
The Application of Dependence Analysis

to Software Architecture Descriptions

Judith A. Stafford1, Alexander L. Wolf2, and Mauro Caporuscio3

1 Department of Computer Science
Tufts University

Medford, MA 02155 USA
jas@cs.tufts.edu

2 Department of Computer Science
University of Colorado

Boulder, Colorado 80309-0430 USA
alw@cs.colorado.edu

3 Dipartimento di Informatica
Università dell’Aquila

I-67010 L’Aquila, Italy
caporusc@univaq.it

Abstract. As the focus of software design shifts increasingly toward
the architectural level, so too are its analysis techniques. Dependence
analysis is one such technique that shows promise at this level. In this
paper we briefly describe and illustrate the application of dependence
analysis to architectural descriptions of software systems.

1 Introduction

Traditionally, software architectures are described using informal, natural-
language documents. Box and arrow diagrams are often used to bring more
precision to the descriptions, but while they can reveal some ambiguous and
missing properties, they are not capable of modeling all the information pro-
vided in the natural-language specification, such as system behavior. Formaliza-
tion, as applied to software development at the architectural level, involves the
application of mathematically based modeling languages to capture structural
and behavioral properties of the components of a system. Above all, these lan-
guages provide support for rigorous analysis of a system early in the life cycle
and/or at high levels of abstraction. Additionally, a formally described software
architecture can serve as a vehicle for precise and unambiguous communication
among the stakeholders in a system, and can provide a means to accurately
capture domain-specific properties in ways that support domain-specific archi-
tectural generalizations.

The goal of formally describing and analyzing the structure and behavior of
a software system is not new. Formal approaches have been proposed and used
in various phases of software development and maintenance for as long as people
have recognized the challenges of software engineering. Formal design notations

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 52–62, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

The Application of Dependence Analysis 53

and their associated analyses, in particular, were a major focus of research in
the 1970s and early 1980s. Results ranged from techniques for describing and
analyzing module interconnection, which were intended to address static prop-
erties of component structure and import/export relationships, to techniques for
describing and analyzing concurrent processes, which were intended to address
dynamic properties of component interaction behavior.

Software architecture is but the latest framework within which researchers are
trying to attain the goal of formal system description and analysis. Its empha-
sis is on unifying and extending earlier techniques for description and analysis,
and in applying the resulting new techniques in the context of modern-day soft-
ware practice. Unification is coming about from considering how the component
structure of a system can be used to modularize the description and analysis of
behavioral properties such that those descriptions and analyses can be performed
in a more tractable, compositional manner. Extensions are being explored that
are enhancing the typing of components and their interfaces to account for dy-
namic interaction behaviors. And, finally, the application of formal approaches
is benefiting from the rapidly growing industry interest in system development
based on large-grain component assembly rather than on small-grain component
programming.

2 Formal Architectural Analysis

Research in architectural analysis centers on determining which specific proper-
ties are appropriate for this level of analysis, and on developing techniques to
carry out those analyses. The premise underlying this work is that the confidence
gained through analysis at an architectural level will translate into confidence
in other levels of the system.

Many techniques for analyzing software systems have been developed over
the past decades. Most, however, are ineffective for analyzing large systems.
This is particularly true for techniques aimed at analyzing concurrent systems,
where state explosion problems are especially acute. To make techniques for
these situations more tractable, traditional specification and analysis techniques
have been enhanced in a variety of ways. Software architecture can be seen as
another approach to attacking the problem by providing a particular method for
abstraction and modularization.

Automated analysis techniques can differ in the levels of assurance they pro-
vide. In general, the techniques trade off efficiency and tractability against pre-
cision and completeness. For instance, it may be possible to guarantee some
properties only under certain assumptions or conditions. Carefully chosen, those
assumptions and conditions can match well with the context in which the system
is anticipated to operate, and thus the analysis can provide useful information.

