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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The finite element method is shown to be a powerful tool for the numerical 
modelling of seismic body wave propagation problems. Applications 
extend to both problems on a scale of interest to engineers and also to 
large-scale seismological problems. Solutions are sought in the time 
domain. Efficient programs have been written to accomplish this. The 
scope of numerical solutions has been greatly enhanced by the use of a 
previously reported scheme for exactly cancelling reflections at the 
boundaries of the model. 
The finite difference results of Boore and the analytical results of 
Trifunac for the amplification due to a mountain and an alluvial valley 
respectively are compared with new finite element results. The new results 
agree well, although there are some difficulties with resonance in the 
alluvial valley problem. Boore’s SH results have been extended to vertical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P and SV incidence. A deep earthquake zone has been modelled 
realistically in two dimensions and earthquakes simulated at depth. It is 
suggested that the variation in observed amplitude across the top of the 
zone, due to refraction away from the slab, may be used to provide an 
estimate of the thickness of the slab from long-period observations of 
local earthquakes. 

1. Introduction 

Material 
properties may be allowed to vary throughout the model, but generally only in the 
vertical (or radial) direction. The presence of lateral variation often renders the 
solution intractable. Certain classes to scattering problems admit analytical solutions, 
but the restriction to regular geometries is generally very severe (e.g. Trifunac 1971). 
Analytical approaches that are concerned with the scattered energy do not apply in the 
near field or when the wavelengths of the irregularity and the incident energy are 
comparable. 

Irregular geometries and inhomogeneous media that represent realistic geological 
structures must generally be analysed by numerical means, and approximate solutions 
sought. Traditionally, this has meant recourse to a finite difference scheme. The 
governing differential equations are replaced by difference equations, which are then 
solved numerically. Recent work in seismology using this approach is by Boore 
(1972a), Alterman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Karal (1968), and others. But the Ritz method, in which a 
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Only simple wave propagation problems can be solved analytically. 
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solution is sought in terms of known functions, has equally deep roots in the applied 
mathematical literature. Courant (1943) made an able comparison of the two techni- 
ques. A particular application of the Ritz method is the finite element method, which 
is now widely used in many applications in engineering, and is emerging as a seismo- 
logical tool. Particular efforts in this direction have been made at the Seismographic 
Station, Department of Geology and Geophysics, University of California, Berkeley. 
In this paper the applicability of the finite element method to body wave propagation 
problems is examined. 

Only one aspect of finite element applications to seismology is treated: that of the 
time domain solution of body wave propagation problems. Time-dependent problems 
can sometimes be treated in the frequency domain, notably the propagation of surface 
waves (e.g. Lysmer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Drake 1972), but this technique is applicable to body waves only 
in very special cases. Nor does this paper treat source theory, although finite element 
methods certainly can be applied (e.g. Glover, McCowan & Alexander 1975). It is 
confined to the effects of the medium on the propagation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS waves. The 
geophysical purpose is to demonstrate that the finite element method is a powerful tool 
for determining the effect of structural irregularities on wave propagation. 

Three problems of seismological importance are discussed. The first two concern 
the ground amplification which is observed in the presence of topographic or geologic 
irregularities, in this case a mountain and an alluvial valley. Numerical results of 
Boore (1972b) and theoretical results of Trifunac (1971) for incident SH waves have 
been duplicated and the former extended to incident P and SV. The third problem 
that is presented is that of determining the structure of a deep earthquake zone. The 
New Zealand North Island seismic zone has been modelled in two dimensions, and 
earthquakes simulated at a depth of 250 km. Theoretical seismograms written at the 
surface reflect the structure of the zone to a measurable extent, and it is suggested 
that such a technique could lead to the determination of such structural parameters 
as the thickness of the dipping slab, within which the earthquake foci are located. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. The finite element method and its implementation 

(a) Formulation 

A number of texts present the basic formulation of the finite element method, e.g. 
those by Zienkiewicz (1971), Desai & Abel (1972), Norrie & de Vries (1973) and 
Lysmer & Drake (1972). Though the first three are written with engineering applica- 
tions in mind, the overlap with seismology is adequate. A brief outline of the 
technique and terminology is all that is necessary here. 

