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Abstract 

Earthquake and tsunami records on centennial and millennial temporal scales are 

necessary to understanding long-term subduction zone behavior and the occurrences of 

large, but infrequent events. Microfossils, such as diatoms, incorporated into coastal 

stratigraphy provide some of the most detailed reconstructions of the history of 

earthquakes and tsunamis. We explore qualitative and quantitative techniques that 

employ the relation between diatoms and salinity, tidal elevation, and life form to: (1) 

reconstruct records of vertical land-level change associated with large earthquakes; and 

(2) identify anomalous sand and silt beds deposited by tsunamis. A global database shows 

that diatoms have been successfully employed in the reconstruction of earthquake and 

tsunami histories in Chile, the Indian Ocean, Japan, New Zealand, the North Sea, the 

Pacific Northwest of North America, and the South Pacific. We use case studies from 

some of these locations to highlight advancements in the field and new capabilities that 

diatoms have enabled. Examples from the Pacific Northwest of North America illustrate 

the evolution of quantitative diatom-based reconstructions of earthquake-related land-

level change. In Alaska and Japan, diatoms have documented land-level changes 

throughout the earthquake deformation cycle, including possible preseismic land-level 

change signals and postseismic deformation. Diatoms helped identify coseismic uplift 

along the central Chile subduction zone coast, and uplift and subsidence along the 

Alaska-Aleutian megathrust, expanding our knowledge of the variability of slip in 

megathrust ruptures. In tsunami studies, diatoms help determine the provenance of 

anomalous sands and silts found in low-energy coastal stratigraphic sequences. In Japan, 

allochthonous marine and brackish diatoms within sand deposits signaled repeated 

marine incursions into a coastal lake, helping identify a possible predecessor to the 2011 

Tohoku tsunami. In the Pacific Northwest of North America and Chile, diatoms were 

used to estimate tsunami run-up beyond the landward limit of tsunami sedimentation. 

Examples from the North Sea, Thailand, and Japan show how the fragmentation and 

sorting of diatom valves may provide evidence of high-energy transport during the rapid, 

turbulent flow of a tsunami. To conclude, we emphasize the importance of studying the 

modern diatom response to changes in land level and/or tsunami inundation to improve 

diatom-based records of prehistoric earthquakes and tsunamis. 
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1. Introduction 1 

An incomplete understanding of the earthquake and tsunami hazards associated with 2 

the Sunda and Japan subduction zones contributed to the devastating societal impacts of 3 

the 2004 Indian Ocean and 2011 Tohoku events (Rhodes et al., 2006; Geller, 2011; Stein 4 

and Okal, 2011; Heki, 2011). Instrumental records of previous earthquakes and tsunamis 5 

proved too short to estimate the potential magnitude and recurrence interval of such great 6 

events that recur centuries to millennia apart (Stein and Okal, 2007). With more than a 7 

third of the world’s coastlines lying adjacent to active plate boundaries (Lajoie, 1986; 8 

Stewart and Vita-Finzi, 1998), we must extend earthquake and tsunami histories to 9 

adequately assess hazards from subduction zones (Small et al., 2000; Satake and Atwater, 10 

2007; Stein and Okal, 2011).  11 

Stratigraphic evidence of subduction zone earthquakes and tsunamis has been used to 12 

extend records over centuries to millennia. Stratigraphic evidence was first described 13 

from the coastal wetlands of Alaska (Plafker, 1965; Plafker, 1972; Bartsch-Winkler and 14 

Schmoll, 1987; Combellick, 1991, 1994; Combellick and Reger, 1994), the Pacific 15 

Northwest of North America (Atwater, 1987; Darienzo and Peterson, 1990; Atwater 16 

1992; Nelson, 1992; Darienzo et al., 1994; Nelson et al., 1996a), Chile (Wright and 17 

Mella, 1963; Bourgeois and Reinhart, 1989; Atwater et al., 1992) and Japan (Kon’no, 18 

1961; Minoura and Nakaya, 1991; Sawai et al., 2002; Nanayama et al., 2003; Sawai et 19 

al., 2012, 2015). Subsidence or uplift associated with earthquakes is recorded as a series 20 

of sharp stratigraphic contacts that reflect sudden changes in land level (Nelson et al., 21 

1996b; Yeats et al., 1997). Widespread sand beds, rapidly deposited by tsunamis 22 

accompanying earthquakes, are often found concomitant with stratigraphic evidence of 23 
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sudden land-level change (e.g., Hemphill-Haley et al., 1995a; Cisternas et al., 2005). In 24 

addition, trans-oceanic tsunamis produced by the largest subduction zone earthquakes can 25 

deposit sediments on coastlines hundreds to thousands of kilometers away from the 26 

earthquake source (e.g., Satake et al., 1996; Goff et al., 2006).  27 

Microfossils such as diatoms, foraminifera, and pollen that are incorporated into 28 

coastal stratigraphy provide qualitative and quantitative estimates of land-level change 29 

associated with subduction zone earthquakes (Horton et al., 2013; Fig. 1). In particular, 30 

diatoms and foraminifera have been applied to earthquake and tsunami studies around the 31 

world (e.g., Darienzo et al., 1994; Hemphill-Haley, 1995a, 1995b, 1996; Sawai et al., 32 

2004a, b; Shennan and Hamilton, 2006; Hawkes et al., 2011; Engelhart et al., 2013; 33 

Grand Pre et al., 2012; Clark et al., 2015; Dura et al., 2015). These microfossils have 34 

improved upon early coastal studies of subduction-zone earthquake history that estimated 35 

the amount of coseismic land-level change with large errors (>1 m) based on the broad 36 

elevational ranges of plant macrofossils (Atwater, 1987, 1992; Clague and Bobrowsky, 37 

1994). Quantitative diatom and foraminiferal-based reconstructions of land-level change 38 

(e.g., transfer functions) can produce substantially smaller (<0.3 m) errors (Guilbault et 39 

al., 1995, 1996; Zong et al., 2003; Sawai et al., 2004a,b; Shennan and Hamilton, 2006; 40 

Nelson et al., 2008; Hawkes et al., 2011; Engelhart et al., 2013; Watcham et al., 2013).  41 

Microfossils are applied to tsunami studies to determine the provenance of tsunami 42 

sediments deposited in low-energy coastal environments such as lowlands (Hemphill-43 

Haley, 1995a, 1996; Benson et al., 1997; Nanayama et al. 2007; Sugawara et al., 2009), 44 

interdunal depressions (Dawson and Stewart, 2007; Jankaew et al., 2008), lagoons 45 

(Minoura and Nakaya, 1991; Nichol et al., 2007; Sawai et al., 2009b; Wilson et al., 2014) 46 
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and lakes (Hutchinson et al., 1997; Grauert et al., 2001; Kelsey et al., 2005). 47 

Allochthonous marine assemblages or a chaotic mix of marine, brackish and freshwater 48 

taxa within terrestrial or brackish settings may be indicative of marine incursions from 49 

tsunamis (Tuttle et al., 2004; Cochran et al., 2005; Hawkes et al., 2007; Goff et al., 2012; 50 

