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ABSTRACT 
Condition monitoring of engine gas generators plays 

an essential role in airline fleet management. Adaptive 
diagnostic systems are becoming available that interpret 
measured data, furnish diagnosis of problems, provide a 
prognosis of engine health for planning purposes, and rank 
engines for scheduled maintenance. More than four hundred 
operations worldwide currently use versions of the first or 
second generation diagnostic tools. 

Development of a third generation system is underway 
which will provide additional system enhancements and 
combine the functions of the existing tools. Proposed 
enhancements Include the use of artificial intelligence to 
automate, improve the quality of the analysis, provide timely 
alerts, and the use of an Internet link for collaboration. One 
objective of these enhancements is to have the intelligent 
system do more of the analysis and decision making, while 
continuing to support the depth of analysis currently available 
at experienced operations. 

This paper presents recent developments in 
technology and strategies in engine condition monitoring 
including: 

1) application of statistical analysis and artificial 
neural network filters to improve data quality; 
2) neural networks for trend change detection, and 
classification to diagnose performance change; and 
3) expert systems to diagnose, provide alerts and to 
rank maintenance action recommendations. 

LIST OF SYMBOLS 

EPR engine pressure ratio 	p exponential average 
EGT cor. turbine temperature a standard deviation about p 
WF cor. engine fuel flow 
	

ANN artificial neural network 
N2 cor. high rotor speed 
	

B bias applied to a neuron 

Ni cor. Low rotor speed 
	

W weighting of neuron input 
13 cor. HPC exit temp 
	

TAT Total Air Temperature 
HPT High Pressure Turb. 	PC High Pressure Compres. 
LPC Low Pressure Compres. LPT Low Pressure Turb. 

TCC Turbine Case Cooling 

INTRODUCTION 
Years of accumulation of knowledge of jet engine 

diagnostics has led to an understanding of the processes, rules 
of thumb, diagnostic fingerprints, and hierarchies for ranking, 
and fault isolation techniques. Effective and timely diagnostics 
and prognostics now necessitates that the users of diagnostic 
tools exercise considerable judgment and experience in 
applying this accumulated knowledge. A minimum of one 
week of intensive training is required to apply this knowledge, 
but effective utilization of current tools requires years of 
experience. 

A critical mass of diagnostics knowledge has been 
achieved to permit the effective use of artificial intelligent 
systems such as neural networks and knowledge based 
systems, to emulate much of the required judgment and 
experience. 

OVERVIEW OF DIAGNOSTIC PROCESSES 
The diagnostic process (Figure 1) is modular and 

begins with propulsion system data, and applies data validity 
analysis to convert the data to more usable information. 
Then it extracts from the information the knowledge of 
performance and mechanical trends. It then compares the 
extracted knowledge to several knowledge bases, and 
completes a diagnosis or prognosis of the propulsion system's 
health. Finally it alerts the operator to any important findings, 
and constructs a hierarchy of potential actions to correct any 
problems it uncovered. 
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Figure 1 

' A robust diagnostic process uses competing 
strategies with alternative analytical processes that operate in 
parallel. It considers from the outset, more than one possible 
explanation for any trends it discovers. By using knowledge of 
the measurement uncertainties and the fingerprints for the 
possible explanations, it identifies and ranks the suspected root 
causes. It can carry the recommendations further by 
consulting additional knowledge bases and providing check 
procedures and maintenance procedures. 

ADAPTIVE DIAGNOSTICS 
• The computational engine of a diagnostic system is an 

adaptive performance model of the gas turbine being analyzed. 
The model's primary function is to normalize data so that every 
data point is evaluated at effectively the same flight condition, 
power setting, system power off-takes and bleed off-takes. 
This is accomplished by running the model to each input data 
condition and computing the difference between the model and 
the data. 

Adaptive diagnostics requires that the model be able 
to adapt itself to reasonably match revenue service data. 
Models now have the capability of thermodynamically scaling 
their component maps to close with early engine revenue 
service data. The closer the thermodynamic match of the 
baseline model, the better the normalization of the data. 