Each element of the model has (usually at its extremities) a number of nodes, at 
which the elastic displacements are to be determined. In Fig. 1 the two-dimensional 
element shown is a quadrilateral, with a node at each vertex and, in this case, two 
components of displacement at each node. (For SH motion there will be only one 
component.) Two adjacent elements share the nodes on their common boundary. 
From a variety of elements that can be used, the element shown in Fig. 1 has been 
chosen as the basic element for the applications presented in this paper. Displacements 
within the element are linearly interpolated from the values at the nodes. The iso- 
parametric interpolation formulae are given by Lysmer & Drake (1972). (The term 
' linear element ' is used in the finite element literature when such interpolation is 
employed.) Herein lies the basic assumption of the technique, and it is at this point 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 1. Basic finite element used in this paper. The quadrilateral has four nodes 
and two components of displacement at each node. Thus the displacement vector 

u has eight components. 

that the degree of approximation must be carefully evaluated. This point will be 
given further attention in Section 2(d). 

The elastic and dynamic relations between the displacements at the nodes of the 
element may be expressed in terms of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstiflness matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK" and a mass matrix Me. 
If the components of displacement are written as a vector ue (u" has eight terms for 
the element in Fig. I), then the equation of motion for the element takes the form 

Meiie+Keue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. (1) 

A dot denotes differentiation with respect to time. Both matrices are real, symmetric, 
and positive definite. They may be computed for each element independently, and 
accumulated into global matrices K and M, so that, where u now represents all the 
displacement components in the entire model, 

MU + KU = 0. (2) 

Mii+Ch+Ku = F. (3) 

A forcing term F and/or a damping term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC may also appear. 

It is then necessary to solve this set of differential equations, with appropriate initial 
conditions and boundary conditions. All the geometrical and elastic properties of the 
model are taken into account in the construction of the three matrices K ,  C and My 
and the load vector F. The matrices are very large and so require considerable 
computer storage. They are however very sparse, and may be condensed very 
efficiently. The Appendix gives details of how this has been done. 
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(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFrequency domain solutions 

Time dependent finite element calculations are often performed in the frequency 
domain. Equation (3) becomes 

( K + i w C - w 2 M ) u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is the angular frequency. The displacements u and the load vector F are now 
complex. This approach is appropriate for certain applications with surface waves 
(e.g. Drake 1972a, b), or for body waves when the scale of the problem is much less 
than the exciting wavelength (e.g. Lysmer, Seed & Schnabel 1971). It is not appro- 
priate for body wave propagation problems with wavelengths shorter than the scale 
size. In these cases it is necessary to solve equation (3) in the time domain. 

(c) Numerical implementation 

The matrix M above is the so-called consistent mass matrix. In its place I have used 
the lumped mass matrix, which is an approximation to the consistent mass matrix, 
and is diagonal in form. It has been well established in the finite element literature 
(e.g. Clough 1971) that the lumped mass matrix is to be preferred to the consistent 
mass matrix, for wave propagation problems in the time domain. Equation (3) may 
therefore without difficulty be cast into the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ii = M-'(F-Ku-Cri).  (5)  

In this form the equation is amenable to numerical solution by a Runge-Kutta 
algorithm (e.g. Abramowitz & Stegun 1970; Carpenter & Gill 1973), which has the 
advantage that it is explicit; the calculation requires only multiplication of matrices 
and vectors, and addition of vectors, so it is very efficient. It also has the advantage that 
it is self-starting, and this makes it particularly easy to program. 

It is important to note the distinction between explicit and implicit schemes. The 
Newmark method (Newmark 1959), is widely used in engineering applications of the 
finite element method but it has the disadvantage that it is implicit (except for the 
particular case when the parameter is zero) and thus involves the solution of linear 
equations at each time step. The computing effort in such a scheme would seem to be 
unnecessarily great, especially since cost is one of the chief considerations for finite 
element calculations. A further advantage of explicit computation schemes is that 
non-linear stress-strain relations can be incorporated without difficulty. This has not 
been attempted here, but it should be appreciated that if an implicit scheme were used 
iteration at each step would be necessary. 

The mesh can be excited either through the forcing function F or by defining initial 
displacements and velocities. The latter option has been chosen. For plane wave 
excitation, the nodes on the boundary are given a small displacement for a short time, 
then returned to their initial positions. For a point source, this is done only at the 
node in question. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP or SV motion, as with the element in Fig. 1, the choice of 
displacement component to be excited determines the type of wave that will propagate. 
Nodes at which the excitation is applied are held rigid by the device of setting to zero 
the corresponding terms of the inverted mass matrix M - l .  This effectively sets 
infinite mass at these points and prevents motion there. 

