC). Our goal is to identify 
which applications give best performance on the cloud at the 
lowest cost. 

Finally, we describe the application of cloud computing 
to the generation of a new data product: an atlas of 
periodograms for the 210,000 light curves publicly released 
to date by the Kepler Mission. Kepler is designed to search 
for Earth-like exoplanets by observing their transits across 
their host star. The atlas of periodograms will support the 
identification of candidate exoplanets through the 
periodicities caused by the transits, as well as supporting 
studies of general variability in the Kepler data sets.  

II. EVALUATING APPLICATIONS ON THE AMAZON EC2 

CLOUD 

A. Goals of This Study 

Our goal is to determine which types of scientific 
workflow applications are cheaply and efficiently run on the 
Amazon EC2 cloud (hereafter, AmEC2). Workflows are 
loosely coupled parallel applications that consist of a set of 
computational tasks linked by data- and control-flow 
dependencies. Unlike tightly coupled applications, in which 
tasks communicate directly through the network, workflow 
tasks typically communicate using the file system: the output 
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files written by one task become input files to be read by 
dependent tasks later in the workflow. 

Given that AmEC2 uses only commodity hardware and 
given that applications make very different demands on 
resources, it is likely that cost and performance will vary 
dramatically by application. It was therefore important to 
study workflow applications that make different demands on 
resources. Thus the goals of this study are:  

 Understand the performance of three workflow 
applications with different I/O, memory and CPU 
requirements on a commercial cloud 

 Compare the performance of the cloud with that of a 
high-performance cluster (HPC) equipped with a 
high-performance network and parallel file system, 
and  

 Analyze the various costs associated with running 
workflows on a commercial cloud. 

B. Choice of Workflow Applications  

We have chosen three workflow applications because 
their usage of computational resources is very different:  
Montage (http://montage.ipac.caltech.edu) from astronomy, 
Broadband (http://scec.usc.edu/research/cme) from 
seismology, and Epigenome (http://epigenome.usc.edu) from 
biochemistry.   

Montage [1] is a toolkit for aggregating astronomical 
images in Flexible Image Transport System (FITS) format 
into mosaics. Broadband generates and compares intensity 
measures of seismograms from several high- and low-
frequency earthquake simulation codes.  Epigenome maps 
short DNA segments collected using high-throughput gene 
sequencing machines to a previously constructed reference 
genome.  Table I summarizes the relative resource usage of 
these three applications. The following three paragraphs give 
the technical specifications for the specific workflows used 
in this study. 

Montage was used to generate an 8-degree mosaic of 
M16 composed of images from the Two Micron All Sky 
Survey (2MASS; http://www.ipac.caltech.edu/2mass). The 
resulting workflow contained 10,429 tasks, read 4.2 GB of 
input data, and produced 7.9 GB of output data. Montage is 
considered I/O-bound because it spends more than 95% of its 
time waiting on I/O operations. 

Broadband used four earthquake source descriptions and 
five sites to generate a workflow containing 320 tasks that 
read 6 GB of input data and wrote 160 MB of output data. 
Broadband is considered to be memory-limited because more 
than 75% of its runtime is consumed by tasks requiring more 
than 1 GB of physical memory. 

The Epigenome workflow maps human DNA sequences 
to a reference copy of chromosome 21. The workflow 

contained 81 tasks, read 1.8 GB of input data, and produced 
300 MB of output data. Epigenome is considered to be CPU-
bound because it spends 99% of its runtime in the CPU and 
only 1% on I/O and other activities. 

C. Experimental Set-Up  

In this section we summarize the experimental set-up. 
For a complete description, see [2] and [3]. We compared the 
performance of AmEC2 with that of the Abe High 
Performance Cluster (hereafter, Abe) at the National Center 
for Supercomputing Applications (NCSA; 
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/I
ntel64Cluster), which is equipped with a high speed network 
and parallel file system to provide high-performance I/O. 

