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Abstract

Software systems become more and more com-
plex thus the application of self-developing dis-
tributed and decentralized processing is indis-
pensable. The complexity of such systems re-
quires new tools for designing, programming and
debugging processes which imp|ies the fact that
new approaches to decentralization should be un-
de.rtaken. An idea of autonomous agents arises as
an extension to the object and process concepts.
The active agent is invented as a basic element of
which distributed and decentralized systems can
be built. The use of evolution strategies in design
of multi-ageat systems reveals new posibilities of
developing complex software systems. "rh(: cwJ-
lution plays also a key role in creation and orga-
ni~.ation of social structures. In this paper a new
te(:hnology of designing and building agent sy~
terns based on genetic methods and a draft con-
cept of a model-based approach to such systems
are described. Also an application of this tech-
nology to a self-developing prediction system is
presented and results of simulation experiments
carried out with the use of I)-1 random time series
are discussed.

Introduction

(,,’net it algorithms atttt evolution programming have
been known for more than twenty years and t]w idea
of genetic algorithms has been st,ccesfully used as a
has,, for a number of applications ((;()lcll)erg 1989),
(Michalewicz 1992). However, results of the applica-
tions art, not sufficiently satisfactory although a num-
ber of modifications and improvements have been in-
troduced.

The genetic algorithms and ,’volution I)rogramming.
l.hat may be found in the iiteral.l,re (((.;ohll)[,rg 1989),
(Miehalewicz 1992), (Koza 1992)). have the fi)llowing
f,,al.ures which limit the developlnent of niore compli-
cat.ed systems:

¯ (;eneral common algorithm of sch’ction and new
population generation is used which implies that the
whoh" evolution process is centralized.

¯ Beings taking part in the evolution process are sim-
plified to a gene (or collection of genes) manipulated
by the algorithm.

¯ Only basic evohition el)craters such as Imi!at.ion, re-
production or crossover are used in the ev, dution
process.

’[’herefore they present inconveniences and restrictions
as: beings cannot act independently, their p,’ro’l)tion
of the environment is very poor, I)ossibilities c Jr rivalry
and competition are limited, social relatiot,s ar,, sup-
pressed and many lllore. Furthermore the us,’ ~Jf,,nly
such evolution operators as mutation or crossover lim-
its the development of thp created algorithm, which
looks like tuning to the given conditions rath,.r then
creating a new, more complicated one. Even though
there are some approaches which try to solw, tlw prtd)-
lem of insufficient evolution operators in gvneli,’ pro-
gralnmig ((Koza 1992), (Koza 1994)), in most c~Lses 
soeIllS to lead to distorting the logical structur,. ~,f the
environment and makes the whole evolution l,r,,,’,’ss
difficult to understand.

Evolution process realized in the multi-ag,.ni w~,rM
m~y be considered a.,~ a new apprt~ach t.o the ,,v,dut i<,u
programming, and as such l)res,~nts the following new
possibilities:

¯ Beings (elements) t.hal, participate in th,, ,.v,,luti,,i
process (agents). environment and r,,lati,ms :Lg,’nt
-- environment are well defined. (((’t,tnarowicz 
Nawarecki 1995). ((’.etnarowicz &~ Nawarecki 19~.D3)).

¯ Evolution process is decentralized and is i)crl’-rmed
with no common cadence. Agents can a~’l imh.p,,u-
dently and in consetlllellc,’ I.h,, social rela.ti0,i,s in file
agenl,s’ l)Ol)ulation may be devehq)ed.

¯ Perception of the environmenl by the ag,,ut.,, and
social relations enable the riw~lry and (’,:,ml)clilion
among agents that assure the decentralized l,r, wess
of the selection of agents.

¯ Decentralized process tJf tim evolutic, ll in m,tlti-
agents world enables new operatic, u ~)f ;dgt,rit hm ,’r:,-
ation.
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The evolution process in the
multi-agent world

Structure and relations

According to the multi-agent world (MAW) defini-
tion (Nawarecki & Cetnarowicz 1993), (Cetnarowicz
&: Nawarecki 1993) the evolution process takes place
in the society of agents that remain in a given environ-
rnent. A state of the environment changes as a result of
internal (e.g. agents" activity) or external events (e.g.
a new portion of data supplied to the environment).