Clark et al., 2015), and the preservation and distribution of diatoms and foraminifera 51 

throughout the deposit can be used to infer high-energy transport and provenance 52 

(Hemphill-Haley, 1996; Sawai et al., 2002; Pilarczyk et al., 2012a).Tsunamis of the past 53 

two decades have provided an opportunity to characterize the microfossil composition of 54 

modern deposits (Dawson, 2007; Sawai et al., 2009a; Chagué-Goff et al., 2011; 55 

Szczuciński et al., 2012b), improving our ability to identify such characteristics in the 56 

fossil record.  57 

In this review we explore the application of diatoms to earthquake and tsunami 58 

studies (Fig. 2; Table 1). We explain the statistical approaches that use diatoms to 59 

estimate earthquake related land-level changes, and assess the utility of diatoms in 60 

identifying tsunamis in the stratigraphic record. We also examine the knowledge gaps 61 

and limitations of diatom analyses in earthquake and tsunami studies, and make 62 

recommendations for future research.  63 

2. Reconstructing coastal environments with diatoms 64 

Diatoms are photosynthetic, unicellular algae that inhabit freshwater, brackish, and 65 

marine environments (Round et al., 1990; Jones, 2007). Diatoms are a dominant 66 

microphyte in coastal wetland environments and their siliceous valves, ranging in size 67 

from ~5 μm to ~200 μm, are resistant to taphonomic degradation (e.g., dissolution, 68 

abrasion, bioerosion, oxidation, transport, predation; Admiraal, 1984; Palmer and Abbott, 69 
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1986; Cooper et al., 2010). As a result, small (1 g wet weight) sample sizes (for example, 70 

from narrow-diameter cores 25-50 mm) contain statistically significant (300-600 valves) 71 

diatom populations (Birks, 1995; Battarbee et al., 2001; Nelson, 2015). 72 

Diatoms have been described and classified for over 200 years based on their shapes, 73 

sizes, and the intricate morphological characteristics of their siliceous valves (Round et 74 

al., 1990). Diatom taxa are divided into three main classes: the Coscinodiscophyceae 75 

(centric taxa); Fragilariophyceae (araphid pennate taxa); and Bacillariophyceae (raphid 76 

pennate taxa). Literature on the identification of diatoms to species level includes van der 77 

Werff and Huls (1958-1974), Patrick and Reimer (1966, 1975), Krammer and Lange-78 

Bertalot (1986, 1988, 1991a, b), Hartley et al. (1996), Krammer (2000, 2002, 2003), 79 

Lange-Bertalot (2000, 2001, 2011), and Levkov (2009).  80 

Diatoms are a valuable tool in reconstructing paleoenvironmental changes because 81 

of their sensitivity to environmental factors including salinity, tidal exposure, substrate, 82 

vegetation, pH, nutrient supply, and temperature found in specific coastal wetland 83 

environments (e.g., Zong and Horton, 1998). Over time, diatoms become incorporated in 84 

coastal sediments, resulting in buried assemblages that represent an environmental 85 

history that can span thousands of years. Literature for the ecological classification of 86 

diatoms includes Hustedt (1937, 1939, 1953, 1957), Lowe (1974), Patrick and Williams 87 

(1990), Denys (1991-1992), Juggins (1992), Vos and de Wolf (1988; 1993), Van Dam et 88 

al. (1994), and Lange-Bertalot (2000).  89 

Diatoms’ preferences for salinity are valuable for earthquake and tsunami studies. 90 

Changes in salinity across the intertidal zone produce vertically zoned diatom 91 

assemblages with respect to the tidal frame (Nelson and Kashima, 1993; Hemphill-Haley 92 
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1995b; Sherrod et al., 1999; Patterson et al., 2005; Horton and Sawai, 2010; Woodroffe 93 

and Long, 2010). Establishing the distribution of diatoms across the intertidal zone is a 94 

prerequisite for reconstructing paleoenvironmental changes related to earthquakes and 95 

tsunamis (e.g., Zong and Horton, 1998). In the halobian classification scheme, 96 

polyhalobous and mesohalobous diatom taxa represent the marine and brackish 97 

conditions found in tidal flats and lower tidal marshes and mangroves. Oligohalobous-98 

halophile and oligohalobous-indifferent taxa become dominant through the transition 99 

from tidal marsh/mangrove to freshwater environments, and halophobous taxa 100 

characterize the most landward freshwater communities above the highest tides. The 101 

presence of diatoms in freshwater environments is an obvious advantage compared to 102 

foraminifera, which are restricted to areas of marine influence (e.g., Murray, 1991). 103 

The distribution of diatoms along a modern intertidal transect (Fig. 3) typically 104 

shows a clear transition from subtidal, open-water marine diatoms (e.g., Thalassiosira 105 

pacifica and Odontella aurita), to marine tidal flat taxa (e.g., Achnanthes brevipes and 106 

Tabularia fasciculata). In the low marsh, where a mixed diatom community is often 107 

found, marine–brackish diatoms (e.g., Planothidium delicatulum and Tryblionella 108 

granulata) dominate, followed by freshwater taxa that can tolerate low salinities in the 109 

high marsh (e.g., Caloneis bacillum and Cosmioneis pusilla) and freshwater salt-110 

intolerant taxa in the upland environment (e.g., Eunotia bilunaris and Aulacoseira 111 

crassipunctata).  112 

The distribution of diatoms across the intertidal zone based on their life form is 113 

valuable for tsunami studies. The diverse life forms of diatom floras are employed to 114 

support the marine provenance of inferred tsunami deposits. Hustedt (1958), Vos (1986), 115 
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Vos et al. (1988), and Vos and de Wolf (1993) define diatom life forms based on the 116 

substrate—or lack thereof—that particular diatom taxa commonly live on. Benthic 117 

diatoms are grouped into epipsammic taxa that live attached to sand grains; epipelic taxa 118 

that live on or just below the surface of wet muddy sediment; epiphytic taxa that are 119 

attached to larger plants or other surfaces; and aerophile taxa that are able to survive 120 

subaerial, temporarily dry conditions. Planktonic diatoms float freely in the water column 121 

and do not live attached to any substrate; tychoplanktonic diatoms include an array of 122 

species that live in the benthos, but are commonly found in the plankton. Based on local 123 

conditions, epipsammic, epipelic, planktonic, and tychoplanktonic diatoms may comprise 124 

tidal flat populations, whereas epiphytic and epipelic forms are more common on tidal 125 

marshes/mangroves. Aerophilous forms are most common within the landward 126 

communities above the highest tides (Sherrod, 1999). 127 

3. Application of diatoms to subduction zone paleoseismic cycles 128 

3.1 Earthquake deformation cycle 129 

On subduction zone coastlines, the land-level changes associated with earthquakes 130 

reflect the strain accumulation and release of the earthquake deformation cycle (Burbank 131 

and Anderson, 2001; Nelson, 2013). The nature of the interseismic and coseismic motion 132 

of the coastline is determined by its proximity to the trench, the geometry of the 133 

subduction zone, and where ruptures stop along strike (Plafker, 1965; Plafker and 134 