A desirable characteristic of any imprecise or incomplete analysis technique
used to examine a property is that it give no false positive results concerning
that property. In other words, it should never indicate the absence of a problem
when, in fact, there is a problem. On the other hand, it is reasonable to allow a

54 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

technique to indicate the possible presence of a problem, even if none truly exists,
and defer further analysis to some other automated analysis technique or to the
human. This characteristic is commonly referred to as conservatism. Clearly, the
most conservative analysis technique is one that indicates the possible presence
of an error in all situations. Such an absurd technique, while highly efficient (it
can be implemented using a constant function), is not of use. One goal of analysis
research is to increase the precision of conservative techniques such that they
are both efficient and useful.

3 Dependence Analysis

Dependence analysis involves the identification of interdependent elements of a
system. It is referred to as a “reduction” technique, since the interdependent
elements induced by a given inter-element relationship forms a subset of the sys-
tem. It has been widely studied for purposes such as code restructuring during
optimization, automatic program parallelization, test-case generation, and de-
bugging. Dependencies can be identified based on syntactic information readily
available in a formal specification. This type of analysis generally ignores state
information, but may incorporate some knowledge of the semantics of a language
to improve the precision of the results [6].

Dependence analysis as applied to program code is based on the relationships
among statements and variables in a program. Techniques for identifying and
exploiting dependence relations at the architectural level have also been devel-
oped [8,13,14,15]. Dependence relationships at the architectural level arise from
the connections among components and the constraints on their interactions.
These relationships may involve some form of control or data flow, but more
generally involve source structure and behavior. Source structure (or structure,
for short) has to do with system dependencies such as “imports”, while behavior
has to do with dynamic interaction dependencies such as “causes”. Structural
dependencies allow one to locate source specifications that contribute to the
description of some state or interaction. Behavioral dependencies allow one to
relate states or interactions to other states or interactions. Both structural and
behavioral dependencies are important to capture and understand when analyz-
ing an architecture.

4 Example: Aladdin

Aladdin [9] is a tool that identifies dependencies in software architectures. It was
designed to be easily adapted for use with a variety of architectural description
languages and has been demonstrated on the languages Acme [4] and Rapide [10].

If one thinks of an architectural description as a set of boxes and arrows in
a diagram, where the arrows represent the ability for a box, or some port into
or out of that box, to communicate with another box in the diagram, then one
can think about Aladdin as walking forwards or backwards from a given box,
traversing arrows either from heads to tails or vice versa. In Aladdin, the arrows

The Application of Dependence Analysis 55

are called links and the process of walking (i.e., performing a transitive closure)
over the links is called chaining.

If there is no knowledge about how a box’s input ports behaviorally relate to
it output ports, then a forward (backward) walk must include leaps from each
input (output) port that is reached to all output (input) ports. In that case, the
analysis is essentially being performed in a conservative manor at the compo-
nent level, which can lead to a high degree of false dependencies. If, instead, the
designer makes a precise statement about how input and output ports are re-
lated, presumably using an appropriately rich architecture description language,
then Aladdin can take advantage of this information to produce a more precise
reduction set.

The behavioral relationship among the input and output ports of a compo-
nent define the interaction behavior of that component. It is important to note
that the interaction behavior is not intended to capture the functional behavior
of the component. For example, the description of how a server interacts with its
clients is independent of the computation carried out by the server on behalf of
its clients. Aladdin uses a summarization algorithm operating on the description
of a component’s interaction behavior to identify possible relationships between
pairs of input and output ports. The resulting connections are called transitional
connections.

Conservative Precise

Fig. 1. Increasing Precision of Dependence Analysis.

Figure 1 illustrates the improvement in precision that can be gained when
transitional connections are included in the information used to determine possi-
ble dependencies. The solid arcs in this figure denote arcs that must be traversed
in order to identify a conservative set of dependencies. In the view of the system
shown on the left, the transitional connections are unknown. Therefore, when
tracing back from the circled port, one must assume that any stimulus applied
to input port could have contributed to a response on any output port. The lack
of information on the interaction behavior of the component forces the analysis
to include all components of the system in the dependency set. The existence
of the transitional connections in the view of the system on the right provides

56 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

information that allows the analysis to eliminate the component connected only
by the dashed arcs.

