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Summary

The finite element method is shown to be @ powerful tool for the numerical
modelling of seismic body wave propagation problems. Applications
extend to both problems on a scale of interest to engineers and also to
large-scale seismological problems. Solutions are sought in the time
domain. Efficient programs have been written to accomplish this. The
scope of numerical solutions has been greatly enhanced by the use of a
previously reported scheme for exactly cancelling reflections at the
boundaries of the model.

The finite difference results of Boore and the analytical results of
Trifunac for the amplification due to a mountain and an alluvial valley
respectively are compared with new finite element results. The new results
agree well, although there are some difficuities with resonance in the
alluvial valley problem. Boore’s SH results have been extended to vertical
P and SV incidence. A deep earthquake zone has been modelled
realistically in two dimensions and earthquakes simulated at depth. It is
suggested that the variation in observed amplitude across the top of the
zone, due to refraction away from the slab, may be used to provide an
estimate of the thickness of the slab from long-period observations of
local earthquakes.

1. Introduction

Only simple wave propagation problems can be solved analytically. Material
properties may be allowed to vary throughout the model, but generally only in the
vertical (or radial) direction. The presence of lateral variation often renders the
solution intractable. Certain classes to scattering problems admit analytical solutions,
but the restriction to regular geometries is generally very severe (e.g. Trifunac 1971).
Analytical approaches that are concerned with the scattered energy do not apply in the
near field or when the wavelengths of the irregularity and the incident energy are
comparable.

Irregular geometries and inhomogeneous media that represent realistic geological
structures must generally be analysed by numerical means, and approximate solutions
sought. Traditionally, this has meant recourse to a finite difference scheme. The
governing differential equations are replaced by difference equations, which are then
solved numerically. Recent work in seismology using this approach is by Boore
(1972a), Alterman & Karal (1968), and others. But the Ritz method, in which a
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solution is sought in terms of known functions, has equally deep roots in the applied
mathematical literature. Courant (1943) made an able comparison of the two techni-
ques. A particular application of the Ritz method is the finite element method, which
is now widely used in many applications in engineering, and is emerging as a seismo-
logical tool. Particular efforts in this direction have been made at the Seismographic
Station, Department of Geology and Geophysics, University of California, Berkeley.
In this paper the applicability of the finite element method to body wave propagation
problems is examined.

Only one aspect of finite element applications to seismology is treated: that of the
time domain solution of body wave propagation problems. Time-dependent problems
can sometimes be treated in the frequency domain, notably the propagation of surface
waves (e.g. Lysmer & Drake 1972), but this technique is applicable to body waves only
in very special cases. Nor does this paper treat source theory, although finite element
methods certainly can be applied (e.g. Glover, McCowan & Alexander 1975). It is
confined to the effects of the medium on the propagation of P and S waves. The
geophysical purpose is to demonstrate that the finite element method is a powerful tool
for determining the effect of structural irregularities on wave propagation.

Three problems of seismological importance are discussed. The first two concern
the ground amplification which is observed in the presence of topographic or geologic
irregularities, in this case a mountain and an alluvial valley. Numerical results of
Boore (1972b) and theoretical results of Trifunac (1971) for incident SH waves have
been duplicated and the former extended to incident P and SV. The third problem
that is presented is that of determining the structure of a deep earthquake zone. The
New Zealand North Island seismic zone has been modelled in two dimensions, and
earthquakes simulated at a depth of 250 km. Theoretical seismograms written at the
surface reflect the structure of the zone to a measurable extent, and it is suggested
that such a technique could lead to the determination of such structural parameters
as the thickness of the dipping slab, within which the earthquake foci are located.

2. The finite element method and its implementation

(a) Formulation

A number of texts present the basic formulation of the finite element method, e.g.
those by Zienkiewicz (1971), Desai & Abel (1972), Norrie & de Vries (1973) and
Lysmer & Drake (1972). Though the first three are written with engineering applica-
tions in mind, the overlap with seismology is adequate. A brief outline of the
technique and terminology is all that is necessary here.