Savage, 1970; Wang et al., 2012). Some subduction zone coastlines (e.g., Cascadia, the 135 

Pacific Northwest of North America) lie within a zone that gradually uplifts in between 136 

(interseismic) and abruptly subsides during (coesismic) great earthquakes (Plafker, 1972, 137 

Atwater 1987). In coastal wetland stratigraphy, the interseismic period is represented by a 138 
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gradual regression from clastic (e.g., tidal flat or shallow subtidal) to organic-rich (e.g., 139 

marsh or swamp) sediments reflecting land-level uplift (i.e., relative sea-level fall) and a 140 

decrease in marine influence. Abrupt coseismic land subsidence creates a sudden change 141 

from organic-rich sediments to clastic sediments, reflecting land-level subsidence (i.e., 142 

relative sea-level rise) and an increase in marine influence (Fig. 1).  143 

Conversely, some coastal locations bordering subduction zones (e.g., central Chile; 144 

Alaska-Aleutian megathrust) lie within a zone that gradually subsides in between and 145 

abruptly uplifts during great earthquakes (Shennan et al., 2009; Dura et al., 2015). During 146 

the interseismic period, coastal wetland stratigraphy displays a gradual transgression 147 

from organic-rich to clastic sediments as land-level subsides and marine influence 148 

increases. Abrupt coseismic uplift creates a sudden change from clastic to organic-rich 149 

sediments, reflecting land-level uplift and a decrease in marine influence.  150 

Coastal wetland stratigraphy can record both coseismic uplift and subsidence at one 151 

location (e.g., Hayward et al., 2006; Briggs et al., 2014; Ely et al., 2014), depending on 152 

the distribution of slip upon the megathrust surface (Savage and Hastie, 1966) or the 153 

interaction with upper plate faults. The possibility of a variable uplift-subsidence history 154 

illustrates that the paleoseismic record should not be assumed to record exclusively 155 

coseismic uplift or subsidence. 156 

Because non-seismic coastal processes can also produce changes in stratigraphy 157 

similar to those created by great subduction zone earthquakes, criteria must be considered 158 

to support a tectonic origin (Darienzo et al., 1994; Nelson et al., 1996b; Shennan et al., 159 

1996; Dura et al., 2015). The key criteria are the lateral extent of sharp stratigraphic 160 

contacts; the suddenness and magnitude of land-level change; the synchroneity of land-161 
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level change among regional sites; and the coincidence of tsunami deposits with sudden 162 

changes in stratigraphy. No breaks in sedimentation greater than a few weeks are 163 

assumed to occur following earthquake-related land-level change and continuous 164 

sedimentation is assumed in the interseismic period. Although many paleoseismic studies 165 

have relied on stratigraphic investigations to support an earthquake origin (Atwater, 166 

1987; Dura et al., 2011), microfossils have been particularly useful in providing 167 

supporting evidence of earthquake-related land-level change.  168 

3.2 Diatoms and land-level changes related to the earthquake deformation cycle  169 

Much of the early research using diatoms to reconstruct land-level changes related to 170 

the earthquake deformation cycle focused on the Pacific Northwest of North America 171 

(Cascadia subduction zone). Regional sea-level rise at rates of up to 2 mm/yr along the 172 

central Cascadia subduction zone since 6,000 calibrated years BP (Engelhart et al., 2015) 173 

resulted in continuous records of tidal sedimentation that contain evidence of coseismic 174 

land-level change and tsunami inundation.  175 

Darienzo and Peterson (1990) and Darienzo et al. (1994) employed qualitative 176 

diatom analyses to confirm inferences of sudden and widespread coseismic subsidence 177 

based on distinctive stratigraphic contacts in Cascadia coastal wetlands. Darienzo et al. 178 

(1994) used diatoms to identify broad floral zones (e.g., high marsh, low marsh, tidal flat) 179 

in the modern environment and subsequently estimated the magnitude of coseismic 180 

subsidence by identifying analogous floral zones from above and below sharp 181 

stratigraphic contacts. Because the elevational range of the floral zones was large (0.5-1.0 182 

m), errors for subsidence estimates commonly exceeded 1 m (e.g., Nelson and Kashima, 183 
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1993; Darienzo and Peterson, 1990; Darienzo et al., 1994; Kelsey et al., 2002; Witter et 184 

al., 2003). 185 

Statistical methods employed the relationship between modern diatom assemblages 186 

of known elevation and fossil assemblages to reconstruct land-level changes in 187 

stratigraphic sections at Cascadia (Hemphill-Haley, 1995a; Nelson et al., 1996a; Shennan 188 

et al., 1996). In southern Washington State, USA, Hemphill-Haley (1995b) used factor 189 

analysis to identify the relation of modern diatom distributions to elevation. The result 190 

was a list of taxa with dominant occurrences in marsh zones (high marsh, low marsh, and 191 

high and low marshes) and three subenvironments of the lower intertidal to shallow 192 

subtidal zone (mud flats, sand flats, and Zostera (eelgrass) beds). The modern 193 

distributions of the same taxa found in the fossil record were used to reconstruct the 194 

abrupt changes in environment indicated by stratigraphic contacts spanning the AD 1700 195 

subduction zone earthquake (Fig. 4). Distinct changes in diatom assemblages across these 196 

sharp contacts confirmed significant, widespread, and lasting change from an upland 197 

environment to a tidal-flat or low marsh environment, consistent with coseismic 198 

subsidence of 0.8-1.1 m. Shennan et al. (1996, 1998) and Nelson et al. (1996a) employed 199 

similar statistical techniques (i.e., ordination and discriminant function analysis, 200 

respectively) to quantitatively compare modern diatom assemblages of known elevation 201 

with fossil diatom assemblages. Although the statistical techniques of Hemphill-Haley 202 

(1995b), Shennan et al. (1996, 1998), and Nelson et al. (1996a) improved the analysis of 203 

diatom data, the reconstructions were still based on differences in elevational ranges 204 

between pre-earthquake and postearthquake paleoenvironments, resulting in 0.5-1.0 m 205 

errors.  206 



 12 

Fully quantitative, microfossil-based transfer functions used to calculate coseismic 207 

land-level change at Cascadia have produced substantially smaller errors (<0.5 m; e.g., 208 

Guilbault et al., 1995, 1996). The transfer function uses multivariate statistical techniques 209 

to formalize the relationship between the relative abundance of microfossil species and 210 

the environmental variable of interest (in the case of paleoseismic studies, that variable is 211 

elevation; e.g., Horton et al., 1999).  The transfer function is applied to microfossil 212 

assemblages in coastal wetland stratigraphic sequences to calculate changes in paleo-213 

elevation and can provide a continuous record of land-level changes throughout the 214 

earthquake deformation cycle. The performance of transfer functions can be measured 215 

using multiple techniques to assess the effect of sample design, the goodness-of-fit 216 

between microfossil assemblages and elevation, and the statistical significance of each 217 

reconstruction (Telford and Birks, 2011a, b). The technique has since been expanded in 218 

Cascadia to include extensive modern diatom (Sherrod, 1999, 2000, 2001), foraminifera 219 