To provide an unbiased comparison of the performance 
of workflows on AmEC2 and Abe, the experiments 
presented here were all run on single nodes, using the local 
disk on both AmEC2 and Abe. For comparison we also ran 
experiments using the parallel file system on Abe. 
Intuitively, the parallel file system would be expected to 
significantly improve the runtime of I/O-intensive 
applications like Montage, but would be less of an advantage 
for CPU-intensive applications like Epigenome. 

Table II lists the five AmEC2 compute resources chosen 
for this study. We will refer to them by their AmEC2 
designations m1* and c1*. These resources span the range of 
hardware offered by AmEC2, and include 32-bit and 64-bit 
machines, with memories from 1.7 GB to 15 GB, and from 1 
to 8 cores. The m1* resources use Opteron processors, while 
the c1* resources use Xeon processors, which have the 
superior floating-point performance of the two (four floating-
point operations per cycle vs. two floating-point operations 
per cycle). 

The two Abe nodes use the same resource type—a 64-bit 
Xeon machine—but differ in the I/O devices used: abe.local 
uses a local partition for I/O, and abe.lustre uses a shared 
Lustre™ parallel file system. Both instances use a 10 Gbps 
InfiniBand™ network. The computational capacity of 
abe.lustre is roughly equivalent to that of c1.xlarge, which is 
useful when comparing the performance of Abe and AmEC2 
and in estimating the virtualization overhead of AmEC2. 

On AmEC2, executables were pre-installed in a Virtual 
Machine image, which is deployed on the node. The input 
data was stored in the Amazon Elastic Block Store (EBS) (a 
SAN-like storage service), while the output and intermediate 
files, as well as the application executables, were stored on 
local disks. For Abe, all application executables and input 
files were stored in the Lustre™ file system. For abe.local 
experiments, the input data were copied to a local disk before 
running the workflow, and all intermediate and output data 
were written to the same local disk. For abe.lustre, all 
intermediate and output data were written to the Lustre

TM
 file 

system. 
All jobs on both platforms were managed and executed 
through a job submission host at the Information Sciences 
Institute (ISI) using the Pegasus Workflow Management 
System (Pegasus WMS), which includes Pegasus [4] and 
Condor [5]. On AmEC2 we configured our VM image to 
start Condor worker processes when each node boots. The 

TABLE I.  SUMMARY OF RESOURCE USE BY THE WORKFLOW 

APPLICATIONS 

Application I/O Memory CPU 

Montage High Low Low 

Broadband Medium High Medium 

Epigenome Low Medium High 
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Condor workers were configured to fetch application jobs 
directly from the submit host. On Abe we provisioned 
resources by submitting pilot jobs, using Globus GRAM, to 
the local PBS scheduler. The pilot jobs were used to start the 
Condor workers on Abe nodes. By using pilot jobs we were 
able to set up an execution environment on Abe that was 
equivalent to the one used on AmEC2. 

III. EVALUATING APPLICATIONS ON THE AMAZON EC2 

CLOUD: RESULTS 

A. Performance Comparison Between Amazon EC2 and 

the Abe High Performance Cluster 

Fig. 1 compares the runtimes of the Montage, Broadband 
and Epigenome workflows on all the Amazon EC2 and Abe 
platforms listed in Table II.  Runtime in this context refers to 
the total amount of wall clock time, in seconds, from the 
moment the first workflow task is submitted until the last 
task completes. These runtimes exclude the following: 
 

 The time required to install and boot the VM, which 
typically averages between 70 and 90 seconds 
(AmEC2 only) 

 The latency in provisioning resources from Abe 
using the pilot jobs, which is highly dependent on 
the current system load (Abe only) 

 The time to transfer input and output data, which 
varies with the load on the Wide Area Network 
(WAN). In our experiments, we typically observed 
bandwidth on the order of 500-1000KB/s between 
AmEC2 and the submit host in Marina del Rey, 
California. 

 
This definition of runtime (also known as ―makespan‖) 

enables a one-to-one comparison of the performances of 
AmEC2 and Abe. The similarities between the specifications 
of c1.xlarge and abe.local allow us to estimate the 
virtualization overhead for each application on AmEC2.  