Each element of the model has (usually at its extremities) a number of nodes, at
which the elastic displacements are to be determined. In Fig. 1 the two-dimensional
element shown is a quadrilateral, with a node at each vertex and, in this case, two
components of displacement at each node. (For SH motion there will be only one
component.) Two adjacent elements share the nodes on their common boundary.
From a variety of elements that can be used, the element shown in Fig. 1 has been
chosen as the basic element for the applications presented in this paper. Displacements
within the element are linearly interpolated from the values at the nodes. The iso-
parametric interpolation formulae are given by Lysmer & Drake (1972). (The term
¢ linear element’ is used in the finite element literature when such interpolation is
employed.) Herein lies the basic assumption of the technique, and it is at this point
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FiG. 1. Basic finite element used in this paper. The quadrilateral has four nodes
and two components of displacement at each node. Thus the displacement vector
u has eight components.

that the degree of approximation must be carefully evaluated. This point will be
given further attention in Section 2(d).

The elastic and dynamic relations between the displacements at the nodes of the
element may be expressed in terms of a stiffness matrix K° and a mass matrix M°.
If the components of displacement are written as a vector u® (u® has eight terms for
the element in Fig. 1), then the equation of motion for the element takes the form

Mei+Ku® = 0. a

A dot denotes differentiation with respect to time. Both matrices are real, symmetric,
and positive definite. They may be computed for each element independently, and
accumulated into global matrices K and M, so that, where u now represents all the
displacement components in the entire model,

Mii+Ku = 0. )]
A forcing term F and/or a damping term € may also appear.
Mii+Ci+Ku = F. 3

It is then necessary to solve this set of differential equations, with appropriate initial
conditions and boundary conditions. All the geometrical and elastic properties of the
model are taken into account in the construction of the three matrices K, C and M,
and the load vector F. The matrices are very large and so require considerable
computer storage. They are however very sparse, and may be condensed very
efficiently. The Appendix gives details of how this has been done.
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(b) Frequency domain solutions

Time dependent finite element calculations are often performed in the frequency
domain. Equation (3) becomes

(K+ioC—w’M)u = F. “)

where w is the angular frequency. The displacements u and the load vector F are now
complex. This approach is appropriate for certain applications with surface waves
(e.g. Drake 1972a, b), or for body waves when the scale of the problem is much less
than the exciting wavelength (e.g. Lysmer, Seed & Schnabel 1971). It is not appro-
priate for body wave propagation problems with wavelengths shorter than the scale
size. In these cases it is necessary to solve equation (3) in the time domain.

(c) Numerical implementation

The matrix M above is the so-called consistent mass matrix. In its place I have used
the lumped mass matrix, which is an approximation to the consistent mass matrix,
angd is diagonal in form. It has been well established in the finite element literature
(e.g. Clough 1971) that the lumped mass matrix is to be preferred to the consistent
mass matrix, for wave propagation problems in the time domain. Equation (3) may
therefore without difficulty be cast into the form .-~

ii = M~ !(F— Ku—Cu). )

In this form the equation is amenable to numerical solution by a Runge-Kutta
algorithm (e.g. Abramowitz & Stegun 1970; Carpenter & Gill 1973), which has the
advantage that it is explicit; the calculation requires only multiplication of matrices
and vectors, and addition of vectors, so it is very efficient. It also has the advantage that
it is self-starting, and this makes it particularly easy to program.

It is important to note the distinction between explicit and implicit schemes. The
Newmark method (Newmark 1959), is widely used in engineering applications of the
finite element method but it has the disadvantage that it is implicit (except for the
particular case when the parameter f is zero) and thus involves the solution of linear
equations at each time step. The computing effort in such a scheme would seem to be
unnecessarily great, especially since cost is one of the chief considerations for finite
element calculations. A further advantage of explicit computation schemes is that
non-linear stress-strain relations can be incorporated without difficulty. This has not
been attempted here, but it should be appreciated that if an implicit scheme were used
iteration at each step would be necessary.