The environment and the events may be observed
by agents, which can execute actions appropriate to
the current state of the cnviromnent. Every action
performed by an agent changes its relation to the en-
viroument and other agents. Each agent has to satisfy
certain goals during its life. The main goal is always to
survive and that is why agents mnst adapt, to current
cotlditions of the environment or try to change them.
sometimes cooperating with other ones.

A given problem that is to be solved takes form of
such an environment with characteristic features and
events that take place in it. The resolution of the prob-
lem is obtained as a result of the changes in the envi-
ronment carried out by a chosen agent, selected grolip
of agents or the whole society of agents.

Evolution operators in the agent evolution
process

From the point of view of a given agent muh.i-agent
world may he cosidered as a relation agent - envirou-
ment. [f this relation is not satisfactory, it may be
changed in two ways:

¯ agent changes itsef- mutatkm and crossover opera-
tions are derived,

¯ agent changes environment - reproduction, aggrega-
tion anti escape operations are derived.

Thus the evolution of the world of autonomous
agents may be realized by applying one of five follow-
ing operators (some of them involve a single agent and
some need cooperation of a group of agents):

¯ mutation with respect to a single agent.:

¯ crossover within the chosen group of agents:

¯ reproduction of a single agent:

¯ aggregation of the chosen group of agents;

¯ escape of an agent out of the environmcnt.

Mutation, crossover and reproduction processes in
the society of agents have the same form as described
in (Fogel et al. 1966), (Goldberg 1989), (Michalewicz
1992). But there is one difference: a given agent, indi-
vidually makes decisions on undertaking any activity
(for example, lie Ifimselffinds partners for the crossover
operation) and every mutation, crossover or reproduc-
tion process has its own independent cadcnce of real-
ization.

Figure 1: The principle of the aggregation process

The idea of aggregation operation may be consitb~red
as a creation of a new environment. The operation of
creating a new environment by a group of agents resu Its
from the observation that the existing environment is
not suitable for these agents. Then a group of ag,,nts
can make a decision on creating a better environment
transforming a part of the one already existing. ¢ ’.oop-
crating (e.g. by specialization) with one anoth(,r, 
active agents can create a better environment which
enables them a more efficient activity. This environ-
merit must be created and maintained by the active
agents, which in turn, have to act together at,d hehave
like a single agent with a new set of characteristic {~a-
tures. The new environment created and the group
of agents involved in its creation are consid,’red a new
agent originated frorn the aggregation.

Escape operator makes it possible for an ag~,nt to
change the environment in, which it lives. If tlw evolu-
tion takes place in several environments EL. E., .... E,,
and each environment has its own characteristic fea-
tures and different parameters of the evolution process,
the agent obtained by mutation, crossow’r or aggrega-
tion that is not well adapted to the envirom,,ent Ei
may go to another environment Ej. Then it may start
there a new line of descendent agents with valuable
characteristic features or return to the former environ-
ment.

The Aggregation Process

The stages of aggregation process (Figure 1) are 
follows:
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Figure 2: The tnodel of tile internal structure of an
agenl..

1. I,et us characterize the enviromnent by two param-
,,ters A anti B (vahle of A and II belongs to {0.1}).
Agent AgA (agt,nt AgB) is able to make the environ-
nlent parameter A (B) equal to | (in its neighbor-
hood). Agents AgA and AgB need the ,~nvironment
with both parameters A and B equal to I.

2. ()wing to the displacement in the environment ca-
pability, agent AgA may remain in lhe close neigh-
borhood of agent AgB and vice versa.

3. Agents AgA and AgB make an arrangement and de-
cide to aggregate together and create a new environ-
ment with parameters A anti B convenient for them
(A = 1, B= 1).

4. A new agent AgO is created and it stores informa-
tion of the arrangement of AgA and AgB. The group
of agents AgA, AgB. AgO anti the part ,ff the envi-
ronment with IJaratneters A a/nd B equal t, 1 form a
n,’w agent. The agent AgO contains (coded in genes)
the information necessary for tile reproduction of the
arrangement ( of AgA, AgB. Ag0).