DATA VALIDITY 
Statistical analysis is essential for evaluating the 

quality of the data. Rolling averages typically waste the initial 
data points and are slow in responding to trend changes. 
Several data validation improvements have been developed. 

First the rolling average method is replaced by an 
exponential memory retention method. An exponential 
average equivalent of a ten point rolling average requires the 
storage of only the exponential average, not the ten preceding 
points. With each new data point 15% of the remembered 
average is replaced by new data. Therefore the old data is 
forgotten 15% at a time, resulting in an exponential decline in 
its usage. In a ten point rolling average the old data is 100% 
recalled until it is 11 points old. Then it is 100% forgotten. The 
exponential equivalent of the 10 point moving average is given 
by: 

EXP_Average(t), o  = Exp_Average(t-1), 0* 0.85 + 
New Data • 0.15 

With each new data point a fraction of the memory of 
the older data is replaced. This means that since only the last 
average is retained, the exponential averages can respond 
instantaneously to step changes in trends. 

0 6 10 16 20 25 30 35 40 46 

Point Nurnber 

Figure 2 

Figure 2 shows the response of the two methods to a 
2% step increase with +-1.5% random scatter. The 
exponential has an equivalent or better response and definition. 
As soon as a trend is detected the exponential average Can be 
incremented to show the step change. 

Similarly, the exponential averaging method allows 
statistical bands to be carried with little overhead. That allows 
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the statistical analysis to adapt quickly to changes in data 
quality. Therefore the diagnostics automatically adapt to the 
data quality of each airline reducing the likelihood of false 
alarms. Unlike a moving average, an exponential average can 
be changed at the moment of the trend change detection, so 
the statistical bands also show the discontinuity. 

If care were not taken, pure statistical analysis 
disregards trend changes presuming them to be bad data. 
Therefore earlier diagnostic systems kept the bad data and 
gave the analyst a warning flag and a few rules to evaluate the 
data validity. A neural network (Figure 3) is a system of 
computations plus logical tests that can be used to recognize 
patterns. The input to the network is the instantaneous 
average value and standard deviation of each critical 
parameter. The neurons apply the knowledge and experience 
that the analyst would normally consider. The network can act 
as templates to eliminate bad data much the same as analysts 
would with their rules of thumb. 

Filtering Data With Six Templates 

If > 0, Replace 
LOT with is 

If > 0, Replace 
WF with is 

If > 0, Replace 
N2 with ki 

If > 0, Replace 
NI with is 

Figure 3 

 

These templates (Figure 3) identify spurious TAT, 
EPR, input errors, and large instrumentation errors. The first 
two ANN templates identify errors that result in all four 
parameters being either high out of statistical limits or low out 
of statistical limits. The remaining four ANN templates detect 
single parameter limit exceedences that are not physically 
possible. 

When five key jet engine parameters (EPR, EGT, WF, 
N2, N1) are considered, six basic templates can be defined 
which correct approximately 9% of typical data (example 
Figure 4). In this typical example 9% of the data caused 26% 
to 63% of the raw data measurement uncertainty. A separate 
report is generated so that the raw and corrected data are both 
available. 

The test case selected was a recent event where a 
JT3D combustor crack occurred. The weightings for each of 
the four engine parameters entering the first two template ANN 
nodes were set equal to one another and then optimized. The 
optimum node threshold limit was found to be 1.4 sigma for 
four parameters. That is the equivalent of more than 2.5 sigma 
for a single parameter statistical test. 

The weightings for the other four template nodes were 
individually optimized because JT3D experience showed N2 to 
be the most reliable parameter and WF to be the least reliable. 
The optimum relative weightings for this case were found to be, 
N2 (1.30), EGT (0.96), Ni (0.93), and WF (0.81). 