(Guiltbault et al., 1995, 1996; Hawkes et al., 2010; Engelhart et al., 2013), and pollen 220 

(Hughes et al., 2002) datasets, and applied in other geographical locations such as Alaska 221 

(e.g., Shennan and Hamilton, 2006), Japan (e.g., Sawai, 2004b), and Chile (e.g., Garrett 222 

et al., 2014; Table 1 lists which diatom studies have used quantitative diatom techniques, 223 

Fig. 2).  224 

Coastal wetland stratigraphy from eastern Hokkaido, Japan contains evidence of 225 

preseismic and postseismic land-level change (Atwater et al., 2004; Sawai et al., 2002, 226 

2004a, b) associated with subduction zone earthquakes originating from the Kuril Trench 227 

(Nanayama et al., 2003). Sawai et al. (2004a) used a diatom-based transfer function 228 

(Sawai et al., 2001b, 2004b) to document the land-level change associated with a great 229 
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17
th

 century earthquake and tsunami (Fig. 6). Fossil diatom assemblages show that tidal 230 

flats gradually changed into freshwater upland environments in the decades after the 231 

earthquake as a result of up to 1.5 m of postseismic uplift. Sawai et al. (2004a) suggested 232 

the large land-level change was the result of a subduction zone earthquake of unusually 233 

large size along the Kuril Trench.  234 

Diatom data have helped identify coseismic uplift associated with subduction zone 235 

earthquakes in Alaska (e.g., Shennan et al., 2009, 2014) and Chile (e.g., Dura et al., 236 

2015). Along the central Chile coast, Dura et al. (2015) used diatoms to identify six 237 

instances of cosesimc uplift between 6200 and 3600 calibrated years BP. A repeated 238 

influx of freshwater diatoms and other siliceous microfossils above six tsunami sands 239 

suggested >1 m of coseismic uplift. The study documented a ~500 year recurrence 240 

interval for the earthquakes and accompanying tsunamis in central Chile.  241 

Diatom studies have documented evidence of both coseismic subsidence and uplift at 242 

the same site. Briggs et al. (2014) used diatoms and foraminifera to identify five instances 243 

of sudden uplift and subsidence in the stratigraphy of a coastal marsh on Sitkinak Island 244 

bordering the Alaska-Aleutian megathrust. Diatoms showed uplift accompanying 245 

earthquakes in 290-0, 520-300, and 1050-790 calibrated years BP, and subsidence in AD 246 

1964 and 640-510 calibrated years BP (Briggs et al., 2014). Such studies have 247 

implications for seismic hazard analysis, as the mixed uplift and subsidence record shows 248 

the variability of slip along the megathrust, suggesting that the segmentation of 249 

subduction zones is not fixed (Briggs et al., 2014; Ely et al., 2014).  250 

Diatom data have also identified a possible preseismic signal from relatively small 251 

amounts of land-level change in the years prior to earthquakes (Bourgeois, 2006; 252 
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Shennan and Hamilton, 2006). Zong et al. (2003) used detailed modern and fossil diatom 253 

analyses from a coastal wetland along the eastern Alaska-Aleutian megathrust to 254 

reconstruct preseismic and coseismic land-level changes associated with the AD 1964 255 

Alaska earthquake. In the 15 years prior to the AD 1964 earthquake, diatoms showed a 256 

gradual shift from a freshwater environment dominated by salt-intolerant taxa (e.g., 257 

Eunotia exigua, Eunotia pectinales, and Achnanthes minutissima) to salt-tolerant 258 

freshwater taxa typical of a high marsh environment (e.g., Navicula pupula, Nitzschia 259 

fruticosa, and Pinnularia lagerstedtii). Zong et al. (2003) interpret the shift in diatom 260 

assemblages as a phase of gradual land subsidence of ~0.15 m that preceded up to 2 m of 261 

coseismic subsidence in the AD 1964 earthquake. If preseismic deformation does occur, 262 

the implication is that warning signs may be detectable for several years prior to a great 263 

earthquake (Bourgeois, 2006).  264 

Hamilton et al. (2005) explored whether the preseismic signal was a result of mixing 265 

of diatom assemblages from biological or physical processes. Hamilton et al. (2005) 266 

transplanted a block of marsh peat to a lower elevation in the intertidal zone where it 267 

would be buried by tidal mud. The results showed that mixing of diatoms did occur, but 268 

only in the top ~1 cm of peat, whereas the preseismic signal observed by Zong et al. 269 

(2003) and Hamilton and Shennan (2005b) occurred over 2-5 cm. In addition, Shennan 270 

and Hamilton (2006) argued that the preseismic signal was not a result of diatoms 271 

filtering down from overlying mud because dominant species that reflect subtle 272 

preseismic subsidence, such as Nitzschia obtusa, Navicula begeri, Navicula brockmanii, 273 

and Pinnularia lagerstedtii, do not occur in the overlying mud (Fig. 5). A similar 274 

transplant experiment at Cascadia found that mixing of foraminifera did occur up to 3 cm 275 
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below the transplanted marsh peat surface, mimicking a preseismic signal (Engelhart et 276 

al., 2013). Englehart et al. (2013) cautioned against interpreting microfossil assemblages 277 

in such mixed layers as a preseismic signal.  278 

4. Application of diatoms to tsunami studies 279 

4.1 Paleotsunamis 280 

Sequences of tsunami deposits preserved along subduction zone coastlines can be 281 

used to estimate recurrence intervals of tsunamigenic earthquakes over centuries to 282 

millennia (Nanayama et al., 2003; Cisternas et al., 2005; Jankaew et al., 2008; Sawai et 283 

al, 2012). Stratigraphic sequences, supported by diatom studies, reveal repeated tsunamis 284 

in numerous locations including Alaska, the Pacific Northwest of North America, Chile, 285 

Japan, New Zealand, and locations bordering the North Sea and the Indian Ocean (Table 286 

1, Fig. 2). 287 

Allochthonous marine and brackish diatoms within tsunami deposits, including 288 

benthic and planktonic taxa, can support a seaward provenance of the sediment (e.g., 289 

Hemphill-Haley, 1995a; Sawai, 2002; Dura et al., 2015). Diatom analysis helped identify 290 

the provenance of three sand beds recovered from a coastal lake at Suijin-numa, on the 291 

subduction zone of the Japan Trench (Sawai et al., 2008). The marine and brackish 292 

diatoms (Diploneis smithii, Delphineis surirella) within the sand beds contrasted against 293 

the freshwater assemblages (Aulacoseira granulata, A. crassipunctata, Eunotia spp.) in 294 

the under and overlying mud. The middle sand bed at Suijin-numa correlates with the 295 

Jogan earthquake in AD 869 (Yoshida, 1906), the presumed predecessor to the 2011 296 

Tohoku earthquake. Along the Kuril Trench in northern Japan, Nanayama et al. (2007) 297 

used diatoms to identify nine sandy tsunami deposits intercalated with peat. The diatom 298 
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assemblage within the peats contained freshwater species (e.g., Eunotia spp., Pinnularia 299 

spp.), whereas the sand beds were dominated by marine taxa (e.g., Delphineis surirella 300 

and Odontella aurita).  Based on the record of tsunami deposits, the authors estimated a 301 