The mesh can be excited either through the forcing function F or by defining initial
displacements and velocities. The latter option has been chosen. For plane wave
excitation, the nodes on the boundary are given a small displacement for a short time,
then returned to their initial positions. For a point source, this is done only at the
node in question. For P or SV motion, as with the element in Fig. 1, the choice of
displacement component to be excited determines the type of wave that will propagate.
Nodes at which the excitation is applied are held rigid by the device of setting to zero
the corresponding terms of the inverted mass matrix M~!. This effectively sets
infinite mass at these points and prevents motion there.

The pulse propagates throughout the mesh and can be observed at any desired
locations. The response of the model to any other input may then be obtained by
convolution. Alternatively, results may be obtained in terms of spectral ratios:
spectra are taken at two or more locations, and their ratios formed. This ratio will
thus be independent of the source function, and describes the response at one location
relative to that at another.
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FiG. 2. Attenuation and dispersion characteristics of a mesh, determined by
propagating a pulse along the bar model shown at right,

(d) Mesh design

The size of elements is a critical consideration in all finite element calculations.
In wave propagation problems the error introduced by elements that are too large will
be a function of wavelength. Wavelengths shorter than the element length will
obviously not be properly accounted for if interpolation between adjacent nodes is
linear. To examine the frequency characteristics of a mesh, the model shown at the
right of Fig.2 was used: a pulse was applied atthe base and allowed to propagate as a
plane wave. The technique referred to in Section 2(e) was used to eliminate reflections
at the upper end. The ratio of the spectra of displacements at A and B gives a measure
of the propagation characteristics between the two points. Amplitude gives attenuation
information and dispersion can be found from the total phase. These data are shown
in Fig. 2, for a path 1 km long. Frequency has been shown as the ratio of wavelength
to element size. Both the amplitude and the phase velocity have been normalized. It is
clear that at 10 elements per wavelength attenuation is negligible and dispersion is
limited to about 1 per cent. At eight elements per wavelength the attenuation and
dispersion are about 3 per cent each, and this figure was considered adequately small.
The amount of computer storage available will influence the choice of element size
and the scope of problems that can be attempted. Eight elements per wavelength
seems to be a reasonable compromise between economy of storage and accuracy of
solution.
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It should be emphasized that the attenuation and dispersion curves of Fig. 2 apply
to one-dimensional propagation through linear, rectangular elements. Irregular ele-
ments, high order elements, or curved wavefronts will naturally affect the frequency
characteristics. Moreover, the curves relate to the particular time-stepping algorithm
(fourth order Runge-Kutta) and to the length of time step that was used. Decreasing
the time step improves the amplitude curve a little (i.e. larger elements may be used).
It does not appear to affect the dispersion. Furthermore, the amplitude curves depend
on length of propagation path. Attenuation is approximately exponential with
distance, if it is small, but is rather greater than exponential for very high frequencies.
In spite of the inadequacies of the test illustrated in Fig. 2, the figure of eight elements
per wavelength was taken as a working standard, and the finite element model laid out
accordingly. This agrees with the resuit of Kuhlemeyer & Lysmer (1973). On intuitive
grounds it is not unreasonable, since one cycle of a sine wave may be quite well
modelled by eight line segments.

(e) Non-reflecting boundaries

With infinite fields it is always necessary to introduce fictitious boundaries into the
model. It is highly desirable to be able to eliminate reflections at these boundaries,
because they would otherwise contaminate the solution. A technique which exactly
cancels such reflections has been developed, and has been reported elsewhere (Smith
1974). At the heart of the scheme is the principle that if two independently calculated
solutions in which the reflections are of opposite sign are added together, the reflections
exactly cancel, leaving only the energy originally incident on the boundary. An
infinite medium has thus been simulated. The two solutions correspond to the
application of homogeneous Dirichlet and Neumann boundary conditions respectively.
The formulation is appropriate for body waves in two or three dimensions, and for
surface waves. There is a special difficulty that arises in cases of plane wave excitation.
This is dealt with in Section 3.

