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ABSTRACT 
 
THE APPLICATION OF HYDROGEN/DEUTERIUM EXCHANGE AND COVALENT LABELING 

COUPLED WITH MASS SPECTROMETRY TO EXAMINE PROTEIN STRUCTURE 
 

FEBRUARY 2016 
 

NICHOLAS B. BOROTTO, B.S., NORTHEASTERN UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Richard W. Vachet 
 

Thorough insight into a protein’s structure is necessary to understand how it 

functions and what goes wrong when it malfunctions. The structure of proteins, 

however, is not easily analyzed. The analysis must take place under a narrow range of 

conditions or risk perturbing the very structure being probed. Furthermore, the wide 

diversity in size and chemistry possible in proteins significantly complicates this analysis. 

Despite this numerous methods have been developed in order to analyze protein 

structure. In this work, we demonstrate that mass spectrometry (MS)-based techniques 

are capable of characterizing the structure of particularly challenging proteins. This is 

done through the study of two model systems: (1) the amyloid forming protein β2-

microglobulin and (2) the protein therapeutics human growth hormone and 

immunoglobulin G1.  

β-2-microglobulin (β2m) is an amyloidogenic protein and is the major 

constituent of fibrils in the disease dialysis related amyloidosis (DRA). Stoichiometric 

concentrations of Cu(II) have been used in vitro to induce the amyloid formation of 

β2m, but the structural changes caused by Cu(II) have not been fully elucidated. Other 
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transition metals, such as Zn(II) and Ni(II), do not cause β2m amyloid formation, yet a 

comparison of the structural changes caused by these metals and those caused by Cu(II) 

could reveal essential structural changes necessary for amyloid formation. To probe 

these different structural changes, we have used a combination of hydrogen-deuterium 

exchange (HDX) and covalent labeling together with MS. Results from these 

measurements reveal that Cu(II) alone is capable of inducing the cis-trans isomerization 

of the X-Pro bond of Pro32 and the other necessary conformational changes that allow 

β2m to form an amyloid competent state, even though Ni(II) binds the protein at the 

same site. We also find that Zn(II) binding leads to increased dynamics, indicating 

increase structural instability, which is consistent with the amorphous aggregation 

observed in the presence of this metal. 

The second part of this dissertation investigates the use of diethylpyrocarbonate 

(DEPC)–based covalent labeling to detect three-dimensional structural changes in 

immunoglobulin G1 and human growth hormone after they have been exposed to 

degrading conditions. We demonstrate that DEPC labeling can identify both specific 

protein regions that mediate aggregation and those regions that undergo more subtle 

structural changes upon mishandling of these proteins. Importantly, DEPC labeling is 

able to provide information for up to 30% of the surface residues in a given protein, 

thereby providing excellent structural resolution. Given the simplicity of the DEPC 

labeling chemistry and the relatively straightforward mass spectral analysis of DEPC-

labeled proteins, we expect this method should be amenable to a wide range of protein 

therapeutics and their different formulations.  
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In the final section of this dissertation, we demonstrate that, in certain instances, 

scrambling of the DEPC label from one residue to another can occur during collision-

induced dissociation (CID) of labeled peptide ions, resulting in ambiguity in label site 

identity. From a preliminary study of over 30 labeled peptides, we find that scrambling 

occurs in about 25% of the peptides and most commonly occurs when histidine residues 

are labeled. Moreover, this scrambling appears to occur more readily under non-mobile 

proton conditions, meaning that low-charge state peptide ions are more prone to this 

reaction. For all peptides, we find that scrambling does not occur during electron 

transfer dissociation, which suggests that this dissociation technique is a safe alternative 

to CID for correct label site identification.  
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CHAPTER 1 

MASS SPECTROMETRY AND ITS APPLICATION TO PROTEIN STRUCTURE 

 
 
 

1.1 Protein Structure 

In order to survive and reproduce, cells must balance their osmotic pressure, 

maintain their structure, perform chemistry, and do an assortment of other functions. 