The pulse propagates throughout the mesh and can be observed at any desired 
locations. The response of the model to any other input may then be obtained by 
convolution. Alternatively, results may be obtained in terms of spectral ratios: 
spectra are taken at two or more locations, and their ratios formed. This ratio will 
thus be independent of the source function, and describes the response at one location 
relative to that at another. 
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FIG. 2. Attenuation and dispersion characteristics of a mesh, determined by 

propagating a pulse along the bar mode1 shown at right. 

(d) Mesh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdesign 

The size of elements is a critical consideration in all finite element calculations. 
In wave propagation problems the error introduced by elements that are too large will 
be a function of wavelength. Wavelengths shorter than the element length will 
obviously not be properly accounted for if interpolation between adjacent nodes is 
linear. To examine the frequency characteristics of a mesh, the model shown at the 
right of Fig. 2 was used: a pulse was applied at the base and allowed to propagate as a 
plane wave. The technique referred to in Section 2(e) was used to eliminate reflections 
at the upper end. The ratio of the spectra of displacements at A and B gives a measure 
of the propagation characteristics between the two points. Amplitude gives attenuation 
information and dispersion can be found from the total phase. These data are shown 
in Fig. 2, for a path 1 km long. Frequency has been shown as the ratio of wavelength 
to element size. Both the amplitude and the phase velocity have been normalized. It is 
clear that at 10 elements per wavelength attenuation is negligible and dispersion is 
limited to about 1 per cent. At eight elements per wavelength the attenuation and 
dispersion are about 3 per cent each, and this figure was considered adequately small. 
The amount of computer storage available will influence the choice of element size 
and the scope of problems that can be attempted. Eight elements per wavelength 
seems to be a reasonable compromise between economy of storage and accuracy of 
solution. 
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It should be emphasized that the attenuation and dispersion curves of Fig. 2 apply 

to one-dimensional propagation through linear, rectangular elements. Irregular ele- 
ments, high order elements, or curved wavefronts will naturally affect the frequency 
characteristics. Moreover, the curves relate to the particular time-stepping algorithm 
(fourth order Runge-Kutta) and to the length of time step that was used. Decreasing 
the time step improves the amplitude curve a little (i.e. larger elements may be used). 
It does not appear to affect the dispersion. Furthermore, the amplitude curves depend 
on length of propagation path. Attenuation is approximately exponential with 
distance, if it is small, but is rather greater than exponential for very high frequencies. 
In spite of the inadequacies of the test illustrated in Fig. 2, the figure of eight elements 
per wavelength was taken as a working standard, and the finite element model laid out 
accordingly. This agrees with the result of Kuhlemeyer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Lysmer (1973). On intuitive 
grounds it is not unreasonable, since one cycle of a sine wave may be quite well 
modelled by eight line segments. 

(e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANon-reflecting boundaries 

With infinite fields it is always necessary to introduce fictitious boundaries into the 
model. It is highly desirable to be able to eliminate reflections at these boundaries, 
because they would otherwise contaminate the solution. A technique which exactly 
cancels such reflections has been developed, and has been reported elsewhere (Smith 
1974). At the heart of the scheme is the principle that if two independently calculated 
solutions in which the reflections are of opposite sign are added together, the reflections 
exactly cancel, leaving only the energy originally incident on the boundary. An 
infinite medium has thus been simulated. The two solutions correspond to the 
application of homogeneous Dirichlet and Neumann boundary conditions respectively. 
The formulation is appropriate for body waves in two or three dimensions, and for 
surface waves. There is a special difficulty that arises in cases of plane wave excitation. 
This is dealt with in Section 3. 

(f) The question of damping 

Shipley, Leistner &Jones (1967) examined the accuracy of finite element solutions 
and found a ringing phenomenon which dies away only gradually. The frequency of 
this oscillation is related to the size of the elements used. It may perhaps be best 
understood by reference to Fig. 2. At frequencies of about 4 6  elements per wave- 
length the phase velocity falls off very sharply with increasing frequency. The group 
velocity will thus behave in a similar fashion, with the result that there will be a train 
of dispersed energy following the main pulse. 