 

1) Montage (I/O-bound) 

The best performance was achieved on the m1.xlarge 
resource type. It has double the memory of the other types, 
and the extra memory is used by the Linux kernel for the file 
system buffer cache to reduce the amount of time the 
application spends waiting for I/O. This is particularly 
beneficial for an I/O-intensive application like Montage. 
Reasonably good performance was achieved on all resource 
types except m1.small, which is much less powerful than the 
other types. The AmEC2 c1.xlarge type is nearly equivalent 
to abe.local and delivered nearly equivalent performance 
(within 8%), indicating the virtualization overhead does not 
seriously degrade performance for this application.  
 

The most important result of Fig. 1 is a demonstration of 
the performance advantage of high-performance parallel file 
systems for an I/O-bound application. While the AmEC2 
instances are not prohibitively slow, the processing times on 
abe.lustre are nevertheless nearly three times faster than the 
fastest AmEC2 machines. A parallel file system could, in 
principle, be constructed from the raw components available 
in AmEC2, but without a high-speed network the I/O 
bottleneck would shift from the disk to the network.  AmEC2 
would need to deploy both a parallel file system and a high-
speed interconnect to make dramatic performance upgrades. 
Recently Amazon released a new resource type that does 
include a 10Gb interconnect, however, we have not yet 
investigated its performance.  

 

2) Broadband (Memory-bound) 
For Broadband the processing advantage of the parallel 

file system largely disappears: abe.lustre offers only slightly 
better performance than abe.local.  And abe.local’s 
performance is only 1% better than c1.xlarge, so 
virtualization overhead is essentially negligible. For a 
memory-intensive application like Broadband, AmEC2 can 
achieve nearly the same performance as Abe as long as there 
is more than 1 GB of memory per core. If there is less, then 
some cores must sit idle to prevent the system from running 
out of memory or swapping. Broadband performs the worst 
on m1.small and c1.medium, the machines with the smallest 

TABLE II.  SUMMARY OF THE PROCESSING RESOURCES ON AMAZON EC2 AND THE ABE HIGH-PERFORMANCE CLUSTER 

Type Architecture CPU Cores Memory Network Storage Price 

Amazon EC2 

m1.small 32-bit 2.0-2.6 GHz Opteron 1-2 1.7 GB 1 Gbps Ethernet Local $0.10/hr 

m1.large 64-bit 2.0-2.6 GHz Opteron 2 7.5 GB 1 Gbps Ethernet Local $0.40/hr 

m1.xlarge 64-bit 2.0-2.6 GHz Opteron 4 15 GB 1 Gbps Ethernet Local $0.80/hr 

c1.medium 32-bit 2.33-2.66 GHz Xeon 2 1.7 GB 1 Gbps Ethernet Local $0.20/hr 

c1.xlarge 64-bit 2.0-2.66 GHz Xeon 8 7.5 GB 1 Gbps Ethernet Local $0.80/hr 

Abe Cluster 

abe.local 64-bit 2.33 GHz Xeon 8 8 GB 10Gbps InfiniBand Local N/A 

abe.lustre 64-bit 2.33 GHz Xeon 8 8 GB 10 Gbps InfiniBand LustreTM N/A 

 



memories (1.7 GB). This is because m1.small has only half a 
core, and c1.medium can only be configured to use one of its 
two cores because of memory limitations.  

 

3) Epigenome (CPU-bound) 
As with Broadband, the parallel file system in Abe 

provides no processing advantage for Epigenome: processing 
times on abe.lustre were only 2% faster than on abe.local. 
Epigenome’s performance suggests that virtualization 
overhead may be more significant for a CPU-bound 
application: the processing time for c1.xlarge was some 10% 
larger than for abe.local. The machines with the most cores 
gave the best performance for Epigenome, as would be 
expected for a CPU-bound application. 