Proteins are the means by which cells perform most of these functions. Despite this 

wide range of functionality, proteins are simply polymers composed of 20 unique amino 

acids. This breadth of function is achieved by varying the identity, order, and orientation 

of these amino acids. Thus, in order to understand how cells function and what goes 

wrong when they malfunction, a thorough understanding of protein structure and 

function is necessary.  

Amino acids are small organic molecules that contain an amine, a carboxylic acid, 

and often a side chain. The chemistry of these side chains varies widely, ranging from 

aliphatic to charged. The order and identity of these amino acids, often referred to as 

primary structure, is coded within the DNA of cells. For a protein to achieve its desired 

function, side chains that are often distal in primary structure must come closer in 

space. To ensure functional proteins, the folding of these polymers must occur with high 

fidelity. 

To achieve this reproducibility, the folding of a protein is programmed into its 

sequence.1 This is accomplished through the pattern in which the hydrophobic and 
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hydrophilic residues are intermixed in the primary sequence. The seclusion of these 

hydrophobic residues from water is the major driving force behind protein folding.1,2 

This process is referred to as hydrophobic collapse. Once solvent is excluded the protein 

must arrange in a way to satisfy the hydrogen bonding of its peptide backbone. In tightly 

packed regions, steric constraints limit the backbone to two main geometries capable of 

satisfying these bonds. These orientations result in either the formation of a helix or a 

strand, which are termed α-helices and β-strands. These structural elements are parts of 

a protein’s secondary structure. Proteins are made up of multiple secondary structure 

components. How these components orient together to form the final three-

dimensional configuration is the tertiary structure of a protein. Often understanding the 

primary, secondary, and tertiary structure of a protein offers insight in to its function. 

Sometimes, however, multiple subunits may be necessary to achieve some functions; 

the arrangement of these subunits is referred to as quaternary structure. 

In order to fully understand how a protein achieves its function, a complete 

understanding of all of these aspects of structure is important. Significant research has 

already been dedicated to understanding the primary3–6 and secondary7,8 structure of 

proteins. While there has also been significant work dedicated to understanding the 

tertiary structure of proteins,9,10 the following work will propose additional 

methodology to probe their tertiary and quaternary structure by examining two model 

systems: (1) β-2-microglobulin (β2m), and (2) a pair of therapeutic proteins (i.e. IgG1 

and HGH). 
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1.1.1 β-2-microglobulin and Dialysis related amyloidosis 

The amphiphilic character that leads to the folding of proteins can also lead to 

their aggregation. Aggregation is not uncommon. In fact, cells have developed a number 

of pathways to recover, degrade, or sequester these aggregates.11 There are some 

aggregates, however, which avoid or overwhelm such rescue pathways. Amyloidosis 

describes a class of diseases where proteins aggregate into insoluble fibrils. These 

fibrous structures are resistant to these degradation pathways and their presence can 

be deleterious to the cell or other biological tissues. There are approximately 20 human 

diseases that involve this type of aggregation. The specific disease is denoted by the 

identity of the aggregating protein and the location of the fibril deposits.12   

Many of these amyloidogenic proteins are natively soluble and monomeric. 

Despite this, the monomer is somehow stimulated into a normally unpopulated 

amyloidogenic conformer that can ultimately form amyloid fibrils.13 Significant work has 

been dedicated to understanding and identifying the mechanisms by which these 

amyloidogenic conformers are populated for different proteins.12,14–17 One event that 

has been shown to initiate aggregation for several of these amyloid-forming proteins is 

the binding of transition metals.18–20 This interaction is thought to stabilize an 

amyloidogenic competent state mediating the formation of amyloids.19–27 β-2-

microglobulin (β2m) is one such amyloidogenic protein (Figure 1-1) that can form 

amyloid fibrils in the presence of Cu(II). 
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Figure 1-1 Cartoon representation of β-2-mictoglobulin and a schematic illustrating the nomenclature of its β 
strands (PDB: 2XKS). The yellow line represents the disulfide between Cys25 and Cys80 on the B and F strands, 

respectively. 