Rather than constructing a complete dependence graph, Aladdin’s analysis
is performed on demand in response to an analyst’s query. The query might
request information about the existence of certain specific kinds of anomalous
dependence relationships, or might request information about the parts of the
system that could affect or be affected by a specific port in the architecture. A
view of Aladdin’s interface is shown in Figure 2. A file containing a Rapide archi-
tectural specification is selected using the file menu. In this figure a specification
for a variant of the familiar gas station example was selected. The specification
is displayed in the left pane of the main Aladdin window. The right pane dis-
plays the list of component ports that have been identified from the architectural
description.

Rapide is a high-level, event-based simulation language that provides sup-
port for the dynamic addition and deletion of predeclared components. Rapide
descriptions are composed of type specifications for component interfaces and
architecture specifications for permissible connections among the components of
a system.

System behavior is described through architectural connection rules, state
transition rules, and patterns of events required to generate events that activate
the rules. System behavior can be simulated through execution of the Rapide
description. The results of a simulation of system behavior can be studied using a
representation called a poset. A poset is a partially ordered set of events captured
during a single simulation of a system.

Components are defined in terms of their interfaces. Three types of com-
ponents are described in Figure 3, which is the Rapide description of the gas
station problem. The component types are a pump, a customer, and an oper-
ator. In this simple example we see that interfaces specify several aspects of
the component’s interactions with other components. The declaration of in and
out actions specify the component’s ability to observe or emit particular events.
Implicitly declared actions represent events generated in the environment of the
system that are emitted by or watched for in an interface; the event start in the
first transition rule of the customer interface in Figure 3 is an example. Behav-
iors, which may involve local variables, describe the computation performed by
the component, including how the component reacts to in actions and generates
out actions. Computations are defined in an event pattern language [12], where
a pattern is a set of events together with their partial ordering. The partial order
of events is represented as a poset.

The analyst can instruct Aladdin to perform any of several queries. The
queries window shown at the top left in the figure appears when the analyst
selects the “Queries” menu item. The analyst can choose to see a list of ports
with no source or those with no target, which are two kinds of port-related
anomalies. The small window to the right of the window “Queries” contains a
list of all the ports in the specification that do not have targets. Ports with no

The Application of Dependence Analysis 57

Fig. 2. Use of Aladdin to Identify Anomalies and Perform Port-Based Queries.

source or no target may indicate an unspecified connection or they may indicate
a function of the component that is not used in this particular architecture.

The analyst can also choose to create a chain. If “Create chain. . .” is selected,
then the window “Get Query” appears. The analyst selects a query, in this case
the analyst wanted to see a chain of all the ports in the architecture that could
causally affect port R.ON. Dotty [3], a graph layout tool, is used to display the

58 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

type Dollars is integer; -- enum 0, 1, 2, 3 end enum;

type Gallons is integer; -- enum 0, 1, 2, 3 end enum;

type Pump is interface

action in O(), Off(), Activate(Cost : Dollars);

out Report(Amount : Gallons, Cost : Dollars);

behavior

Free : var Boolean := True;

Reading, Limit : var Dollars := 0;

action In Use(), Done();

begin

(?X : Dollars)(On ∼ Activate(?X)) where

$Free ||> Free := False; Limit := ?X; In Use;;

In Use ||> Reading := $Limit; Done;;

Off or Done ||> Free := True; Report($Reading);;

end Pump;

type Customer is interface

action in Okay(), Change(Cost : Dollars);

out Pre Pay(Cost : Dollars)Okay(), Turn On(), Walk(), Turn Off();

behavior

D : Dollars is 10;

begin

start ||> Pre Pay(D);;

Okay ||> Walk;;

Walk ||> Turn On;;

end Customer;

type Operator is interface

action in Request(Cost : Dollars), Result(Cost : Dollars);

out Schedule(Cost : Dollars), Remit(Change : Dollars);

behavior

Payment : var Dollars := 0;

begin

(?X : Dollars)Request(?X) ||> Payment := ?X; Schedule(?X);;

(?X : Dollars)Result(?X) ||> Remit($Payment - ?X);;

end;

architecture gas station() return root is

O : Operator; P : Pump; C1, C2 : Customer;

connect

(?C : Customer; ?X : Dollars) ?C.Pre Pay(?X) ||> O.Request(?X);

(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);

(?X : Dollars) O.Schedule(?X) ||> C1.Okay;

(?C : Customer) ?C.Turn On ||> P.On;

(?C : Customer) ?C.Turn Off ||> P.Off;

(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||> O.Result(?Y);

end gas station;

Fig. 3. Rapide Description of the Gas Station Example [11].