IV. COST-ANALYSIS OF RUNNING WORKFLOW 

APPLICATIONS ON AMAZON EC2 

AmEC2 itemizes charges for the use of all of its 
resources, including charges for: 

 Resources, including the use of VM instances and 
processing, 

 Data storage, including the cost of virtual images in 
S3 and input data in S3, 

 Data transfer, including charges for transferring 
input data into the cloud, and  

 Transferring output data and log files between the 
submit host and AmEC2. 

 

1) Resource Cost 
Fig. 2 clearly shows the trade-off between performance 

and cost for Montage. The most powerful processor, 
c1.xlarge, offers a three-fold performance advantage over the 
least powerful, m1.small, but at five times the cost. The most 
cost-effective solution is c1.medium, which offers 
performance of only 20% less than m1.xlarge but at five-
times lower cost. 

For Broadband, the picture is quite different. Processing 
costs do not vary widely with machine, so there is no reason 
to choose less-powerful machines. Similar results apply to 
Epigenome: the machine offering the best performance, 
c1.xlarge, is also the second-cheapest machine. 

 

2) Storage Cost 
Storage cost is made up of the cost to store VM images in 

the Simple Storage Service (S3, an object-based storage 
system), and the cost of storing input data in the Elastic 
Block Store (EBS, a SAN-like block-based storage system). 
Both S3 and EBS use fixed monthly charges for the storage 
of data, and charges for accessing the data, which can vary 
according to the application. The rates for fixed charges are 
$0.15 per GB/month for S3, and $0.10 per GB/month for 
EBS. The main difference in cost is that EBS is charged 
based on the amount of disk storage requested, whereas S3 
only charges for what is used. Additionally, EBS can be 
attached to only one computing instance, whereas S3 can be 
access concurrently by any number of instances. The 
variable charges for data storage are $0.01 per 1,000 PUT 
operations and $0.01 per 10,000 GET operations for S3, and 
$0.10 per million I/O operations for EBS. 

The 32-bit image used for the experiments in this paper 
was 773 MB, compressed, and the 64-bit image was 729 
MB, compressed, for a total fixed cost of $0.22 per month. 
The fixed monthly cost of storing input data for the three 
applications is shown in Table III. For the experiments 
described in this study, there were 4,616 S3 GET operations 
and 2,560 S3 PUT operations for a total variable cost of 
approximately $0.03. In addition, there were 3.18 million I/O 
operations on EBS for a total variable cost of $0.30. 

TABLE III.  MONTHLY STORAGE  COST 

Application Input Volume Monthly Cost 

Montage 4.3 GB $0.66 

Broadband 4.1 GB $0.66 

Epigenome 1.8 GB $0.26 

 

3) Transfer Cost 

 
In addition to resource and storage charges, AmEC2 

charges $0.10 per GB for transfer into the cloud, and $0.17 
per GB for transfer out of the cloud. Tables IV and V show 
the transfer sizes and costs for the three workflows. ―Input‖ 
is the amount of input data to the workflow, ―output‖ is the 

 
Figure 1.  The processing times for the Montage, Broadband and 

Epigenome workflows on the Amazon EC2 cloud and the High 

Performance Cluster. The legend identifies the processors. 

 
Figure 2.  The processing costs for the Montage, Broadband and 

Epigenome workflows for the Amazon EC2 processors given in the legend. 

 



amount of output data, and ―logs‖ refers to the amount of 
logging data recorded for workflow tasks and transferred 
back to the submit host. The cost of the protocol used by 
Condor to communicate between the submit host and the 
workers is not included, but it is estimated to be much less 
than $0.01 per workflow. 

Table V summarizes the input and output sizes and costs.  
While data transfer costs for Epigenome and Broadband are 
small, for Montage they are larger than the processing and 
storage costs using the most cost-effective resource type.  
Given that scientists will almost certainly need to transfer 
data products out of the cloud, transfer costs may prove 
prohibitively expensive for high-volume applications. While 
the cost of transferring input data can be amortized by 
storing them in the cloud, the cost of transferring output data 
may be more difficult to reduce. 