The aggregation I)rocess makes it possil)h, for the
evolution to realize more cotnldicated algorithms and
to create successive n,,w agents, whose population is
better adapted to tile uew environment. It seems that
tile general principle of intelligent activity of agents
in the evolution process consists of decisions properly
undertaken by a group of active agents which way of
evolution is to he applied. In general it is necessary
to decide whether to modify the agent or the environ-
nlenl..

A concept of the multi-agent system using
model based approach
Main definition of the nmlti-agent system (M AS) using
Iha model based approach to th,, agent is ((I)emazoau
&" Miiller 1993). ((’.etnarowicz &" N;~warecki 1995)):
¯ a an agent. (a given active element of the MAS),

..1 a set of the agents that remain in the system
(actual configuration of agents), a ~_ A,
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¯ E - a space in wlfich agents relnain (may b,. d,’tin,’d
by its topology T, and resources R: E = (T, R)),

¯ V = (A, E) - the whole environment.

¯ intellectual profile of the autonomous agent: ,t =
(hi, Q, S, 1, X, L, m, q, s), where:

M is a set. of models representing agent’s km,wl-
edge about the environment (mod,.I (’c,ntigura-
lion), m is an actual model of the envir,,nmont
observed by the agent,

- Q is a queue (a set with a giveu order) ,ff agmlt’s
goals, q is a goal actually realized by I.h,’ agent,
q : M × M , ?~, q(rn,m’) E ~J?,

- ,S’ is a set oF strategies thal. the agent may c(,n-
sider to iwrform, s is a strategy to, be realized.
s : M --~ M. m’ = s(m),
! is the observation operator which with th,. ,se of
1.he set. M bnihts the model m of the envirtmn,enl.
I : :M x ~ , M, m = I(M. t"),
X is the strategy s realization operalor, wh,.n ;q~.-
plied it. causes changes in the euvironm,,nl...\" 
S x V ’ V. V’= X(s,V),

- L is an adaptation operator which adjusts the
agent to the particular characteristic fi,atu,’es of
the enviromnent by changing sets M aml S. L =
{LM, Ls}, where LM modifies set M and L.s set
,’¢.

- The agent a using observation fi,m’tion / huilds
the model nt of the observed envirot,ntent. "l’heu
il. selects lhe best strategy s whicl, rhang,.s th,"
environment according to its model nt iv, tl,,, I,(:st
way from the point of view of the goal q. Tim
selecl,,d optimal st.ratogy s is thml realized using
operator X. In the end tim agent .. using th,. nb-
servation Ikmction / builds a new model m" ,,flhe
changed environnwnt and the process ,,f ,,I,tim~l
strategy selection and realizatbm is rep,’al.e,I.

¯ I~nergetic profile of an agent (! ma.y be d,~livl,’d :is ~m
energetic state P which changes when the ageuv I,er-
fornls actions. The state P d,’lines 1.h,. ahilily ,ff the
agent tt to act and surviw,. (’hanges ,ff th,, ,,n,,rKel.ic
sl.;~te P corr~spon(I to gains and looses nf t lit’ ag,~llt.’s
,,nergy. In common applications tho ,,n,,rg,,lic stale
is represented by a single re~,l value.

Sample practical realization of the
multi-agent system

Evolution of the agent predicting system
Ill this saml)h’ version 0[" the ,’vohition nt,,d,,I 1he
principal goal of autonomous agents is t,, pr,~,lict the
changes of the environment. In tile ,,nvirt,tnvnn,’nt a bi-
nary parameter tt E {0, 1} is delined. The yah,,, ,,f,t
is changed l)y a global eVPII| which take.,. I,htc,. wh,’n
new value is suppli,.d for I.he environnwnt. Variations
of the a paramet,,r in discrete lllOliletlts Of t, ililt’ III;I.y
be represented by the binary seqllence .r(ll) {.r(n) is
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the value of ~ after n-th successive event, i.e. n-th
successive stage of the process).