 

β2m is normally found as a structural component of the MHC type 1 complex. Its 

structure has been characterized in both its native complex and its monomeric state.28,29 

β2m is a 99 residue β-sandwich protein that has an approximate molecular weight of 

12,000 Daltons. It has been found to be the major constituent of fibrils in the disease 

dialysis related amyloidosis (DRA).30,31 Elimination through the kidneys is the major 

pathway by which the body disposes of β2m. Patients in renal failure rely on dialysis to 

perform the function of the kidney. Dialysis, however, cannot remove β2m effectively. 

As a result, its concentration rises from ~0.1 µM to up to ~6 µM in the body.32,33 In this 

disease the deposition of these fibrils in joints lead to acute arthropathy,32,34 eventually 

necessitating joint replacement. 

An abundance of research has been dedicated to understanding the process by 

which these fibrils are generated. Despite this, the mechanism by which they are 

generated in vivo is not known but it is known that the increased concentration of β2m 
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alone is not sufficient.35,36 Prior research has also shown that acidic conditions,37,38 

certain mutations,39,40 cleavage of the six N-terminal amino acids (ΔN6),17,41 limited 

proteolysis42, stoichiometric concentrations of Cu(II)22,43–47, and others48,49 have the 

capability to induce the amyloidosis of β2m in vitro.
37,50 The Cu(II) mediated pathway is 

particularly compelling due to the incidence of DRA decreasing significantly after the 

institution of Cu(II)-free dialysis membranes.51,52  

Thus, the process by which Cu(II) binding induces fibril formation has been the 

subject of much study. β2m fibril formation is preceded by the formation of di-, tetra-, 

and hexameric species upon Cu(II) binding (Figure 1-2).53 These oligomers, particularly 

the dimer54,55 and tetramer,55,56 were characterized and shown to maintain a native-like 

structure.53,55,57,58 The effect of Cu(II) on amyloid formation was also shown to be 

catalytic as it is released upon a structural rearrangement of the tetramer, and the final 

fibrils were shown to be devoid of Cu.57,58 The influence of Cu(II) binding on monomeric 

β2m has also been extensively studied, and studies indicate that Cu(II) binding induces 

the formation of an amyloidogenic conformer.43,59,60  
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. 

Figure 1-2 Mechanism by which β2m is converted by Cu(II) in an amyloidogenic conformer.  

 

Suspected amyloidogenic conformers of β2m have also been studied for several 

mutants, including ΔN6,61 P32G,62 and P32A,63 with atomic-level information being 

obtained by NMR or X-ray crystallography. The amyloidogenic conformer formed upon 

Cu(II) binding has not been completely characterized,44 although, some of the structural 

changes necessary to induce the oligomerization of β2m have been revealed.22,46,64,65 

The isomerization of the His31-Pro32 amide bond, the movement of Asp59, Arg3, 

Phe30, and Trp60 are some of the changes that Cu(II) binding has been shown to 

induce.55,64,65 A more thorough understanding of the structural changes caused by Cu 

that allow β2m to be transformed into amyloid aggregates may be informative for both 

non-Cu(II) induced transformations of β2m and the Cu(II) mediated conversions of other 

amyloidogenic proteins.  
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1.1.2 Therapeutic Proteins 

Amyloid aggregation of proteins is not the only biomedically important type of 

protein aggregation. The unfolding and aggregation of protein therapeutics is also a 

growing area of interest in need of new tools for probing protein higher order structure. 

Protein therapeutics attempt to recover native function through the introduction of 

externally produced protein. Human growth hormone (HGH) and insulin were two of the 

earliest adopted protein therapeutics, which were used to treat hypopituitarism and 

diabetes mellitus type 1, respectively.66–70 Since then, protein therapeutics have become 

the fastest growing segment of the pharmaceutical market with approximately 200 

proteins approved for use as of 2012.71  

Immunoglobulins, which are also known as antibodies, are a class of protein 

therapeutics that has been extensively utilized. These proteins are naturally found as 

part of the immune system where they are used to recognize and bind foreign antigens. 