TABLE IV.  DATA TRANSFER SIZES PER WORKFLOW ON AMAZON EC2 

Application Input Output Logs 

Montage 4,291 MB 7,970 MB 40 MB 

Broadband 4,109 MB 159 MB 5.5 MB 

Epigenome 1,843 MB 299 MB 3.3 MB 

TABLE V.  COSTS OF TRANSFERRING DATA INTO AND OUT OF THE 

AMAZON EC2 CLOUD 

Application Input Output Logs Total 

Montage $0.42 $1.32 $<0.01 $1.75 

Broadband $0.40 $0.03 $<0.01 $0.43 

Epigenome $0.18 $0.05 $<0.01 $0.23 

 

AmEC2 end-users of I/O-intensive applications 
producing large outputs need to give serious consideration to 
the trade-off between storage cost and transfer cost. Users 
may transfer input data for each run of a workflow, or 
transfer input data once, and store them in the cloud for 
multiple workflow runs. The choice of approach depends on 
how many times the data will be used, how long the data will 
be stored, and how frequently the data will be accessed. In 
general, storage is more cost-effective for input data that is 
reused often and accessed frequently, and transfer is more 
cost-effective if data will be used only once. For the 
workflows tested in this paper, the monthly cost to store 
input data is only slightly more than the cost to transfer it 
once. Therefore, for these applications, it may be more cost-
effective to store the input data rather than transfer the data 
for each workflow, but a cost-benefit analysis should be 
performed in each case as part of selecting a processing and 
storage strategy.  

 

B. Sample Cost Effectiveness Study  

 
We provide here a simple example of a cost-effectiveness 

study to answer the question: Is it cheaper to host an on-
demand image mosaic service locally or on AmEC2? The 
costs described here are current as of October 2010. The 
calculations presented assume that the two services process 
requests for 36,000 mosaics of 2MASS images (total size 

10TB) of size 4 sq deg over a period of three years. This 
workload is typical of the requests made to an existing image 
mosaic service hosted at the Infrared Processing and 
Analysis Center 
(http://hachi.ipac.caltech.edu:8080/montage/). Table VI 
summarizes the costs of the local service, using hardware 
choices typical of those used at IPAC. The roll-up of the 
power, cooling and administration are estimates provided by 
IPAC system management. Table VII gives similar 
calculations for AmEC2; the costs there include the costs of 
data transfer, I/O etc.  Clearly, the local service is the least 
expensive choice. The high costs of data storage in AmEC2, 
and the high cost of data transfer and I/O in the case of an 
I/O-bound application like Montage, make AmEC2 much 
less attractive than a local service. An example of a much 
more cost-effective astronomy application will be given in 
Section V. 
 

TABLE VI.  COST PER MOSAIC OF A LOCALLY HOSTED IMAGE 

MOSAIC SERVICE 

 

Item Cost ($) 

12 TB RAID 5 disk farm and enclosure 

(3 yr support) 

12,000 

Dell 2650 Xeon quad–core processor, 

1 TB staging area 

5,000 

Power, cooling and administration 6,000 

Total 3-year Cost 23,000 

Cost per mosaic 0.64 

 

TABLE VII.  COST  PER MOSAIC OF A MOSAIC SERVICE 

HOSTED IN THE AMAZON EC2 CLOUD 

Item Cost ($) 

Network Transfer In 1,000 

Data Storage on Elastic Block Storage 36,000 

Processor Cost (c1.medium) 4,500 

I/O operations 7,000 

Network Transfer Out 4,200 

Total 3-year Cost 52,700 

Cost per mosaic 1.46 

 

V. SUMMARY OF THE COMPARATIVE STUDY: WHEN TO 

USE THE CLOUD? 

 Virtualization overhead on AmEC2 is generally 
small, but most evident for CPU-bound applications. 