Value of the t~. parameter is available for all agents
in the environment Each agent tries to predict what
value the parameter ¢~ will take after the next event.
Thus i-th agent taking ~(n) as all input generates 
an output the binary sequence y/(n) E {0, 1} in such 
way that x(n + 1) = y;(n). The environment calculates
an average prediction y(n) based on predictions of all
agent,s and gives it as an output of the whole system.

In the considered system an agent performs the pre-
diction applying a llnite state automaton which uses
input/output language composed of 0 and I. For the
given automaton the transition and output functions
are unique and may vary during the evolution process.
The automaton plays a role of a gene in which the
information about the algorithm of actions of a given
agent is saved (of. (Fogel ct al. 1966), (Michalewicz
1992), (Goldberg 1989)).

There are several factors which are responsible for
the estimation of predicton quality for an agent. There
are two factors which count hits and misses (good and
bad predictions):

< - connected with predictions of j-lh state of the
automaton of i-th agent,,

¢~,- connected with successive i-th agent predictions.

There is also the most useful one: q/i prediction prob-
ability. It estimates the quality of actual prediction of
i-th agent, in the scale of prol)ability. It uses ~bi and ~/"
(j actual state) tort(pared to defined maximum values
as a base for calculations.

Actions perforlned by an agent depend on the vahw
of its energy. Any action costs some energy and any
success gives a corresponding amount of energy. Thus
the energy evaluation during th,’ process is defined as:

Pi(n) -" Pi(O) + £/ii(n) (I)
i=1

where: t~(0) - ilfitial energy of i-th agent,
Pi(n) - energy of i-th agent at n-th stag," of

evolution process,
hi(n) - energy acquired or lost by i-th agent

at n-th stage of evoh,tion process:

{~i(n) 0 when a’ (n) =y i(n)

6i(n) = hi(n) < 0 x(n) ~ yi(n) or any
action is performed

The evolution process involves nmtation, reproduction
and aggregation operations:

¯ Mutation operator reverts the output value con-
nected with a given state of agents automaton.

¯ In the reproduction process a new agent is created
by an existing one, with parameters equal or close
to its parent.

¯ The aggregation consists of parallel connection of
two or more agents. The prediction of an aggregate
is the best prediction of all subagents what makes
the aggregate give better results than every subagent
itself. The aggregate can be also an object of fltrlher
evolution.

¯ The crossover operator can be easily applied by mix-
ing automata of two agents and this way building a
new one.

The model of the predicting agent

The following is the description of the sample predic-
t.ion system in terms of the model of an agent described
above.

The structure of the environment space

¯ The only one resource available for all ag,,nts is the
value of parameter t~, R = {t~}.

¯ The topology T of the environment space is 2D-
m(,sh4 with 5 x 5 nodes.

hltellectual profile of i-th agent (’urrenl m,,del
configuration is a set of all subsets of 0-1 sequences in
which the beginning n-1 elements are the observed
values of environment parameter c~:

M(n) = ’’(’~

where

m(,t) 
{(t(l). r(2) z(,,- ]),7(n).’~(n+l) ) 

vk > ,, 7(~:) ̄  {0. l}}
Actual model of the environment is a subset of re(n)
consisting of the sequences with all 7(k) attainal)h" 
k-n successive transitions of the avl.omaton:

md,O =
{(x(l), x(2) x(n- I), "~*(n), 7" (n+ I ) ):

vk > 7, 3t~-"(-,.’(k))}
where t/k-n (7* (k)) stands for k-n successive transit 
of the i-th agent’s automaton leading from the current
state to the state with associated prediction of "r" (k).