The Application of Dependence Analysis 59

resultant chain, which appears in the window “Dotty”. The chain is displayed as
a directed graph rooted at the node representing the specified port of interest,
in this case the node R.ON at the bottom of the graph. The arcs are labeled with
a relationship type and represent direct (or perhaps summarized) dependence
relationships between pairs of ports. The nodes of the graph represent all ports
that could cause, directly or indirectly, the port of interest, the event R.ON, to
be triggered.

This query was performed in order to help identify the cause of a failure in a
Rapide simulation of the gas station. In the simulation it was discovered that A2
was never allowed to refuel. The cause of this is apparent from viewing the chain,
and in fact could have been discovered through running an anomaly check prior
to simulation, since the event A2.OKAY has no source. Through examination of
the chain, the analyst determines that the problem occurs because O.REQUEST
must record the source of a request so that the appropriate OKAY can be triggered.

Aladdin takes advantage of the behavior section of Rapide interface defini-
tions. Aladdin applies a summarization algorithm to the behavioral description in
order to identify the transitional connections in the Rapide description. Aladdin
can also be used in conjunction with Rapide’s simulation tools. If a specification
error is detected during a simulation, Aladdin can be used to identify a reduced
set of description elements.

As another example, consider the architecture depicted in Figure 4. The
components and relationships shown in this figure represent the architecture of
a software system called MobiKit [1], which supports the mobility of clients of
a distributed publish/subscribe service. Clients of the system first “move out”
from one location and then “move in” to a new location. Figure 5 shows a portion
of a forward chain resulting from this architecture. The analysis reveals a lack
of coordination in the architecture. For example, a mobile client can perform a
moveIn operation before the moveOut is completed.

Aladdin can also be used independently of any particular architecture de-
scription language. The analyst can manually define links by using, for example,
an informal graphical notation. When all the connections have been identified,
the analyst can make queries about the relationship of specific ports to other
ports in the architecture, as described above. In this way it supports Jackson
and Wing’s notion of “lightweight formal methods” [5] in a manner similar to
Feather’s use of a database [2].

5 Conclusion

As the focus of software design shifts increasingly toward the architectural level,
so too are its analysis techniques. Dependence analysis is one such technique that
shows promise at this level. For dependence analysis to most effective, however,
designers must employ sophisticated, behavior-oriented architectural description
languages. As it turns out, the model underlying these languages tends to be
that of concurrent, compositional, event-based computation, not the traditional

60 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

S0
HierarchicalDispatcher

MC
MobiKit Client

rUNS

sUNS

rSUB

sSUB

rMVO

sMVO-P

MP1
MobiKit Proxy

MVO-req

startQstartD

enqueue

rUNS rSUBrPUB

Publisher
ThinClient

start

publish

Subscriber
ThinClient

start

moveOut

subscribe

unsubscribe
recNotif

Manage
Notif

Dummy
ThinClient

start

publish

subscribe

unsubscribe
recNotif

Manage
Notif

S1
HierarchicalDispatcher

rUNS rSUBrPUB

fPUB fUNS fSUB

NOT

rNOT

S2
HierarchicalDispatcher

rUNS rSUBrPUB

fPUB fUNS fSUB

NOT

rNOT

Q
Queuestart

storerequest

MVI-req

moveIn

rMVI

MP2
MobiKit Proxy

MVO-req

startQ

startDummy

MVI-req

stop

stopQ

dwlQ

uplNOT

sMVI-P

getQ
retQ

DWL-req

stop

stopD
getSN

uplSN

rDWL

NOT

rUPL

uplC

Fig. 4. Architecture of MobiKit.

basis for dependence analysis. Early work is beginning to emerge to extend the
theoretical foundation of dependence analysis [7], but much remains to be done.