 The resources offered by AmEC2 are generally less 
powerful than those available in high-performance 
clusters and generally do not offer the same 
performance. This is particularly the case for I/O–
bound applications, whose performance benefits 
greatly from the availability of parallel file systems. 
This advantage essentially disappears for CPU- and 
memory-bound applications. 

http://hachi.ipac.caltech.edu:8080/montage/


 End-users should understand the resource usage of 
their applications and undertake a cost-benefit study 
of the resources offered to establish a processing and 
storage strategy. They should take into account 
factors such as: 

 Amazon EC2 itemizes charges for resource 
usage, data transfer and storage, and the impact 
of these costs should be evaluated. 

 For I/O-bound applications, the most expensive 
resources are not necessarily the most cost-
effective. 

 Data transfer costs can exceed the processing 
costs for data-intensive applications.  

 Amazon EC2 offers no cost benefit over locally 
hosted storage, and is generally more expensive, 
but does eliminate local maintenance and energy 
costs, and does offer high-quality, reliable, 
storage. 

VI. APPLICATION TO CALCULATION OF PERIODOGRAMS 

A. The Need for High-Performance Periodogram 

Calculations 

The Kepler satellite (http://kepler.nasa.gov/), launched on 
06 March 2009, is a NASA mission that uses high-precision 
photometry to search for transiting exoplanets around main 
sequence stars. The French mission Convection Rotation and 
Planetary Transits (CoRoT; 
http://www.esa.int/esaMI/COROT/index.html), launched in 
late 2006, has similar goals. Kepler’s primary mission is to 
determine the frequency of Earth-sized planets around other 
stars. In May 2009, it began a photometric transit survey of 
170,000 stars in a 105 square degree area in Cygnus. The 
photometric transit survey has a nominal mission lifetime of 
3.5 years. As of this writing, the Kepler mission has released 
light curves of 210,664 stars; these light curves contain 
measurements made over 229 days, with between 500 to 
50,000 epochs per light curve. 

Analyzing these light curves to identify periodic signals, 
such as those that arise from transiting planets and from 
stellar variability, requires calculations of periodograms that 
reveal periodicities in time-series data and estimates of their 
significance. Periodograms are, however, computationally 
intensive, and the volume of data generated by Kepler 
demands high-performance processing. We have developed 
such a periodogram service, written in C, to take advantage 
of the ―brute force‖ nature of periodograms and achieve the 
required performance. The processing of each frequency 
sampled in a periodogram is performed independently of all 
other frequencies, and so periodogram calculations are easily 
performed in parallel on a machine cluster by simply 
dividing the frequencies among the machines available. In 
practice, the processing is managed by a simple front-end job 
manager that splits the processing across all available 
machines, and then combines the results. The code itself 
returns the periodogram, a table of periodicities and their 
significance, light curves phased to the periodicities and 
plots of the periodograms and light curves. 

The need for parallelization is shown in Table VI, which 
shows the processing times on a single Dell 1950 processor 
for three algorithms supported by the service.  

TABLE VIII.  PROCESSING TIMES FOR PERIODOGRAM ALGORITHMS ON  

A  DELL 1950 SERVER,  WITH 2 X 2.5 GHZ QUAD-CORE CPU’S WITH 8 GB 

MEMORY, RUNNING RED HAT LINUX 5.3 

# Data 

Points 

L-S BLS Plavchan # Periods 

Sampled 

1,000 25 s <15  s 50 s 100,000 

10,000 5 min 2 min 14 min 100,000 

100,000 40 min 15 min 2 hr 100,000 

420,000 9 hr  3 hr 41 hr 420,000 

 
These algorithms are: 
 

 Lomb-Scargle (L-S). Supports unevenly sampled 
data. Most useful for looking for sinusoidal-like 
variations, such as the radial velocity wobble of a 
star induced by an orbiting planet. [6, 7]  

 Box Least Squares (BLS). Optimized to identify 
"box"-like signals in time series data. Most useful 
for looking for transiting planets [8].  