T. Delta N2C2  
With templates applied 

Figure 5 
Several training cases are typically used to determine the ANN 
weightings. However, the direct knowledge of the individual 
engine's current data scatter is an available and useful 
alternative for a diagnostic system that adapts to the data 
being analyzed. As processes are improved and data quality 
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improves, the improvement is measured and the sensitivity of 
the diagnostic system adapts. 

Over the range of the 44 points before the event, the 
templates reduced N2 scatter 49% (Figure 5), EGT scatter by 
34%, N1 scatter by 26%, and WF scatter by 63%. The pre 
processing of the data with statistical analysis applied through 
ANN templates improved the data validity significantly thereby 
improving the accuracy of all the downstream processes. 

TREND CHANGE DETECTION- NEURAL NETWORKS 
Figure 5 shows that the current system required six 

data points collected over a period of six days before the 
sample trend change was detected and the engine was 
removed. N2 was the most reliable parameter for detecting 
this trend change. That is characteristic of the data acquired 
from JT3D and JT8D engines. EGT is the most reliable 
parameter for high bypass engines such as PVV2000, PW4000, 
and JT9D engines. Having four or more parameters for 
detection improves the reliability of the prediction. Therefore 
the detection system can be used on all the key parameters to 
improve the confidence level. It is quite likely that as 
experience is gained with intelligent diagnostic systems, that 
calculated parameters such as efficiencies and flow capacities 
will be used for detecting trend changes. Synthesized non-
dimensional parameters may also come into use. 

In this example (Figure 6) we use an ANN that 
evaluates three different exponential averages for corrected N2, 
the equivalents of 3 pt, 5 pt, and 10 pt moving averages. 

Detector With Noise Filter 

Figure 6 

The ANN is trained with trend changes in the positive 
direction and then used to process the trend twice to account 
for both positive and negative trend changes. A separate 
calculation of the magnitude is computed based on the 
relationships between the moving averages and the response 
of the detection system. The calculation is a weighted sum of 
the three averages trained separate from the neural network. 
The magnitude of the change is a criteria to filter out spurious 
detection. The filter is applied to inhibit trend change detection 
when the change detected is less than one third the data's 
noise level. It is very important to inhibit potential false alerts. 

It is preferable to miss a detection than to give a premature 
alert For that reason three detection systems are used, the 
first to detect significant changes within two to three data 
points, the second to detect subtler significant changes within 
five or six data points, and the third to detect 1% or greater 
moves in ten data points. 

Figure 7 shows the trend detection system applied to 
the filtered N2 data. A 66% improvement in detection time 
response was achieved using the ANN/filter detection system in 
this example. The initial estimate of the step change was -3% 
and settled at about a 4% decrease in corrected N2. 

TREND DETECTOR FIRES ON SECOND POINT 
/1313 ENGINE P678967, March 1997 
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Figure 7 

TREND CHANGE DETECTION- AutoAnalysis 
AutoAnalysis is an analytical tool developed by Pratt 8 

Whitney to assess changes in the performance of engine 
components. The AutoAnalysis process is an independent, 
parallel analytical process for detecting trend changes. For 
gradual changes it does a modular analysis of performance 
retention. It uses a Kalman filter which makes it adaptive to 
the quality of the data being analyzed [2]. 

The Kalman filter attempts to model and explain the 
data. When an abrupt change in performance occurs, the 
change is first perceived as a large sensor error. A persistent 
sensor error term is therefore used for trend change detection. 

TREND CHANGE ROOT CAUSE DETERMINATION-
NEURAL NETWORKS 
The root cause of performance trend shifts needs to 

be determined to make recommendations for corrective action. 
Measurement uncertainty and the similarities of some problem 
symptoms does not always yield high confidence in the most 
probable root cause. Typically three alternative assessments 
are needed to encompass the true root cause. Neural networks 
provide easy access to other possible root causes. The 
computations of the output neurons of a neural network can be 
intercepted. That reveals the most probable alternatives and 
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Figure 8 

allows them to be ranked in the order of the strength of their 
signals. 