(f) The question of damping

Shipley, Leistner & Jones (1967) examined the accuracy of finite element solutions
and found a ringing phenomenon which dies away only gradually. The frequency of
this oscillation is related to the size of the elements used. It may perhaps be best
understood by reference to Fig. 2. At frequencies of about 4-6 elements per wave-
length the phase velocity falls off very sharply with increasing frequency. The group
velocity will thus behave in a similar fashion, with the result that there will be a train
of dispersed energy following the main pulse.

Efforts to suppress this ringing have generally been by way of added damping.
Wilson (1969) constructed a damping matrix C (see equation (3)) from a linear com-
bination of the stiffness matrix and the mass matrix. The use of the mass matrix (or
some proportion thereof) as a damping matrix results in attenuation that is indepen-
dent of frequency, and this is of no use in reducing the ringing. Some proportion of
the stiffness matrix, used for damping, does indeed strongly damp out the ringing,
because the damping that is introduced is proportional to the square of the frequency.
That is, it introduces a Q that is inversely proportional to frequency.

I have preferred to retain the perfectly elastic formulation, and to try to continue
the solution for a sufficient time until the ringing has died down. The frequencies
present in the ringing are higher than can be accurately computed, so the elastic
solution should contain all the necessary information when examined in the frequency
domain, i.e. by first taking the Fourier spectrum. For examination in the time domain,
traces may be low-pass filtered with a suitable numerical filter, and the ringing
removed.
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The ringing may be reduced, however, even in the perfectly elastic case, by careful
choice of the length of the exciting pulse. A square pulse has a spectrum of the form
sin af/f, where f is the frequency and « a constant. Diminished ringing results if the
pulse length is chosen so that the first zero in the spectrum corresponds to the ringing
frequency. A poorer approximation to an impulse source function is the price that is
paid.

3. The effect of simple topography on ground amplification in earthquakes

Following the San Fernando earthquake of February 1971, there was much
interest in the question of amplification of ground motion by surface topography.
Boore (1972b) showed that SH motion can be significantly amplified by the presence
of a mountain, which he modelled in two dimensions. In subsequent work (Boore
1973), he has attempted to model the Pacoima Dam topography more realistically.
He concludes that amplification was probably significant at the higher frequencies but
was relatively unimportant at lower frequencies. Field observations (e.g. Davis &
West 1973) and model studies (e.g. Rogers, Katz & Bennett 1974) tend to support the
conjecture that topography can play an important role. Reimer (1973) has attempted
to model the Pacoima site using three-dimensional finite elements, with an analysis
in the frequency domain. His results are of limited applicability, however, because
he applied equal excitation, in phase, along the base of his model and to all vertical
side faces.

It is beyond the scope of this paper to examine the Pacoima geometry, or any
other, in detail. Rather, it will suffice to show simply how the finite element method
may be usefully applied to this type of problem. The analysis will be restricted to two
dimensions. There is no difficulty in programming the three-dimensional case, but the
computer storage required makes it impracticable with currently available facilities.
Fig. 3 shows the finite element model that was used to duplicate Boore’s (1972b)
results. The sides of the mountain slope at 20° to the horizontal; the material is
homogeneous. A displacement pulse was applied along the entire base, and allowed to
propagate up to the surface as a plane wave.