Efforts to suppress this ringing have generally been by way of added damping. 
Wilson (1969) constructed a damping matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC (see equation (3)) from a linear com- 
bination of the stiffness matrix and the mass matrix. The use of the mass matrix (or 
some proportion thereof) as a damping matrix results in attenuation that is indepen- 
dent of frequency, and this is of no use in reducing the ringing. Some proportion of 
the stiffness matrix, used for damping, does indeed strongly damp out the ringing, 
because the damping that is introduced is proportional to the square of the frequency. 
That is, it introduces a Q that is inversely proportional to frequency. 

I have preferred to retain the perfectly elastic formulation, and to try to continue 
the solution for a sufficient time until the ringing has died down. The frequencies 
present in the ringing are higher than can be accurately computed, so the elastic 
solution should contain all the necessary information when examined in the frequency 
domain, i.e. by first taking the Fourier spectrum. For examination in the time domain, 
traces may be low-pass filtered with a suitable numerical filter, and the ringing 
removed. 
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Application of finite element analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA753 

The ringing may be reduced, however, even in the perfectly elastic case, by careful 
choice of the length of the exciting pulse. A square pulse has a spectrum of the form 
sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuflf, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is the frequency and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu a constant. Diminished ringing results if the 
pulse length is chosen so that the first zero in the spectrum corresponds to the ringing 
frequency. A poorer approximation to an impulse source function is the price that is 
paid. 

3. The effect of simple topography on ground amplification in earthquakes 

Following the San Fernando earthquake of February 1971, there was much 
interest in the question of amplification of ground motion by surface topography. 
Boore (1972b) showed that SH motion can be significantly amplified by the presence 
of a mountain, which he modelled in two dimensions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn subsequent work (Boore 
1973), he has attempted to model the Pacoima Dam topography more realistically. 
He concludes that amplification was probably significant at the higher frequencies but 
was relatively unimportant at lower frequencies. Field observations (e.g. Davis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
West 1973) and model studies (e.g. Rogers, Katz & Bennett 1974) tend to support the 
conjecture that topography can play an important role. Reimer (1973) has attempted 
to model the Pacoima site using three-dimensional finite elements, with an analysis 
in the frequency domain. His results are of limited applicability, however, because 
he applied equal excitation, in phase, along the base of his model and to all vertical 
side faces. 

It is beyond the scope of this paper to examine the Pacoima geometry, or any 
other, in detail. Rather, it will suffice to show simply how the finite element method 
may be usefully applied to this type of problem. The analysis will be restricted to two 
dimensions. There is no difficulty in programming the three-dimensional case, but the 
computer storage required makes it impracticable with currently available facilities. 
Fig. 3 shows the finite element model that was used to duplicate Boore's (1972b) 
results. The sides of the mountain slope at 20" to the horizontal; the material is 
homogeneous. A displacement pulse was applied along the entire base, and allowed to 
propagate up to the surface as a plane wave. 

The technique for elimination of reflections (Section 2(e)) does not allow 
propagation parallel to a non-reflecting boundary. This is because it involves the 
addition of two solutions in which reflections are of opposite sign. The negative 
reflection is achieved for SH propagation by setting to zero the boundary displace- 
ments, and this will distort the plane wave as it propagates along the end boundaries. 
Positive reflections are achieved by allowing boundary displacements to move freely, 
and it is this condition that allows plane waves to propagate undistorted. It is therefore 
necessary not to attempt to cancel at the ends of the model the reflection of energy that 
has radiated out from the topographic irregularity, but to build the model wide enough 
that the desired solution can be obtained before reflections from the ends arrive. 
Reflections from the base can be cancelled without difficulty. 

Similar considerations apply to P wave propagation, except that the horizontal 
displacements must be held to zero at the ends of the model to ensure plane wave 
propagation. For SV the vertical displacements must be held rigid. These conditions 
imply positive and negative reflections respectively at the ends of the model, and no 
conversion from P to SV or vice-versa (Smith 1974). 

Theoretical seismograms can be observed at any desired locations. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows 
these seismograms, together with a location diagram for the observing sites. The 
problem is clearly symmetric in the case of vertical incidence, so only one side of the 
mountain need be observed. The ringing mentioned in Section 2 has been removed by 
low-pass filtering. These seismograms approximate the impulse response at the 
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B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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different locations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH energy vertically incident from below. Of interest is the 
diffracted pulse that propagates away from the mountain and can be seen following the 
main pulse. 