Each neural network node represents a line that 
partitions the data (1]. The slope of the partitioning line is 
given by the ratio of the two input parameter weightings (Figure 
8). That ratio can be determined from gas generator influence 
coefficients. Therefore all the node weights for hidden layers in 
this particular network can be calculated and require no 
training or optimization. Each data phase space was 
partitioned into high ratio (>), low ratio (C), and intermediate 
ratio regions. Nodes based on ambivalent gas generator 
parameter ratios that could easily change signs were removed. 

A NEURAL It11/1CRIC WI, CREATES A PARM1CN 
CF TEE PHASE SPACE CEFINED EA' ME !NFU' 

There are two design strategies for neural networks. 
The most common strategy is to use a symmetric matrix of 
neurons and train them with specific cases using an error back 
propagation technique. This method can provide the best fit of 
the data with the least number of neurons. However this 
method provides solutions that are for the most part 
incomprehensible, and non adaptive. This method can also 
provide the best fit of the data with the greatest number of 
neurons. However, again the network tends to be 
incomprehensible and the data over-fitted. 

Mother strategy is to partition the problem into key 
elements and independently optimize those neural network sub 
functions. Adaptability then becomes a part of the solution. 
For instance, in the detection system previously discussed 
(Figure 6), the neuron bias terms were made a linear function 
of the standard deviation of the data, and of the magnitude of 
the deviation of the data from the model baseline. The network 
was then first optimized for one signal to noise ratio, with no 
deviation of the data from the baseline, and with constant 
neuron bias terms. The neuron thresholds were then 
independently optimized as a variable accounting for different 
signal to noise ratios, different moving averages, and different 
deviations between the data and the baseline. It was found 
that as uncertainty increased, the threshold required for firing 
the neurons also increased. This method that applies first 
principles and physical insight, is easier to understand and to 
optimize [3). 

A useful feature applied in these networks was the 
implementation of gains as transfer functions, so that the use 
of classical sigmoid functions were not necessary. The 
sigmoid functions are continuous functions that increase the 
uncertainty of the input data. The gains on the other hand are 
analogous to the biological neuron function and allow the 
output of the nodes to be variables. , Therefore if the node's 
input barely meets the threshold, the node's output is 
calculated to be less than 1.0. If the input greatly exceeds the 
threshold then the node output carries a percentage (typically 
20% used) of the amount by which the input exceeded the 
threshold. The gain is kept small so that the network is stable. 

The input parameters were normalized for the data 
uncertainty by dividing each input parameter by its respective 
standard deviation. The standard deviations were exponential 
averages that continuously adapted to changing data quality. 

The network weights between the hidden layer and the 
output root causes, are independent and are trained one root 
cause at a time. 

Figure 9 

The symptoms or fingerprints of the root causes of the 
performance trend shifts have the efficiencies, flow capacities, 
and effective areas of the modules coupled the way the 
problems usually occur. That improves the effectiveness of 
separation of root causes such as the HPC versus HPT 
deterioration. During development, false positive indications 
are minimized by treating no-fault found (NFF) results as 
faults. 

The focus of this paper is on diagnostics for a 
minimum case of four measured key engine parameters (EGT, 
WF, Ni and N2) at constant EPR. However, typically as many 
as nine parameters are monitored. T3 is shown to indicate how 
additional measured data is used in areas where they can 
improve the separation of root causes of performance changes. 
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In Figure 9, T3 is shown to be used to separate a 2.5 bleed 
from a 2.9 bleed problem, or an HPC from an PT problem. 

In addition to engine modular changes, it is necessary 
to identify systematic sensor errors or changes to 
instrumentation. They too can trigger trend detection logic. 
These changes are not quickly detected by the rules of thumb 
data filter templates because they are repeated and are 
gradually accepted as significant. Systematic sensor errors can 
be of three types, aircraft instrumentation errors (total air 
temperature, Mach number, and altitude), engine 
instrumentation errors (all measured parameters), and changes 
that can result from installation of new sensors or equipment. 