365 – 553 year recurrence interval for large Kuril Trench earthquakes. Later, based on 302 

over 60 radiocarbon age estimates, Sawai et al. (2009b) found that the interval between 303 

tsunamis on the Kuril Trench ranged from 100 to 800 years, with an average recurrence 304 

interval of ~400 years.  305 

In the Storegga Slide tsunami
1
 deposits in Scotland, Dawson et al. (1996a) found an 306 

anomalous marine diatom assemblage with a high occurrence of fragmented diatoms. Up 307 

to 90% of valves (60% of which have elongate forms) within the sand bed were 308 

fragmented, reflecting the nature of the rapid, turbulent marine incursion of tsunami 309 

events (Dawson et al., 1996a; Smith et al., 2004; Fig. 7). Similar preferential 310 

fragmentation of diatom valves, in particular elongate forms (>100 μm) has been 311 

documented in inferred paleotsunami deposits in the Pacific Northwest of North America 312 

(Witter et al., 2009) and Japan (Sawai, 2002).  Conversely, anomalously low breakage of 313 

diatoms in tsunami deposits has been reported in paleotsunamis from the Pacific coast of 314 

Washington State and Puget Sound, USA (Hemphill-Haley, 1996). Hemphill-Haley 315 

(1996) suggested that the low breakage of diatoms reflects rapid sedimentation by the 316 

tsunamis. 317 

Diatoms can be used to estimate tsunami run-up beyond the landward limit of 318 

tsunami deposits. Hemphill-Haley (1996) used the distribution of diatoms to show that 319 

the inundation area of the tsunami from the AD 1700 Cascadia subduction zone 320 

                                                 
1
 The Storegga Slide tsunami (~7900 calibrated years BP) was produced by a 

submarine landslide (Bondevik et al., 2005).  
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earthquake was larger than the distribution inferred from the coarser-grained deposit 321 

visible in outcrop. Epipsammic tidal flat diatoms were found about 1 km farther upstream 322 

from the landward extent mapped in cores and stream channel outcrops.  323 

4.2 Tsunamis of the past two decades 324 

Diatom analysis of recent tsunami deposits provides modern analogues for 325 

reconstructing the fossil record. Recent studies characterized the diatom composition of 326 

the 1998 Papua New Guinea (Dawson, 2007), 2004 Indian Ocean (Sawai et al., 2009a;), 327 

2009 South Pacific (Chagué-Goff et al., 2011), 2010 Maule Chile (Horton et al., 2011; 328 

Garrett et al., 2013), and 2011 Tohoku (Szczuciński et al., 2012b; Sawai et al., 2012) 329 

tsunamis. Analyzing the diatom signature of recent tsunamis can be used to infer the 330 

sedimentation (e.g., high-energy deposition), sediment provenance, and inundation limits 331 

of the events.  332 

The taphonomy of diatom valves may indicate the mode of sedimentation of a 333 

tsunami. Dawson (2007) explored the condition of diatom valves in the 1998 Papua New 334 

Guinea tsunami deposit and found that linear, sigmoid, and clavate diatoms were more 335 

readily fragmented during the high-energy tsunami due to their relatively fragile valve 336 

structure. In contrast, high abundances of taphonomically unaltered (i.e., pristine) diatom 337 

valves were found in tsunami deposits from the 2004 Indian Ocean tsunami in Thailand 338 

(Sawai et al., 2009), and the 2010 Maule tsunami in Chile (Horton et al., 2011).  339 

The upward fining of grain size observed in tsunami sands may be reflected by 340 

similar grading of diatom valves, a result of the variable flow speed of a tsunami 341 

(Gelfenbaum and Jaffe, 2003). In Thailand, the 2004 Indian Ocean tsunami deposit 342 

consisted of a sand bed with a thin mud cap and contained mostly beach and subtidal 343 
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diatoms (>80%) and very few freshwater species (Fig. 8; Sawai et al., 2009a). The lower 344 

section of the deposit was dominated by larger epipsammic marine diatoms, whereas the 345 

middle section contained abundant marine planktonic species, and the mud cap was 346 

dominated by a mixture of smaller freshwater, brackish, and marine species. Diatom 347 

analysis by Chagué-Goff et al. (2011) following the 2009 South Pacific tsunami deposit 348 

in Samoa, Horton et al. (2011) following the 2010 Maule tsunami in Chile, and 349 

Szczuciński et al. (2012b) following the 2011 Tohoku-Oki tsunami on the Sendai plain 350 

also revealed grading of diatom valves. 351 

Diatoms recovered from tsunami deposits perpendicular to the coast show variable 352 

concentration, ecology, and taphonomy related to the provenance of material. 353 

Szczuciński et al. (2012b) found that within 1 km of the coast, the Tohoku-Oki sand beds 354 

were derived mainly from the beach and coastal dunes, and because such sediments were 355 

devoid of diatoms, the assemblage within the tsunami sediments was composed of a low 356 

concentration of fragmented freshwater and few brackish species sourced from the 357 

coastal plain. Further inland the diatom concentration within the tsunami sediments 358 

increased, and the assemblage and condition of valves in the deposit (% fragmentation of 359 

valves) were very similar to the valves in the underlying soil and nearby freshwater canal, 360 

suggesting that the sediment was locally sourced and not transported from the coast 361 

(Szczuciński et al., 2012b).  362 

Chagué-Goff et al. (2015) used the diatom assemblages of the 2010 Maule Chile 363 

tsunami deposit to trace tsunami inundation beyond the limit of sedimentological 364 

evidence. Marine diatoms could be traced ~100 m beyond the inundation limit identified 365 

by the tsunami deposit. 366 
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5. Knowledge gaps 367 

Diatoms have improved our understanding of the nature of land-level change 368 

associated with past earthquakes and have helped define the impacts of past tsunamis. 369 

However, when using diatoms for reconstructing earthquake-related land-level change 370 

and tsunami inundation, several matters must be kept in mind.  371 

5.1 Uncertainties in modern diatom distributions 372 

An absence of local to regional modern diatom datasets from a range of coastal 373 

environments restricts the application of diatoms to reconstruct the history of subduction 374 

zone earthquakes and tsunamis. The relation of diatoms to tidal elevation is unknown in 375 

many locations because of a scarcity of modern data (e.g., Dura et al., 2015). However, 376 

even modern diatom data sets that include hundreds of samples taken across multiple 377 

local coastal wetlands can fail to provide modern analogues for fossil diatom assemblages 378 

(Watcham et al., 2013). This non-modern-analogue situation (Birks, 1995) is attributed to 379 

local environmental conditions having changed significantly over time (Watcham et al., 380 

2013). If this happens, it is not appropriate to apply quantitative reconstruction techniques 381 

(e.g., transfer function) using only local modern diatom assemblages (Watcham et al., 382 