Immunoglobulin G (IgG) is an example of one of these antibodies. It is made up of two 

heavy and two light chains. Each light chain is bound to a heavy by disulfide bonds and 

the two heavy chains are also bound together by disulfides, forming a symmetrical 150 

kD protein with each half of the structure having six domains. The CH
1, CH

2, CH
3, and CL 

domains make up the signaling and structural part of the protein, and have primary 

sequences that are fairly constant across IgG molecules. Antigenic specificity is derived 

from the variable domains, VH and VL (Figure 1-3). As therapeutics, one use for IgGs is to 

stimulate the immune system into targeting malfunctioning cells that normally evade 
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recognition such as in cancer or autoimmunity.72,73 The specificity of binding relies on 

the proper tertiary structure of the VH and VL domains.74  

 

Figure 1-3 Structure of IgG1 with the domains of the heavy chain (grey) and the light chain (blue) denoted. 

 

Perturbations in the structure of therapeutic proteins can also induce 

endogenously occurring antibodies to identify them as foreign. This immunogenicity can 

result in a reduction of the potency and efficacy of a drug and potentially lead to its 

complete neutralization.75 The immunogenic response is significantly more pronounced 

when aggregated protein is introduced into the subject.75 For these reasons, ensuring 

the proper tertiary and quaternary structure of a therapeutic protein is of the utmost 

importance. A thorough understanding of how protein therapeutics aggregate could 

allow for the targeted engineering of these molecules, leading to their improved 

stability.76–78  
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1.2 Tools for the Analysis of Tertiary and Quaternary Structure 

The tertiary and quaternary structure of proteins is not always easily analyzed. 

The analysis must take place under a narrow range of conditions or risk perturbing the 

very structure being probed. Furthermore, the wide diversity in size and chemistry 

possible in proteins significantly complicates this analysis. Despite these challenges, 

numerous methods have been developed to analyze the structure of proteins. 

Therapeutic and amyloidogenic proteins specifically have been studied using Fourier 

transform infrared (FTIR) spectroscopy,79–81 circular dichroism (CD) 

spectroscopy,43,79,82,83 size exclusion chromatography (SEC),22,53,57,79,84 dynamic light 

scattering (DLS),57,79,85–88 fluorescence spectroscopy,79,88–90 nuclear magnetic resonance 

(NMR),87,91–96 X-ray crystallography,97–102 and a host of other techniques. Each method, 

however, has its advantages and limitations. 

CD and FTIR spectroscopy have been used extensively to probe the secondary 

structure of therapeutic and amyloidogenic proteins,7,8,43,79–83,103–105 but they are limited 

in their ability to probe tertiary structure.106,107 For example, CD is insensitive to the 

changes that Cu(II) binding induces in β2m.43 Another disadvantage for these techniques 

is that they average all proteins and protein conformations present in solution. 

SEC and DLS both measure the hydrodynamic radius of a protein, which can then 

be used to approximate its size. The ability to measure size is particularly useful when 

monitoring the soluble aggregation of proteins, making it particularly suited for the 

study of amyloidogenic and therapeutic proteins.22,53,57,79,84–88 This ability to measure 
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size alone has limited usefulness. With β2m, for example, SEC has shown that the 

amyloidogenic conformer possesses a more extended structure, but more detailed 

structural information cannot be obtained with this method.39  

Fluorescence spectroscopy has been used quite extensively to study protein 

structural changes. There are two commonly used versions of this technique that are 

applied to proteins: intrinsic fluorescence of tryptophan residues108,109 and extrinsic 

fluorescence that relies on an added fluorophore.110 Trp-intrinsic fluorescence has found 

use in the analysis of both amyloidogenic111–113 and therapeutic114,115 proteins. Trp 

fluorescence alone is unable to completely deduce the tertiary structure of proteins, but 

it can be used to monitor the environment of tryptophan residues allowing for some 

deductions about tertiary structure.108 Extrinsic fluorescence methods can monitor a 

number of attributes depending on the chosen dye. Two commonly used dyes are 

thioflavin T (ThT) and 4,4′-bis-1-anilinonaphthalene-8-sulfonate (bis-ANS).110 The 

fluorescence of ThT changes when exposed to amyloidogenic aggregates.116,117 

Consequently, the use of ThT has become one of the most common methods for 

identifying amyloidogenic aggregation.14,15,38,45,88,118 The dye bis-ANS shows a strong 