In order to determine the amplification due to the mountain, the source function 
may be removed by taking the Fourier spectra of the traces in Fig. 4, and dividing by 
the spectrum that is obtained in the absence of the mountain. This is shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
for these locations: the base, the midpoint of a side, and the peak. Also shown are 
Boore's (1972b) results for his equalent locations. Dimensionless frequency is given 
by the ratio of the half-width of the mountain to the wavelength. The analytical 
value of 1 .O at zero frequency is reproduced to within a few per cent. 

The spectra for vertical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP incidence appear in the upper half of Fig. 6, at the same 
three locations. The lower plot shows the SVresults. There are now two components 
of motion at each location, and of course now no previous results for comparison. 
Significant is the amplitude observed on the horizontal component at the peak of the 
mountain for SVincidence, which reaches a maximum of 1 8. Amplification due to P 
incidence reaches a maximum of 1 *2. The base of the mountain experiences:attenuation 
at most frequencies, and the peak experiences mostly amplification. Further study 
with realistic geometry and geology will be needed to fully resolve the Pacoima question 
in a quantitative way. It may even need three-dimensional analysis. 

4. Ground amplification due to near-surface geology: problems with resonance 

Closely akin to the problem of the previous section is that of the local variation in 
ground motion observed in an earthquake, due to the underlying geological structure. 
Trifunac (1971, 1972) has treated analytically the two-dimensional problem of plane 
SH waves incident at arbitrary angles on a semi-cylindrical alluvial valley. His 
treatment is in the frequency domain. He shows the variation across the valley at 
particular frequencies, and the amplification at one particular location, as a function 
of frequency. The purpose of this section is to attempt to repeat Trifunac's calculations 
for SH using the finite element method. 
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frequency, halfwidth/wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fro. 6. Fourier spectra at the same locations as in Fig. 5,  for P and SV incidence. 
There are now two components of motion at  each location. 2 indicates the vertical 

component, and X the horizontal component. 

The technique is the same as that of the previous section, in that a plane pulse is 
incident from below. The seismograms written at specified locations are examined by 
taking spectra. The model is shown in Fig. 7; because the geometry is symmetric 
about the centre of the valley, only half the model need be drawn. For the SHproblem 
the axis of symmetry is taken as a free surface. Reflections occurring there are exactly 
those of the image propagation, and so the complete model may be simulated. This 
may also be achieved for P incidence by demanding that there be no horizontal 
displacement along the axis. This boundary condition can be shown (Smith 1974) to 
result in no mode conversion from P to SVor vice-versa at the boundary, and reflection 
in the proper phase. This cannot be done for the SV problem, however, since fixing 
the horizontal displacements would distort the original plane wave. The complete 
model would therefore need to be used for the SVcase, and with this in view a facility 
for constructing the image grid was built into the program. 

A square pulse was applied at the base of the model, as in Section 3, and was 
observed at the surface. Fig. 8 shows the seismograms for the SH case, at various 
locations from the centre of the valley to its rim, and slightly beyond. The resonance 
that takes place is important: reflected pulses can be seen at all locations in the valley. 

Trifunac (1971) calculated the amplification as a function of frequency for one 
particular location, at a distance of 0.8r  from the centre, where r is the valley radius. 
He used a velocity in the valley of one half that outside, and a density two thirds the 
outside value. These parameters have been retained. His results have been reproduced 
in Fig. 9, together with the finite element spectrum calculated from Fig. 8 and expressed 
as spectral ratios as was done in Section 3. The frequency is in dimensionless units. 
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I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 2 3 4 5 

seconds 

FIG. 8. Displacements observed in and near the valley. These traces approximate 
the impulse response at each Iocation. 

The discrepancy between the analytical and finite element results is clearly due to 
the short time window that has been used. The seismograms of Fig. 8 are unable to 
completely characterize the resonance because their duration is too short. The finite 
element spectrum of Fig. 9 represents only the first two reflections in the valley so it is 
not surprising that the fit to the analytical result is not exact. But it does illustrate the 
problem which must be faced when resonance occurs. The grid must be constructed 
large enough that reflections from the ends or multiple reflections from the base will 
not force truncation of the signal before the solution is complete. The sharp peaks in 
Trifunac’s analytical results demand a long time window in order to obtain the 
necessary resolution in the frequency domain. 