2013). Regional modern training sets compiled from a large range of intertidal coastal 383 

environments (e.g. marshes with a variety of vegetation zones, substrates, and elevation 384 

gradients) can account for such variation in the distribution of diatoms, providing analogs 385 

for diatom assemblages found in fossil cores (Zong et al., 2003; Watcham et al., 2013; 386 

Shennan et al., 2014a).  387 
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5.2 Response of diatoms to coseismic land-level change 388 

When producing diatom-based estimates of earthquake related land-level change 389 

across sharp stratigraphic contacts, a possible delay in sediment deposition and diatom 390 

response must be considered. If there is a significant (months to years) hiatus in response 391 

following an earthquake, estimates of coseismic deformation will include both coseismic 392 

and postseismic deformation, thus they will be minimum estimates (Garrett et al., 2013). 393 

Shennan et al. (2014a) found that peat formation following the coseismic uplift of an 394 

intertidal mudflat along the eastern Alaska-Aleutian megathrust was not instantaneous, 395 

resulting in minimum estimates of uplift. The study also found a mixed salinity diatom 396 

assemblage in the upper part of the buried silt that formed as a result of ponding and 397 

reworking of the uplifted surface before colonization by terrestrial plants, and likely did 398 

not represent the pre-earthquake environment and elevation. In Chile, Garrett et al. 399 

(2013) found that uplifted marshes had accumulated little to no sediment up to two years 400 

after the 2010 earthquake and tsunami, complicating estimates of coseismic uplift. 401 

Coseismic subsidence more often results in rapid sedimentation of clastic sediments 402 

hours to weeks after an earthquake, due to the accommodation space created in the 403 

submerged marsh (Atwater et al., 2001; Hawkes et al., 2011).  404 

5.3 The production and preservation of diatoms 405 

Diatom-based reconstructions of earthquake-related land-level change and tsunami 406 

inundation are hindered by variable diatom production and preservation. In the Copper 407 

River Delta, Shennan et al. (2014a) found low numbers of diatoms in modern samples 408 

taken from tidal flat silts, a result of high sediment accretion of the delta environment. 409 

Silts in fossil sequences also contained few diatoms, which complicated quantitative 410 
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reconstructions of earthquake-related land-level change (Shennan et al., 2014a). In 411 

relatively alkaline and warm environments, there are problems with chemical dissolution 412 

of diatom valves (Katamani, 1982; Flower, 1993; Barker et al., 1994). Sawai et al. 413 

(2009a) found excellent preservation of diatoms in the 2004 Indian Ocean tsunami 414 

deposit in Thailand, but three paleotsunami deposits examined at the same site by 415 

Jankeaw et al. (2008) contained no fossil diatoms. Dissolution of diatom valves can also 416 

make them more susceptible to fragmentation, complicating the use of the fragmentation 417 

metric to infer high-energy deposition during a tsunami. Szczuciński et al. (2012b) found 418 

a similar degree of fragmentation in diatoms within the soil underlying the 2011 tsunami 419 

deposit and within the deposit itself.  420 

5.4 Differentiating autochthonous and allochthonous diatoms 421 

Problems differentiating autochthonous (in situ) and allochthonous (transported) 422 

diatoms in modern and fossil studies complicate reconstructions. Certain taxa are 423 

transported across coastal wetlands and, if included in modern or fossil assemblages, 424 

erroneously represent the depositional environment. This problem is common in coastal 425 

wetlands where diatom valves are transported from one intertidal floral zone to another 426 

by daily tidal currents, or, in colder climates, by ice rafted sediment (Hemphill-Haley et 427 

al., 1995a; Hamilton et al., 2005). Hemphill-Haley (1995a) and Sawai (2001b, 2004) 428 

suggested several means to distinguish allochthonous diatoms in both modern and fossil 429 

assemblages. Planktonic diatoms are considered allochthonous components in modern 430 

and fossil coastal wetland assemblages, while benthic taxa (e.g., epiphytic, epipelic and 431 

epipsammic types) can be considered as autochthonous (Vos and de Wolf, 1993). Some 432 

chain-forming taxa with thickly silicified valves may form prominent allochthonous 433 
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assemblages. Hemphill-Haley (1995a) excluded the marine tychoplanktonic diatom 434 

Paralia sulcata from paleoecological interpretations, because its robust valves and long-435 

chained structure allow its valves to be easily floated and transported by tidal currents 436 

and deposited far inland in tidal estuaries (Hemphill-Haley, 1995a). Sawai (2001b, 437 

2004b) recognized allochthonous distributions of certain epiphytic taxa in the intertidal 438 

zone. For example, Cocconeis scutellum is an epiphytic species commonly found 439 

attached to macrophytes in the intertidal zone. After death, the upper (rapheless) valve 440 

that is not attached to the macrophyte may detach and be transported by tidal currents 441 

(Sawai, 2004b). As a result, rapheless valves of C. scutellum may be found in sediment 442 

across the entire intertidal zone, although its habitat is limited to the macrophyte zone 443 

(Sawai, 2001b).  444 

5.5 Differentiating tsunami and storm surge deposits 445 

Allochthonous marine and brackish diatoms may be found in storm-surge deposits, 446 

making it difficult to differentiate from tsunami deposits in the stratigraphic record (e.g. 447 

Liu and Fearn, 2000; Parsons, 1998; Tuttle et al., 2004; Horton et al., 2009). However, 448 

coseismic land-level change coincident with anomalous silt and sand beds provides a 449 

definitive earthquake source for a tsunami. In Washington State, USA Hemphill-Haley 450 

(1995a) identified two coarse-grained silt and sand beds dominated by marine diatoms. A 451 

tsunami source was inferred from one bed because it was associated with a sudden 452 

change in depositional environment from upland soil to intertidal mud, consistent with 453 

coseismic submergence. The other bed within a freshwater upland soil was not associated 454 

with a change in stratigraphy and was probably deposited by a storm (Hemphill-Haley, 455 

1995a).  456 
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6. Conclusions 457 

Using global examples, we illustrated the utility of diatoms in reconstructing land-458 

level change and tsunami inundation histories along subduction zone coastlines on 459 

centennial and millennial timescales. We outlined the evolution of fully quantitative, 460 

statistical techniques to estimate coseismic land-level change at the Cascadia subduction 461 

zone. Examples from the Alaska-Aleutian megathrust and the Japan trench illustrated the 462 

expanded application of the transfer function technique to reconstruct preseismic, 463 

coseismic, and postseismic land-level change. In central Chile, diatoms were successfully 464 

applied to identify coseismic uplift, and in Alaska, diatoms helped reconstruct a mixed 465 

uplift and subsidence record preserved in coastal wetland stratigraphy.  466 

We illustrated the utility of diatoms in inferring the sediment provenance, 467 

sedimentation, and inundation limit of tsunamis. Allochthonous marine and brackish 468 

diatoms within anomalous sand beds along the coasts of Japan, Scotland, and Thailand 469 

indicate a seaward provenance of sediments, supporting a tsunami source. The high 470 

fragmentation of diatom valves in sand beds deposited by the Storegga tsunami and the 471 