Systematic airplane related instrumentation changes 
and errors affect all engines equally. When the root cause of 
a trend shift is found to be the same for all the engines on the 
aircraft, then the aircraft instrumentation is identified as the 
actual root cause. 

Systematic engine related instrumentation changes 
and errors usually affect one engine, and often only one 
parameter. When an engine instrumentation change or error is 
responsible for a trend change, the affected instrumentation 
shows the change and is therefore identified. 

The neural network can determine the alternative root 
causes, but the magnitudes of the root causes are best 
determined using AutoAnalysis. The aerothermal diagnosis is 
ranked in order of probability. 

Trend chancre detection 5-18-87 JT9D-70. P702143 
Probability 

Baroscope HPT 74% 
Check TCC system 62% 
Baroscope Burner 30% 

TREND CHANGE ROOT CAUSE DETERMINATION-
AutoAnalysis 
AutoAnalysis includes a Kalman sensor error analysis 

followed by a statistical determination of the root causes. It 
uses the instrumentation uncertainties and an adaptive engine 
model to generate a matrix of influence coefficients. 
AutoAnalysis independently assesses the most probable root 
cause as well as its magnitude [4]. 

In addition, AutoAnalysis accepts the alternative root 
causes determined from the neural network, and computes the 
magnitudes of the alternative root causes. In the following 
example, 2.3% high turbine distress is the most probable root 
cause to explain the performance loss. A 100% TCC failure or 
a 2% burner pressure loss are possible alternative root causes. 

Trend change detection 5-18-87. JT9D-70. P702143 
Probability 	Magnitude 

Baroscope HPT (%EFF/FC) 74% 	2.0/1.5% 
Check TCC system (%TCA) 62% 	100% 
Baroscope Burner (%DP) 30% 	2% 

The AutoAnalysis assessments provide detailed 
modular breakouts suitable for engineering analysis. In 
addition, a knowledge based expert system is used to provide  

the flight line recommended checks and maintenance 
procedures. 

KNOWLEDGE BASED EXPERT SYSTEM FOR FAULT 
DETECTION AND ISOLATION 

The knowledge based expert system diagnostics 
provides the maintenance mechanic with 'What's wrong and 
how to fix it; value analysis based task optimization. 

The expert system integrates the aerothermal input 
from AutoAnalysis with onboard control status and 
maintenance words (codes) for additional fault detection and 
isolation with maintenance recommendations. it is an object 
oriented system [6] designed to emulate the human thought 
process. The control identifies faults in scheduled system 
switches, valves, and indicators. The root cause assessment 
of AUTOANALYSIS is compared and linked with the control 
fault analysis providing a specific check list. The reasoning is 
temporal in that it considers not only the facts, but the order in 
which the facts occur [7]. A Bayesian type statistical evidence 
approach is used to reflect the uncertainties in the rule based 
analysis. 

Value analysis considers the probability that the 
diagnosis is correct, and the cost required to check the 
hardware and verify the diagnosis. An alert is issued with the 
recommended corrective action whenever a significant trend 
change occurs. 

Trend change detection 5-18-87. JT90-7Q, P702143 
(For illustration only) 

Probability Magnitude Cost Rank 
Baroscope HPT (%EFF/FC) 74% 2.0/1.5% $260 2 
Check TCC system (%TCA) 62% 100% $60 1 
Baroscope Burner 	(%DP) 30% 2% $220 3 

The maintenance recommendations provide 'Answers-
not-Data' type of results. The information will be available in a 
hand held computer for powerplant analysis or line 
maintenance groups. Substantial maintenance cost saving 
and reduced down time are predicted for the quicker, and more 
accurate diagnostics [5]. 