Trifunac’s results could have been extended to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV incidence, as in the 
previous section, but limitations imposed by resonance render this exercise somewhat 
pointless without the construction of a much larger grid. 

Clearly the solution to any practical problem will involve both this section and the 
previous one, i.e. both topography and geology will have an effect. An attractive 
feature of the finite element method is that inhomogeneous models may be constructed 
very easily (e.g. Douglas 1970), since the matrices are built up one element at a time. 
Incidence at angles other than vertical could be accomplished in several ways. The 
input pulse could be stepped along the base at the appropriate apparent velocity. 
Alternatively, a new model could be constructed with the free surface inclined to the 
base at the required angle. A further approach would be to set up the displacement and 
velocity fields of the incident wave, and then let it propagate. This is perhaps the most 
general technique. It is the one used, for example, by Boore (1972b) in his finite 
difference work. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/4
2
/2

/7
4
7
/6

5
2
3
0
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 

frequency, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalley width/wavelength 

FIG. 9. Fourier spectrum of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH trace in Fig. 8 corresponding to the point 0.8r 
from the centre of the valley, where r is the radius. Trifunac’s (1971) analytical 

result is shown by the broken line. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Estimation of the structure of a deep earthquake zone 

Deep earthquake zones present challenging problems in geophysics. That deep 
earthquakes usually occur in dipping, almost planar volumes beneath island arcs and 
at continental boundaries has been known for decades (e.g. Gutenberg & Richter 1949) 
and this of itself suggests a different velocity structure from the surrounding mantle. 
Attenuation studies (e.g. Barazangi & Isacks 1971, and refs. therein) support this 
conjecture, observing that high frequency seismic waves are attenuated much less in 
the dipping slab than when propagating to stations away from it. Mitronovas & 
Jsacks (1971) inferred that slab velocities in the Tonga-Kermadec region are 6-7 per 
cent higher than in the surrounding mantle, though this idea was not new (e.g. Davies 
& McKenzie 1969). 

Estimates of the thickness of the slab, however, are quite uncertain, as this is an 
extremely difficult parameter to measure. Oliver & Isacks (1967) used the expression 
‘perhaps of the order of 1OOkm’ for the thickness of the Tonga-Kermadec slab, 
based on attenuation studies. Jacob (1972) inferred a thickness of 80 km for the 
Aleutian slab, from consideration of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP residuals from the nuclear explosion Longshot. 
There is little reason to suppose that this thickness should be the same as that of the 
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seismic zone, i.e. the actual envelope of earthquake foci, for which, in the Tonga- 
Kermadec region, Wyss (1973) inferred a thickness of 11 km, based on considerations 
of the source dimensions of large earthquakes. The question of the thickness of the 
seismic zone is one which can perhaps be answered by such considerations of source 
size or by examination of accurately determined focal positions. 

The finite element method can be used to model a deep earthquake zone, and it 
now appears that such modelling could lead to an estiination of the structural 
properties of the zone. Fig. 10 shows such a model. On the right can be seen clearly 
the outline of the slab, with an earthquake focus at a depth of 250 km. On the left is 
the velocity model that was used, both in the slab (dashed lines) and in the surrounding 
mantle (solid lines). The procedure is to simulate an earthquake at depth, and from 
seismograms written at the surface to endeavour to infer the structure of the zone. 

The configuration approximates that of the North Island of New Zealand. It is a 
vertical section, looking north-east. (See Hamilton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gale 1968.) The restriction to 
two-dimensional modelling is a limiting one, not as concerns the structure but more 
particularly with reference to the three-dimensional radiation from earthquakes. This 
point will be mentioned again later. Some of the stations of the New Zealand seismo- 
graph network are in positions comparable to location E in Fig. 10, i.e. they may be 
said to ‘ look right down the slab ’. The New Zealand region might be almost unique 
from this viewpoint. The seismograph network is distributed across the top of the 
zone, so that observation at locations corresponding to the positions A to E in Fig. 10 
is quite feasible. 