1998 Papua New Guinea tsunami reflect high-energy sedimentation, while the upward 472 

fining of diatom valves in the 2004 Indian Ocean tsunami reflect the variable flow speed 473 

of a tsunami. Examples from the Cascadia subduction zone and the Chile subduction 474 

zone showed diatoms how can be used to estimate tsunami run-up beyond the landward 475 

limit of tsunami deposits, a powerful tool in estimating paleotsunami inundation.  476 

We outlined a series of knowledge gaps that should be considered in future research. 477 

Many of the knowledge gaps in the study of diatom-based earthquake and tsunami 478 

records can be addressed by continuing to explore the modern diatom environments, in 479 
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particular exploring diatoms’ relation to salinity and substrate, variable production, 480 

preservation, and transport. Examining the response of diatoms to recent earthquake-481 

related land-level change and the character of modern tsunami deposit diatom 482 

assemblages will continue to provide analogues for identifying events in the fossil record. 483 
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Figure captions 1370 

Figure 1: Schematic drawing of coseismic uplift (a) and subsidence (b) and 1371 

accompanying tsunami inundation.  1372 

 1373 

Figure 2: Summary of earthquake and tsunami studies applying diatoms that are 1374 

referenced in this paper, and listed in Table 1. (a) In: Indian Ocean; (b) Ja: Japan Trench; 1375 

(c) Al: Alaska-Aleutian megathrust; (d) Ca: Cascadia subduction zone; (e) Ch: Chilean 1376 

Subduction zone; (f) NZ: New Zealand; NS: North Sea (studies marked with an asterisk 1377 

because they are not subduction zone studies); SP: South Pacific; PNG: Papua New 1378 

Guinea.  1379 

 1380 

Figure 3: Qualitative schematic of the distribution of common diatom species along a 1381 

modern salt marsh transect. Typical salinity classes (following the halobian classification 1382 

scheme of Hemphill-Haley, 1993) for each environment are shown.  1383 

 1384 

Figure 4: Diatoms evaluated relative to modern intertidal zones and stratigraphy at the 1385 

Niawiakum River in Washington State, USA. (a) Position of the study area relative to the 1386 

Cascadia subduction zone (barbed line), the boundary between North America and Juan 1387 

de Fuca/Gorda plates that extends from the northern end of the San Andreas Fault (SAF) 1388 

to the southern end of the Queen Charlotte Fault (QCF); (b) Location of the Niawiakum 1389 

River Valley, on the eastern side of Willapa Bay; (c) Locations of vertical sections 1390 
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sampled for diatoms in the Niawiakum River Valley. Sites 1-4 are cutbank outcrops 1391 

exposed during low tide; (d) Changes in diatom assemblages within and above a former 1392 

upland soil (forming at the transition of extreme high water (EHW) and upland) buried by 1393 

coseismic subsidence during a Cascadia subduction zone earthquake in AD 1700. 1394 

Changes in diatom assemblages are consistent with an abrupt change from upland forest 1395 

to tidal flat or low marsh. (Modified from Hemphill-Haley, 1995a).  1396 

 1397 

Figure 5: Diatom analyses during past earthquake cycles on the Alaska-Aleutian 1398 

megathrust suggesting preseismic movement. (a) Location of south-central Alaska, USA; 1399 

(b) area subsided in the AD 1964 earthquake (Plafker, 1969); (c) Relative sea level (RSL) 1400 

changes reconstructed using a diatom-based transfer function; two short periods of 1401 

preseismic submergence immediately prior to substantial coseismic subsidence were 1402 

recognized at the top of peat units and are highlighted with red arrows. (Modified and 1403 

reprinted from Shennan, I., Hamilton, S., Coseismic and preseismic subsidence 1404 

associated with great earthquakes in Alaska.  Quaternary Science Reviews 25, 1-8, 2006, 1405 

with permission from Elsevier). 1406 

 1407 

Figure 6: Example of land-level reconstructions using diatoms in Hokkaido, northern 1408 

Japan. (a) Position of study area relative to the Kurile Trench. The solid line with 1409 

triangles shows the seaward edge of the subduction zone. The volcanoes responsible for 1410 

tephra layers in c and d are shown and rupture areas of instrumentally recorded 1411 

earthquakes on the plate boundary off eastern Hokkaido are outlined; (b) Map of 1412 

Mochirippu Estuary showing location of stratigraphic cross-section; (c) Stratigraphic 1413 
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cross-section; (d) Photograph and log of stratigraphy. Example of change from tidal-flat 1414 

mud to lowland-forest peat, punctuated by a tsunami deposit and by volcanic ash layers. 1415 

(e) Diatom diagram showing the schematic stratigraphy, changes in diatom assemblages, 1416 

and the results of diatom-based transfer functions showing the seventeenth-century large 1417 

earthquake. Error bars for height estimates span two standard deviations. (Modified and 1418 

reprinted from Sawai, Y., Satake, K., Takanobu, K., Nasu, H., Shishikura, M., Atwater, 1419 

B.F., Horton, B.P., Kelsey, H.M., Nagumo, T., Yamaguchi, M., Transient uplift after a 1420 

17
th

-century earthquake along the Kuril subduction zone. Science 306, 1918-1920, 2006, 1421 

with permission from The American Association for the Advancement of Science).  1422 

 1423 

Figure 7: Diatom analyses of the Storegga Slide tsunami showing fragmentation of 1424 

diatom valves within the high-energy deposit. (a) Location of the Storegga Slides and 1425 

sites where evidence for the Holocene Storegga Slide tsunami has been found; (b) Sites in 1426 

the United Kingdom where evidence for the Holocene Storegga Slide tsunami may be 1427 

found. Numbers correspond to sites discussed in Smith et al., 2004; (c) Diatom summary 1428 

diagram from Boreholes 53 and 23 in lower Wick River Valley, Caithness, Scotland 1429 

(Dawson et al., 1996). Taxa displayed as % of total valves. (Modified and reprinted from 1430 

Smith, D.E., Shi, S., Cullingford, R.A., Dawson, A.G., Dawson, S., Firth, C.R., Foster, 1431 

I.D.L., Fretwell, P.T., Haggart, B.A., Holloway, L.K., Long, D., The Holocene Storegga 1432 

slide tsunami in the United Kingdom.  Quaternary Science Reviews 23, 2291-2321, 2004, 1433 

and Dawson, S., Smith, D.E., Ruffman, A., Shi, S., The diatom biostratigraphy of 1434 

tsunami deposits: Examples from recent and middle Holocene events.  Physics and 1435 

Chemistry of the Earth, 21, 87-92, 1996, with permission from Elsevier).  1436 
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 1437 

Figure 8: Diatom analyses of the 2004 Indian Ocean tsunami deposit showing grading of 1438 

diatom valves; (a) Position of study area relative to the Sunda Trench. Fault slip during 1439 

the 2004 Sumatra–Andaman earthquake (Chlieh et al., 2007); (b) Phra Thong Island. The 1440 

island is isolated from the mainland of Thailand by inlets. Light gray area is grassy beach 1441 

ridge plains. Dark gray area is mangrove forests. Landforms traced from 1:50,000-scale 1442 

airphotos taken in 1999 and from post-tsunami satellite images at PointAsia.com 1443 