Acknowledgments

The work of J.A. Stafford was sponsored in part by the Software Engineering
Institute, a federally funded research and development center sponsored by
the U.S. Department of Defense. The work of A.L. Wolf was supported in part by

The Application of Dependence Analysis 61

Subscriber.start

Subscriber.subscribe

MC.rSUB Subscriver.moveOut

MC.rMVO Subscriber.moveIn

MC.sMVI-P

MP2.MVI-req

MP2.DWLreq

MP1.rDWL

MP1.stopQ

Q.getQ

Q.stop

Q.retQ

MP1.getSN

MP1.uplSN

MP1.stopD

Dummy.stop

Dummy.unsubscribe

S0.rUNS

S0.fUNS

S1.rUNS

MP2.rUPL

MP2.uplC

MC.dwlQ

MC.uplNOT

Subscriber.recNotif

Subscriber.ManageNotif

Fig. 5. Portion of a Chain Derived from the MobiKit Architecture.

the Air Force Material Command, Rome Laboratory, and the Defense Advanced
Research Projects Agency under Contract Number F30602-00-2-0608. The con-
tent of the information does not necessarily reflect the position or the policy of
the U.S. Government and no official endorsement should be inferred. The work
of M. Caporuscio was supported in part by the MIUR National Research Project
SAHARA.

62 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

References

1. M. Caporuscio, A. Carzaniga, and A.L. Wolf. Design and Evaluation of a Support
Service for Mobile, Wireless Publish/Subscribe Applications. IEEE Transactions
on Software Engineering. To appear.

2. M.S. Feather. Rapid Application of Lightweight Formal Methods for Consistency
Analyses. IEEE Transactions on Software Engineering, 24(11):949–959, November
1998.

3. E.R. Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. A Technique for Drawing
Directed Graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.

4. D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Inter-
change Language. In Proceedings of CASCON ’97, pages 169–183. IBM Center for
Advanced Studies, November 1997.

5. D. Jackson and J.M. Wing. Lightweight Formal Methods. Computer, 29(4):21–22,
April 1996.

6. A. Podgurski and L.A. Clarke. A Formal Model of Program Dependences and its
Implications for Software Testing, Debugging, and Maintenance. IEEE Transac-
tions on Software Engineering, 16(9):965–979, September 1990.

7. J.A. Stafford. A Formal, Language-Independent, and Compositional Approach to
Control Dependence Analysis. PhD thesis, University of Colorado, Boulder, Col-
orado, USA, August 2000.

8. J.A. Stafford and A.L. Wolf. Architecture-Level Dependence Analysis in Support
of Software Maintenance. In Proceedings of the Third International Software Ar-
chitecture Workshop, pages 129–132, November 1998.

9. J.A. Stafford and A.L. Wolf. Architecture-Level Dependence Analysis for Software
Systems. International Journal of Software Engineering and Knowledge Engineer-
ing, 11(4):431–452, August 2001.

10. RAPIDE Design Team. Draft: Guide to the Rapide 1.0 Language Reference Man-
uals. July 1997.

11. RAPIDE Design Team. Draft: Rapide 1.0 Architecture Language Reference Man-
ual. July 1997.

12. RAPIDE Design Team. Draft: Rapide 1.0 Pattern Language Reference Manual.
July 1997.

13. S. Vestal. MetaH Programmer’s Manual Version 1.27. Honeywell, Inc., Minneapo-
lis, MN, 1998.

14. M.E.R. Vieira, M.S. Dias, and D.J. Richardson. Analyzing Software Architectures
with Argus-I. In Proceedings of the 2000 International Conference on Software
Engineering, pages 758–761. Association for Computer Machinery, June 2000.

15. J. Zhao. Using Dependence Analysis to Support Software Architecture Under-
standing. New Technologies on Computer Software, pages 135–142, September
1997.

	Introduction
	Formal Architectural Analysis
	Dependence Analysis
	Example: Aladdin
	Conclusion