The technique for elimination of reflections (Section 2(e)) does not allow
propagation parallel to a non-reflecting boundary. This is because it involves the
addition of two solutions in which reflections are of opposite sign. The negative
reflection is achieved for SH propagation by setting to zero the boundary displace-
ments, and this will distort the plane wave as it propagates along the end boundaries.
Positive reflections are achieved by allowing boundary displacements to move freely,
and it is this condition that allows plane waves to propagate undistorted. It is therefore
necessary not to attempt to cancel at the ends of the model the reflection of energy that
has radiated out from the topographic irregularity, but to build the model wide enough
that the desired solution can be obtained before reflections from the ends arrive.
Reflections from the base can be cancelled without difficulty.

Similar considerations apply to P wave propagation, except that the horizontal
displacements must be held to zero at the ends of the model to ensure plane wave
propagation. For SV the vertical displacements must be held rigid. These conditions
imply positive and negative reflections respectively at the ends of the model, and no
conversion from P to SV or vice-versa (Smith 1974).

Theoretical seismograms can be observed at any desired locations. Fig. 4 shows
these seismograms, together with a location diagram for the observing sites. The
problem is clearly symmetric in the case of vertical incidence, so only one side of the
mountain need be observed. The ringing mentioned in Section 2 has been removed by
low-pass filtering. These seismograms approximate the impulse response at the
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FiG. 5. Fourier spectra of the SH traces in Fig. 4 for the base, mid-point and peak of the mountain.
The broken curves at each location are the finite difference results of Boore (1972).

different locations for SH energy vertically incident from below. Of interest is the
diffracted pulse that propagates away from the mountain and can be seen following the
main pulse.

In order to determine the amplification due to the mountain, the source function
may be removed by taking the Fourier spectra of the traces in Fig. 4, and dividing by
the spectrum that is obtained in the absence of the mountain. This is shown in Fig. 5
for these locations: the base, the midpoint of a side, and the peak. Also shown are
Boore’s (1972b) results for his equalent locations. Dimensionless frequency is given
by the ratio of the half-width of the mountain to the wavelength. The analytical
value of 1-0 at zero frequency is reproduced to within a few per cent.

The spectra for vertical P incidence appear in the upper half of Fig. 6, at the same
three locations. The lower plot shows the S¥ results. There are now two components
of motion at each location, and of course now no previous results for comparison.
Significant is the amplitude observed on the horizontal component at the peak of the
mountain for SV incidence, which reaches a maximum of 1-8. Amplification due to P
incidence reaches a maximum of 1-2. The base of the mountain experiencesattenuation
at most frequencies, and the peak experiences mostly amplification. Further study
with realistic geometry and geology will be needed to fully resolve the Pacoima question
in a quantitative way. It may even need three-dimensional analysis.

4. Ground amplification due to near-surface geology: problems with resonance

Closely akin to the problem of the previous section is that of the local variation in
ground motion observed in an earthquake, due to the underlying geological structure.
Trifunac (1971, 1972) has treated analytically the two-dimensional problem of plane
SH waves incident at arbitrary angles on a semi-cylindrical alluvial valley. His
treatment is in the frequency domain. He shows the variation across the valley at
particular frequencies, and the amplification at one particular location, as a function
of frequency. The purpose of this section is to attempt to repeat Trifunac’s calculations
for SH using the finite element method.
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F1G. 6. Fourier spectra at the same locations as in Fig. §, for P and SV incidence.
There are now two components of motion at each location. Z indicates the vertical
component, and X the horizontal component.

The technique is the same as that of the previous section, in that a plane pulse is
incident from below. The seismograms written at specified locations are examined by
taking spectra. The model is shown in Fig. 7; because the geometry is symmetric
about the centre of the valley, only half the model need be drawn. For the SH problem
the axis of symmetry is taken as a free surface. Reflections occurring there are exactly
those of the image propagation, and so the complete model may be simulated. This
may also be achieved for P incidence by demanding that there be no horizontal
displacement along the axis. This boundary condition can be shown (Smith 1974) to
result in no mode conversion from P to SV or vice-versa at the boundary, and reflection
in the proper phase. This cannot be done for the S¥ problem, however, since fixing
the horizontal displacements would distort the original plane wave. The complete
model would therefore need to be used for the SV case, and with this in view a facility
for constructing the image grid was built into the program.