(modified from Jankaew et al., 2008); (c) Location of pit and modern samples. Satellite 1444 

image is from PointAsia.com; (d) Diatom diagram showing the schematic stratigraphy of 1445 

location 6 and changes in diatom assemblages throughout the 2004 tsunami deposit. 1446 

Abundant beach and subtidal species are more abundant in the bottom of the sand bed 1447 

and freshwater diatoms become more abundant in the top of the sand bed. Diatom valves 1448 

are relatively pristine in the tsunami deposit as shown by the high percentage of unbroken 1449 

valves. (e) Simplified process of deposition of diatoms and sediment during tsunami; (1) 1450 

Fast current. Only beach and subtidal species are incorporated with coarse sediment. 1451 

Because turbulent current can keep a substantial amount of sand fraction in the water 1452 

column, mixed assemblages of many beach and subtidal, marine plankton are suspended. 1453 

Freshwater specimens may be included with eroded soil fractions. (2) Current becomes 1454 

slow. Fine fractions fall onto the ground. Eroded, floated, and transported specimens are 1455 

also incorporated. (3) Suspension stage (calm current) of tsunami. All floated specimens 1456 

are allowed to settle down. Many freshwater species incorporated with their substrata 1457 

(plant trash and eroded soil fractions). (Modified and reprinted from Sawai, Y., Jankaew, 1458 

K., Martin, M.E., Prendergast, A., Choowong, M., Charoentitirat, T., Diatom 1459 
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assemblages in tsunami deposits associated with the 2004 Indian Ocean tsunami at Phra 1460 

Thong Island, Thailand. Marine Micropaleontology, 73, 70–79, 2009, with permission 1461 

from Elsevier). 1462 
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Table 1. A global database of subduction zone earthquake and tsunami studies that have employed diatoms

Map 

code

Earthquake and tsunami studies    

employing diatoms

Diatom evidence for 

coseismic land-level change
1

Accompanying 

tsunami
2

Diatom composition 

of tsunami deposit
3

Preservation of 

diatom valves
4

Concentration of 

diatom valves
5

Alaska

Al-1 Shennan et al., 1999 Yes (H, Qn) -- -- -- --

Al-2 Zong et al., 2003 Yes (H, Qn) -- -- -- --

Al-3 Hamilton et al., 2005 Yes (H, P, Qn) -- -- -- --

Al-4 Hamilton and Shennan, 2005a Yes (H, P, Qn) -- -- -- --

Al-5 Hamilton and Shennan, 2005b Yes (H, P, Qn) -- -- -- --

Al-6 Shennan and Hamilton, 2006 Yes (H, P, Qn) -- -- -- --

Al-7 Watcham et al., 2013 Yes (H, P, Qn) -- -- -- --

Al-8 Shennan et al., 2009 Yes (H, P, Ql) -- -- -- --

Al-9 Shennan et al., 2014a Yes (H, P, Qn) -- -- -- --

Al-10 Shennan et al., 2014b Yes (H, P, Qn) -- -- -- --

Al-11 Briggs et al., 2014 Yes (H, P, Ql) Yes Mx Good High

Al-12 Nelson et al.,2015 No Yes (H, P) Fw Poor Low

Cascadia

Ca-1 Darienzo and Peterson, 1990 Yes (P, Ql) Yes (P) M&B -- --

Ca-2 Darienzo et al., 1994 Yes (P, Ql) Yes (P) M&B -- --

Ca-3 Hemphill-Haley, 1995a Yes (P, Ql) Yes (P) M&B (Ep) Very good --

Ca-4 Hemphill-Haley, 1996 Yes (P, Ql) Yes (P) M&B (Ep, Pl) Very good High

Ca-5 Shennan et al., 1996 Yes (P, Qn) Yes (P) M&B (Ep) -- --

Ca-6 Nelson et al., 1996b Yes (P, Qn) No -- -- --

Ca-7 Atwater and Hemphill-Haley, 1997 Yes (P, Ql) Yes (P) M&B (Ep) Very good --

Ca-8 Benson et al., 1997 No Yes (H, P) M -- --

Ca-9 Hutchinson et al., 1997 No Yes (P) M&B (Ep) -- --

Ca-10 Clague et al., 1999 Yes (P, Ql) Yes (P) M&B Good --

Ca-11 Hutchinson et al., 2000 Yes (P, Ql) Yes (P) Mx Good Low

Ca-12 Sherrod et al., 2000 Yes (P) No -- -- --

Ca-13 Williams and Hutchinson, 2000 No Yes (P) M&B Poor Low

Ca-14 Sherrod, 2001 Yes (P, Ql) No -- -- --

Ca-15 Kelsey et al., 2002 Yes (P, Ql) Yes (P) M&B (Ep?) Good Low

Ca-16 Kelsey et al., 2004 Yes (P, Ql) No -- -- --

Ca-17 Witter et al., 2003 Yes (P, Ql) Yes (P) M (Ep) -- Low

Ca-18 Kelsey et al., 2005 No Yes (P) few M -- Low

Ca-19 Williams et al., 2005 Yes (P, Ql) Yes (P) M (Ep, Pl) Good High

Ca-20 Nelson et al., 2008 Yes (P, Qn) Yes (P) M&B (Ep, Pl) -- Low

Ca-21 Witter et al., 2009 Yes (P, Ql) Yes (P) M (Ep) Poor High

Ca-22 Peterson et al., 2011 No Yes (P) M&B -- --

Ca-23 Graehl et al., 2014 Yes (P, Ql) Yes (P) M&B (Ep) Good Low

Ca-24 Wilson et al., 2014 Yes (P, Ql) Yes (H, P) Mx (Pl, G) Good High

Chile  

Ch-1 Cisternas et al., 2005 Yes (H, P, Ql) Yes (H, P) -- -- --

Ch-2 Nelson et al., 2009 Yes (H, P, Qn) Yes (P) Mx -- --

Ch-3 Horton et al., 2011 No Yes (H) M&B (Ep, Pl) Selective High

Ch-4 Garrett et al., 2013 Yes (H, Qn) Yes (H) Mx (Ep) -- --

Ch-5 Dura et al., 2014 Yes (P, Ql) Yes (P) M&B (Pl, G) Poor Low

Ch-6 Garrett et al., 2014 Yes (H, P, Qn) Yes (H, P) M&B (Ep) -- --

Ch-7 Chagué-Goff et al., 2015 No Yes (H) M&B Poor Low

Indian Ocean

In-1 Jankaew et al., 2008 No Yes (H, P) M&B Good (H)/Poor (P) High (H)/Low (P)

In-2 Monecke et al., 2008 No Yes (H, P) Fw&B Good (H)/Poor (P) High (H)/Low (P)

In-3 Sawai et al., 2009a No Yes (H) Mx (Pl, G) Good --

In-4 Kokociński et al., 2009 No Yes (H) Mx (Ep, Pl) Poor Low

Table

http://ees.elsevier.com/earth/download.aspx?id=151411&guid=74d5e333-b5f4-44e8-9460-76b81a206296&scheme=1