The velocity model is one about which there could be considerable argument. 
Velocities increase with depth in the slab, and are approximately 7 per cent higher than 
in the surrounding mantle, following Mitronovas’ & Isacks’ (1971) result. The velo- 
cities in the mantle incorporate an increase with depth to 100 km, then a pronounced 
low velocity zone for both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS.  My earlier work (Smith 1973) has been taken 
into account here, though the published profile has been smoothed somewhat. 
Mooney (1970a, b) gives further evidence for such velocity structure. A slight density 
increase has been included for the slab (Hatherton 1970). This model is not to be 
considered definitive, but rather to represent a feasible structure. The aim of the 
finite element calculation is to ascertain the extent to which such a structure can affect 
the seismograms of local deep earthquakes. 

The perfectly elastic formulation of the previous sections has been retained. This is 
clearly a disadvantage, since observations of local earthquakes show a marked 
dependence on the lateral variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ (Mooney 1970a). But, as was outlined in 
Section 2(f), the damping commonly employed in finite element calculations is not very 
realistic. In this case it is not too serious to assume perfect elasticity, because the 
elements that have been used are of such a size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5  km square in the mantle and slab) 
that they restrict the analysis to periods of 10 s and longer. The commonly observed 
attenuation effects are for much higher frequencies. An extremely low Q (less than 20 
or so) would be needed to see much effect at the surface for these low frequencies, and 
while in fact Q may be as low as this behind the arc (Barazangi & Isacks 1971), the 
elastic case does convey important information. 

Fig. 11 shows the seismograms for an SH source at 250 km, written at the surface 
locations shown in Fig. 10. The source is a very simple one. It is the same square 
displacement pulse as was used in the previous sections, but is now applied at a point 
rather than along a boundary face. No secondary arrivals due to reflection in the slab 
or low velocity zone can be distinguished, because of the lack of high frequencies in the 
signal. The amplitude at E is consideraLly less than at A. This is opposite to the 
attenuation effect observed at high frequencies, and occurs because energy refracts 
away from the high velocity slab. 

The amplitude variation across the top of the deep earthquake zone may provide a 
means of estimating such structural parameters as tile thickness of the slab. Further 
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FIG. 11, Seismograms from an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS H  source 250 km deep, in a slab 50 km thick. Not- 

the decrease in amplitude from A to E. 

calculation using finite element models with different parameters indicates that the 
decrease in amplitude from A to E is accentuated by increasing the focal depth and by 
increasing the slab thickness. Investigations along these lines are continuing. Calcu- 
lating the spectra of the observed traces allows comparison of amplitudes in the 
frequency domain. Such spectra are shown in Fig. 12. Amplitudes at zero frequency 
are very close to the geometrical spreading values for homogeneous material, inversely 
proportional to the distance from the source. At higher frequencies the effect of the 
slab becomes apparent. 

In contemplating this technique to estimate slab structure, certain corrections 
would need to be applied. Accurate determination of the focal depth is necessary, 
before the finite element calculation can be made. A correction should be made for the 
two-dimensional radiation that has been assumed. A geometrical spreading correction, 
inversely proportional to the square of the distance from the focus, might be a good 
first approximation, provided that earthquake focus and seismograph are located in 
the same vertical plane, perpendicular to the arc. It may be necessary to incorporate 
the effects of damping. The earthquake radiation pattern should also be taken into 
account. The source used for the seismograms of Fig. 11 was a simple displacement 
SHpulse. Seismograms resulting from vertical and horizontal sources in the plane are 
shown in Fig. 13. The coda of each has had to be truncated because of contamination 
from high order reflections (Smith 1974), but the same amplitude variation as in 
Fig. 11 is apparent. A more complicated source, such as a double couple, could be 
used. 
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FIG. 12. Fourier spectra of representative seismograms from Fig. 11. 

6. Conclusions 

Seismic body wave propagation problems that have traditionally been treated by 
finite difference calculations can also be handled by the finite element method. It is a 
powerful tool for modelling the elastic behaviour of inhomogeneous media of 
irregular geometry. Damping may be included, but not all the features of the resulting 
attenuation are desirable, at least with currently available damping expressions. The 
use of a previously reported technique (Smith 1974) for eliminating reflections at the 
boundaries of a model greatly enhances the scope of numerical techniques for wave 
propagation problems. A general guiding rule for the design of a finite element mesh 
has been formulated, by examining the attenuation and dispersion which are inherent 
properties of the finite size of the elements. If the elements are nowhere larger than 
one eighth of the minimum wavelength of interest, attenuation and dispersion errors 
are kept to within a few per cent. 