 Plavchan. Binless phase-dispersion minimization 
algorithm. It identifies periods with coherent phased 
light curves (i.e., least ―dispersed‖). There is no 
assumption about the underlying shape of the 
periodic signal. [9]  

 
The processing times for light curves containing over 

100,000 points, representative of the data sets that Kepler 
and CoRoT are expected to generate, can take well over an 
hour, and can require days in the case of the Plavchan 
algorithm. When run on a 128-node cluster of Dell 1950 
processors, all the computations listed in Table VIII were 
sped-up by a factor of one hundred. 

 

B. Calculating Periodograms On The Cloud 

To support the scientific analysis of Kepler data, we 
wished to generate an atlas of periodograms of the public 
Kepler data, computed with all three algorithms for maximal 
science value. The atlas will be served through the NASA 
Star and Exoplanet Database (NStED; 
http://nsted.ipac.caltech.edu), along with a catalog of the 
highest-probability periodicities culled from the atlas. End-
users will be able to browse periodograms and phased light 
curves, identify stars for further study, and refine the 
periodogram calculations as needed. 

We have computed the atlas on AmEC2, and there are 
several very good reasons for choosing it over a local cluster. 
The processing would interfere with operational services on 
the local machines accessible to us. The periodogram service 
has the characteristics that make it attractive for cloud 
processing. It is strongly CPU-bound, as it spends 90% of 
the runtime processing data, and the data sets are small, so 
the transfer and storage costs are not excessive. It is an 
example of bulk processing where the processors can be 
provisioned as needed and then released.  

http://kepler.nasa.gov/
http://www.esa.int/esaMI/COROT/index.html
http://nsted.ipac.caltech.edu/


Table IX summarizes the results of a production run on 
the cloud. All 210,664 public light curves were processed 
with 128 processors working in parallel. Each algorithm was 
run with period sampling ranges of 0.04 days to 16.75 days 
and a fixed period increment of 0.001 days. The processing 
was performed in 26.8 hours, for a total cost of $303.06, with 
processing the major cost item at $291. The transfer cost is, 
however, significant because the code produced outputs of 
76 GB—some four times the size of the input data. 

The results showed that cloud computing is a powerful, 
cost-effective tool for bulk processing. On-demand 
provisioning is especially powerful and is a major advantage 
over grid facilities, where latency in scheduling jobs can 
increase the processing time dramatically. 
 

TABLE IX.  SUMMARY OF PERIODOGRAM CALCULATIONS ON THE 

AMAZON EC2 CLOUD 

    Result 

Runtimes 

Tasks 631,992 

Mean Task Runtime 6.34 sec 

Jobs 25,401 

Mean Job Runtime 2.62 min 

Total CPU Time 1,113 hr 

Total Wall Time 26.8 hr 

Inputs 

Input Files 210,664 

Mean Input Size 0.084 MB 

Total Input Size 17.3 GB 

Outputs 

Output Files 1,263,984 

Mean Output Size 0.124 MB 

Total Output Size 76.52 GB 

Cost 

Compute Cost $291.58 

Transfer Cost $11.48 

Total Cost $303.06 

VII. CONCLUSIONS 

Our study has shown that cloud computing offers a 
powerful and cost-effective new resource for scientists, 
especially for compute and memory intensive applications.  
For I/O-bound applications, however, high-performance 
clusters equipped with parallel file systems and high 
performance networks do offer superior performance.  End-
users should perform a cost-benefit study of cloud resources 
as part of their usage strategy. 

We have used the calculation of an atlas of periodograms 
of light curves measured by the Kepler mission as an 
example of how the Amazon cloud can be used to generate a 
new science product.  Although the monetary costs presented 
here were small, these costs can grow significantly as the 
number of curves grows, or as the search parameters are 
adjusted. As a result, commercial clouds may not be best 
suited for large-scale computations. On the other hand, there 
is now a movement towards providing academic clouds, such 
as those being built by FutureGrid (http://futuregrid.org/) or 
the National Energy Research Scientific Computing Center 
(NERSC) (http://www.nersc.gov/nusers/systems/magellan/) 
that will provide virtual environment capabilities to the 
scientific community.  What remains to be seen is whether 
the level of service provided by academia can be on the par 
with that delivered by commercial entities.  
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