The goal for au agent is to make a good prediction:

1 for yi(n)=x(n+i)
q(mi(n--l)’mi(n)): 0 for yi(n)~x(n+l)

The sot of strategies consists of pairs: ,S’ = {(si.s,.) 
si-inellcetual strategy, se-energetic strategy}. ’l’h~
intellectual strategy is connected with the define,.I goal
q. Having applied the operator Xi of si strategy real-
ization the model consists of the sequences with n-th
element equal to the predicted next value of parameter

{(x(I),x(2) ..... x(n-l),yi(n),’y*(n+l) .... ):
vk > ,, + 1 3t~-"(7"(k))}
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Figure 3: Typical prediction probability distribution
chauges along simulation

The observation operator 1 uses aquired from the en-
vironment current value of parameter a a.s iztput t,o
atttomaf.on transition filnction:

,,,I’ (n) .---.
{(x(l).~(2) ..... ~(,,.-l),~(,i).~’(,+l) 

v/c > n+ t ~tt++-"(~’(t:))}
The obtained mode[ is the initial on~ for the next stage
of the agenl,’s evohztiorl process:

,,,tin+ I) = m[’(n)
The nlutatiozt oporat,or described in the previous sec-
tion serves as tint’ adaptation operator LM. The sel,
of availabh’ strategies ,’~’ remains unchanged during the
simulation therefurp there is no Ls operator.

Energetic profih: of the agent Energetic profile is
represented by an integer vahle P as described in t, he
previous s,’ction, l’:nergetic strategy s. is realized by
applying one of the evohtt.ion operators (death. repro-
duct, ion and aggregation) described in details also in
l, hp previous section

The simulation of the evolution of
predicting agents

The results of the sinlulation of the predicl.ing all-
tomata are attached as an illustration of the consid-
eratior|s pr(,sented above.

The variation of ,~ parameter is generated as a bi-
nary sequence of dell,led lengtll by applying a rm,dom
generator witln uniform distribution. This seqltenct,
is periodically repeated giving an infinite input se-
qttente. AUI, t.)IIOIIlOUs agent.s are 1.o predict the next
following vMut, of the sequence ttsing finite aotonlata.
The agent.s art, exposed to the action of the r,volutimn
i nehlding mutation, reproduction and aggregat ion pro-
cedures. Decisions on wlfich of the evolution processes
to undertake art, rnade I)y every concerned agent |il)on
th," state of the .nergetic alnd intelh,ctual profil,’.

Tint, evolution process has been studied with the
change of three parameters responsibh, for tilt, ilnlen-
sit.y ,ff evolution ~q),:ralious:

energy S1 ~?’
tion st~p

Figure 4: Typical energy distribution chang,,.s along
simulation

P,t death intensity.

reprodm’tion intensity,

F,, aggregation inte]lsity.

The intensity of nllltation did not p,+rtain t,, this re-
search. Apart from tt]ese parameters int<.nsity ,,f all
evohlt.ion operations (It?penal on lilt’ nulrll~er td" agplll.S
in tht~ environment in the following way: 1.h,, mort,
agents are in the environment the easier they di,’ ;rod
aggregate but tit,, harder they undergo tit<’ r+,l+rr,,hlc-
t.ion process.

The most inlportant fi+ature of the I,uhavit,ur ,,f tin,.
envirumnent is ilhnstrated by I,w,, last. figures (l"igure
6 and 7). In most cases the nund,,r of agents inv,,Iv++d
inn the siurntlal.ion drops at thp very I++~gimling. There
is a longer declin+~. Then it starts to rim+. and aft,,r
several slight falls reaclnes upper limit <,f |,,udwr of
agents in the environnlent. This limit is detiu,.,I t~, slop
the sinullatiov when the agents’ pr,’<licti,ms at, g,,t,,I
t,not,gh for the environment t.o give satisl)’ing r,.sulls.
Ilaving reached thai state th,, ,’volut.i,.,n I+araln,’t,’rs ill
fin" environnlent shouhl changt, in ortlor t.,. ch+’ck t.ln,’
iqJgrowth of the system. Thal, is why the ow,lticm in-
tt,nsil.y paramr+l.ers depend ,m the imnll+er .,f ag,.nl.s ill
the environment, l"or the saint’ reason t.he|’v i.., an up-
per Inn,it of energy, that can he pr+ss,’ss,’d l,y ;III ;U.~t’llt.
@lined as well.