A square pulse was applied at the base of the model, as in Section 3, and was
observed at the surface. Fig. 8 shows the seismograms for the SH case, at various
locations from the centre of the valley to its rim, and slightly beyond. The resonance
that takes place is important: reflected pulses can be seen at all locations in the valley.

Trifunac (1971) calculated the amplification as a function of frequency for one
particular location, at a distance of 0-8r from the centre, where r is the valley radius.
He used a velocity in the valley of one half that outside, and a density two thirds the
outside value. These parameters have been retained. His results have been reproduced
in Fig. 9, together with the finite element spectrum calculated from Fig. 8 and expressed
as spectral ratios as was done in Section 3. The frequency is in dimensionless units.
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FiG. 8. Displacements observed in and near the valley. These traces approximate
the impulse response at each location,

The discrepancy between the analytical and finite element results is clearly due to
the short time window that has been used. The seismograms of Fig. 8 are unable to
completely characterize the resonance because their duration is too short. The finite
element spectrum of Fig. 9 represents only the first two reflections in the valley so it is
not surprising that the fit to the analytical result is not exact. But it does illustrate the
problem which must be faced when resonance occurs. The grid must be constructed
large enough that reflections from the ends or multiple reflections from the base will
not force truncation of the signal before the solution is complete. The sharp peaks in
Trifunac’s analytical results demand a long time window in order to obtain the
necessary resolution in the frequency domain.

Trifunac’s results could have been extended to P and SV incidence, as in the
previous section, but limitations imposed by resonance render this exercise somewhat
pointless without the construction of a much larger grid.

Clearly the solution to any practical problem will involve both this section and the
previous one, i.c. both topography and geology will have an effect. An attractive
feature of the finite element method is that inhomogeneous models may be constructed
very easily (e.g. Douglas 1970), since the matrices are built up one element at a time.
Incidence at angles other than vertical could be accomplished in several ways. The
input pulse could be stepped along the base at the appropriate apparent velocity.
Alternatively, a new model could be constructed with the free surface inclined to the
base at the required angle. A further approach would be to set up the displacement and
velocity fields of the incident wave, and then let it propagate. This is perhaps the most
general technique. It is the one used, for example, by Boore (1972b) in his finite
difference work.
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Fi1G. 9. Fourier spectrum of the SH trace in Fig. 8 corresponding to the point 0:8~
from the centre of the valley, where r is the radius. Trifunac’s (1971) analytical
result is shown by the broken line.

5. Estimation of the structure of a deep earthquake zone

Deep earthquake zones present challenging problems in geophysics. That deep
earthquakes usually occur in dipping, almost planar volumes beneath island arcs and
at continental boundaries has been known for decades (e.g. Gutenberg & Richter 1949)
and this of itself suggests a different velocity structure from the surrounding mantle.
Attenuation studies (e.g. Barazangi & Isacks 1971, and refs. therein) support this
conjecture, observing that high frequency seismic waves are attenuated much less in
the dipping slab than when propagating to stations away from it. Mitronovas &
Isacks (1971) inferred that slab velocities in the Tonga-Kermadec region are 6-7 per
cent higher than in the surrounding mantle, though this idea was not new (e.g. Davies
& McKenzie 1969).

Estimates of the thickness of the slab, however, are quite uncertain, as this is an
extremely difficult parameter to measure. Oliver & Isacks (1967) used the expression
‘perhaps of the order of 100 km’ for the thickness of the Tonga~Kermadec slab,
based on attenuation studies. Jacob (1972) inferred a thickness of 80 km for the
Aleutian slab, from consideration of P residuals from the nuclear explosion Longshot.
There is little reason to suppose that this thickness should be the same as that of the
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