Symptoms of open clearances or Hot Section Distress 
Maintenance word indicates TCC valves powered. 
Action: Check function of valves 

If valves are functional, then 
Action: Check for system cracks and loose fittings 

If TCC system OK, then 
Action: Baroscope HPT looking for distress 

If HPT system OK, then 
Action: Baroscope burner looking for distress 

The expert system prognostics module integrates the 
aerothermal input from AUTOANALYSIS with module 
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configuration information and the fault detection maintenance 
information from the control. 

KNOWLEDGE BASED EXPERT SYSTEM FOR PROGNOSIS 
The knowledge based expert system prognostics 

provides the quality assurance, reliability engineering, 
maintenance support, flight operations, and fleet management 
teams with projections and advice based on the expected long 
term behavior of the engine with the diagnosed condition. 

Having isolated the cause of the fault(s), the expert 
system presents a prognosis. A critical fault could result in the 
prognosis that requires the engine immediately be removed 
from the wing or that the engine be grounded until a critical 
part is replaced. 

If the isolated fault is non-critical such as a missing 
bleed seal or a TCC valve failure, the prognosis may 
(depending on other conditions) be, that the fault need only be 
corrected at the next scheduled maintenance, or that the 
aircraft can safely fly to the overhaul facility. 

A fault occurring as the normal maintenance cycle 
approaches may result in the prognosis that the aircraft can 
continue to operate between city pairs in cooler climates where 
the engine operates at cooler internal temperatures. 

Mother prognosis could advise if overhaul can be 
postponed or if overhaul should be pulled forward. 

With a prognosis for all engines in the fleet, 
scheduling of fleet maintenance as well as the ordering of 
spare parts can be planned. This information can be used for 
asset management to assure that spare parts are available on 
site on time. 

EXPERT SYSTEM FOR INTEGRATION OF FLIGHT AND 
TEST CELL DATA ANALYSIS 

Flight data can be used with or in lieu of tested-as-
received-data for workscope value analysis. The probabilities 
are set to 100% when inspections and checks verify the causes 
of the trend changes. In the following case the certainty of the 
TCC and 2.5 bleed seal involvement make them highest 
ranked for maintenance and repair. 

Works/me 5-19-87. JT9D-7Q. 12702143 
(For illustration only) 
Rehab:My Value Cost Rank 

Replace TCC veNe 100% 1.5%115C $1523 1 
Replace 2.5 &ea/ 100% 0.3%14C $2022 2 
Watenvesh engine 20% 0.5%/5C $535 3 

CONCLUSIONS: 
A modular intelligent and adaptive system is 

presented for gas turbine diagnostic and prognostic analysis. 
The system uses adaptive intelligent diagnostics to 

improve data quality, detect trend changes, interpret data, 
furnish diagnosis of problems, provide a prognosis of future  

engine behavior for planning purposes, and provide corrective 
actions on the basis of value. Artificial intelligence is used to 
automate, improve the quality of the analysis, provide timely 
alerts, and to integrate flight data and test cell dab analysis for 
workscope and value analysis. 

A robust dual approach is taken combining the 
attributes of neural networks, Kalman filters, statistical 
analysis, Bayesian/Evidence based decision making, and rule 
based analysis. An expert system is used to integrate the 
analysis and to perform value analysis in making 
recommendations. 

Significant improvements in accuracy, quality of 
analysis, timeliness and usefulness of reporting are shown. 

Further development is underway to provide additional 
system enhancements. Diagnostics will be expanded to 
include vibration and oil systems to detect blade damage, 
schedule trim balance/lubrication, detect shifts in SVS 
schedule or rigging, detect bearing thrust balance changes, 
improve fatigue analysis, and possibly enable safe life analysis. 

Other enhancements include the use of artificial 
intelligence and value analysis to do more of the decision 
making for asset management, and to predict part lives, shop 
visits, 	work scopes, 	and 	inventory 	requirements. 
Improvements are also planned for sensors, real time telemetry 
of data, data links, and secure Internet collaboration. 
Maintenance costs can be reduced by: 

• Early detection for prevention of collateral damage. 
• Reduced in flight shut downs 
• Reduced down time 
• Improved planning and asset management 
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