The stages of the systetn in the ,+v,)lutitm llt;ty b,’
prosertted a.s a histogram. The first I.w,+ (Figur,’ .1 ;+lld
1’1) show how energy and l)rediel.icm l.)rt,bahfl]l.y ,’h.lng+,
during a typical sinntlat.icJ]t. Ew.ry ;l.g~’llt start.-: with
,.nergy of above Inall’ a maxinmn, val,,. +,n,l ],r,’dh’li(.,n
prt,bability of 7)0%. Agents’ I)redicrioJlS (’allllt d I,,’ g,, ,, I
at the heginning of tile sinlulation I.,cat,se Ihfit.,. au-
totnata are initialized at randont. It t’;tllSt’S ;I fall ill
,ql<,rgy and predition prohalJility. Many ag,.nt.~ ,lie bc-
causp ,ff lack of energy and SOlllolimps il. I,’ad.- t,, ;, ~im-
ulat i~m breakd~wn, especially when th," death inl.,.nsily
is too high in comparision with tl,’ repr,,dl,,’ti,,n ,,w’.
Afh’r this fall a n,’v,’ gent.ratitm t~f dpsc,.n,h.nts t,{’ thc
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probabili~’

,-:,:--!: ! 0

0.9 Sl S1

no of
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Figure 5: Average prediction prohability from 20 simu-
lations with (the higher one) and without (the lower
one) the use of aggregation

400 l ................

300 ............. . ¯ j-
no of 200
agents ..

0-
1 21 41 61 81 IOI

simulation step

Figure 6: Average number of agents front 20 simula-
tions with (the upper one) and without (the lower one)
the use of aggregation

best agents is dew’loped. A mor~’ or less linear rise in
agents’ energy up to the maximum vMue appears and
the’ number of agents with prediction probability of 80-
90Vr grows. It leads to a halance state in which there
are regular slight parameter fluctuations and the pred-
ctions of the whole environment are 100% or ahnost
100% correct.

Figures 5 and 6 account for the thesis of positive
influence of aggregation operator on the evolution pro-
cess. The first graph shows a comparision of the aver-
age prediction probability distribution with and with-
out the use of aggregation operator at similar stage of
simulation with tile same other parameters. The his-
togram shows thai, the numl)er of agents with predic-
lion probability of 80% with the use of aggregation is
twice a.s much as without one. whereas the rest of the
histograms look quite similar. Furthermore, the av-
erage number of agents (Figure 6) during sirnulations
with and without aggregation is the same till the stage

300 ..... t --

200 A,.

100o .1 I q_.-4 ......

no of
agents

I 21 41 61 81 101

simulation step
........... i

Figure 7: Number of agents during two sample simu-
lations with different parameters

of dropdown and then it rises mucll quicker iu th,, case
of the use of aggregation.

And the last chart (Figure 7) shows how t.h[- es-
cape operator could improve tile evolution of the multi-
agent, environment even more. Two plots show the
number of agents in two environments simulated with
different parameters. Let the escape operator cause
agents to nlovc from an environment with more agents
to another one. This could balance the actual num-
ber of agents in each environment because falls often
appear in separate periods of time.

Conclusions
The following remarks may conclude the pr,,sented
considerations:

¯ The application of genetic algorithms to the design
of multi-agent systems (MAS) rnwals new possil)il-
ities of tim development of decentralized and dis-
tributed systems. It may be also regarded as an
extension to the genetic algorithlns which enables
them to give better results in various applicati.ns.

¯ In such systems it. is possible to introduce new ~qmra-
tors based on the evolution of the natural worht. The
use of aggregation operator significantly impr,ves
the evolution process of tlw nudti-agent w,.,rhl. It
seems that the escape operator may iml)row’ it even
more.

¯ The introduction of such group operators a.s t.h~ ag-
gregation one enables creation anti develol~nlent of
social relations among agents (the choice betw,,en
cornpetition and cooperation).

¯ The application of a general theoretical modr’l of t.hv
multi-agent world (MAW) aids tile analysis and d,-’-
sign of multi-agent systems, also based on genetic
methods. Purlhermore, it. enabh.s the comparison of
various agent systems anti makes SllCh systems ,,a.~ier
to understand and develop.
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