An attempt has been made to use the finite element method to reproduce Boore’s 
(1 972b) finite difference results for the amplification due to surface topography and 
Trifunac’s (1971) analytical results for the effect of near-surface geology. Agreement 
with Boore’s results is good, but in the latter case it is clear that a solution of longer 
duration is necessary. The numerical solution is unable, because of its finite duration, 
to reproduce accurately the sharp spectral peaks in the analytical result. 

Calculations using a model of the New Zealand North Island seismic zone show 
that amplitudes of local earthquakes, observed at stations which ‘ look right down 
the slab ’, are measurably reduced, at least at long periods. The amplitude variation 
across the top of the deep earthquake zone is dependent on focal depth and slab 
thickness. Finite elements can be used to model geophysical structures quite 
realistically. It is suggested that the modelling of a deep earthquake zone might lead 
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0 30 60 

seconds 

1 1 8  I S J  

0 3 0  60 
seconds 

FIG. 13. Seismograms from a vertical source (left) and a horizontal source (right), 
written at the locations A to E. Two components are shown at each location. The 

same amplitude variation from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA to E as in Fig. 11 is apparent. 

to an inversion scheme whereby structural parameters such as the thickness of the 
dipping slab could be inferred. 
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Appendix 
Computing notes 

Programs have been written in FORTRAN for the CDC 7600 computer at the 
Lawrence Berkeley Laboratory, one for SH propagation (SHIMP) and one for P 
and SV (SVIMP). Both can accommodate models of up to 5000 nodes, in two dimen- 
sions. Cartesian coordinates have been used throughout. Considerable flexibility 
has been built into the subroutine that sets up the model geometry, in order to 
minimize the effort involved in preparing the data. 

Storage of the stiffness matrix is always a critical factor in finite element work. At 
first glance it might seem that for 5000 nodes, and two displacement components at 
each node, the matrix will have lo4 rows and columns, and will thus require lo8 
words of storage. But such is not the case. The matrix is symmetric and very sparse, 
and is often stored in banded form. But if an explicit algorithm is used, such as 
Runge-Kutta, the storage requirements can be reduced even more. 

For a rectangular two-dimensional grid, there are never more than eight nodes 
adjacent to a given node. So in the SH case the stiffness matrix never has more than 
nine non-zero terms in any one row. With irregular grids there may be more than nine 
terms, and I have allowed up to eleven. So all that is necessary is to store these non- 
zero terms, with another matrix to indicate to which columns these terms belong. Let 
us call this second matrix the ‘reference’ matrix. Storage requirements for the stiffness 
matrix are thus reduced to 11 x 5000 in the SH case, and 22 x 10 000 in the P-SV case, 
together with 11 x 5000 for the reference matrix, in both cases. 

A further reduction is possible. In areas of the grid where the elements are regular 
and the material homogeneous, the stiffness relationships of each node to its 
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neighbours will be identical. This is, the rows of the stiffness matrix, packed in the 
form outlined above, will be identical, and there is thus no need to duplicate storage. 
Rather, all that is needed is a pointer to indicate, given a particular node, in which row 
of the condensed stiffness matrix the appropriate stiffness terms are to be found. The 
reference matrix retains its full form. 

I have therefore allowed only 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1000 words for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH stiffness matrix, and 
22x2000 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-SV. This storage is available in core in the CDC 7600 computer. 
1000 was a somewhat arbitrary choice; it could have been reduced further. Having 
specified the nodal co-ordinates and element connections, all that is necessary in setting 
up the model is to indicate which nodes will have identical stiffness relations with their 
neighbours. If the model has less than 1000 nodes, the option need not be used. 

The identical technique applies to the damping matrix, if it is used. The same 
reference matrix and pointer vector apply to the damping matrix as to the stiffness 
matrix, so the extra storage that is needed is 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1000 for SH and 22 x 2000 for 
P-SV. A simple subroutine which multiplies the packed matrices by vectors has been 
written, to facilitate matrix arithmetic. 

It should be emphasized that this condensed storage configuration is only possible 
because the algorithm used is an explicit one. If an implicit scheme were used, storage 
of at least the stiffness matrix would have to be in banded form. This represents a 
considerable increase in storage requirements, as well as significantly more work in 
preparing the data because efforts should be made to achieve minimum bandwidth. 
The bandwidth of the matrix is immaterial for the condensed storage configuration 
that has been used. 
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