increase in fluorescence when proteins have exposed hydrophobic surfaces110,119 and 

has become widely used for measuring the structural integrity of therapeutic 

proteins.79,80,114,120,121 While bis-ANS can be used to monitor the proper folding of a 

protein, it is unable to identify the exact location where any unfolding occurs.  All of the 

previously mentioned techniques, while useful, have significant limitations in what can 

be deduced about tertiary structure. 
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In contrast, NMR and X-ray crystallography can be used to measure the 

secondary, tertiary, and quaternary structure simultaneously, thus often enabling an 

atomic level view of protein structure. Both techniques have been extensively used to 

study amyloidogenic41,91,93,98,122,123 and  therapeutic proteins,96,100–102,124,125 including a 

number of IgGs.100,101 β2m has also been analyzed extensively with these techniques, 

and the amyloidogenic conformers of the ΔN6 construct and the mutants P32G and 

P32A have been characterized using NMR61 and crystallography,62,63 respectively.  

While these methods can provide a substantial amount of information, they also 

have disadvantages. Firstly, both NMR and X-ray crystallography require significant 

analysis time, large quantities of protein, and typically pure proteins. The analysis of 

large or heterogeneous proteins also remains challenging for both methods.126–128 Thus, 

very few structures of intact IgG proteins have been solved.100 The crystallographic 

structure of the P32A mutant displayed an increase in β-strand character along the D-

strand (Figure 1-1).63 This was initially hypothesized to be an important structural 

change required to initiate oligomerization. This was later discounted,54 potentially 

indicating that this increase in β-strand character may merely be a crystallographic 

artifact. These artifacts are created due to the protein being probed in an environment 

that it is not found in natively. Another issue with crystallization is that the protein is 

crystallized in its lowest energetic state. For amyloidogenic proteins, this is its fibril 

form, thus limiting its applicability in amyloidogenic systems. In the case of NMR, the 

protein needs to be grown in isotopically-enriched media because only isotopes of 

nitrogen and carbon atoms are observable by NMR. NMR also has trouble with 
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paramagnetic metals, and so the data from Cu-binding proteins, for example, has to be 

carefully interpreted because of non-specific broadening of resonances. The difficulties 

associated with certain protein systems and limitations of both the high resolution and 

low resolutions methods necessitates the development of new methodologies. 

1.3 Mass Spectrometric Approach to Structure 

Mass spectrometry (MS)-based techniques are an alternative that could 

potentially fill this need. Unlike NMR and X-ray crystallography, MS is unable to probe 

tertiary or quaternary structure directly. Instead, MS relies on reagent molecules that 

can react with certain solvent-accessible sites on the protein. These modifications 

induce a mass change which can be measured using MS (Figure 1-4). The extent of 

modification can be used to measure solvent accessibility or in some cases the dynamics 

of the labeled site. These values and, more importantly, changes in these values give 

insight into changes in tertiary structure upon some perturbation. Thus, MS-based 

methods are best used when comparing a protein under different conditions. While MS 

will unlikely ever produce the same insight into structure as X-ray crystallography and 

NMR, it is still capable of generating complementary structural information for a wide 

range of protein systems.  
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Figure 1-4 Generalized work flows for structural mass spectrometry experiments. Bottom-up (fragmentation 

prior to ionization) and top-down proteomics (fragmentation after ionization of intact protein) are two means of 

reading out the structural information that is obtained by labeling the protein in solution.  

 

Each label site can be used as a diagnostic for changes in nearby tertiary or 

quaternary structure. Thus, the structural resolution of MS-based techniques is 

dependent on two factors: (1) the number and distribution of probe-able sites on the 

protein and (2) the ability to accurately assign which of those sites have been labeled. 

While high coverage is desirable, reagents that are capable of modifying multiple sites 

often require more complicated analyses. Thus, molecules with a wide range of 

specificities have been adopted. Identifying the location of all of these labels relies on 

the fragmentation of the protein into smaller pieces. The label location can be assigned 

through the identification of which fragments have been modified. The fragment size 

and the degree of overlap determine how narrowly the label location can be assigned. 

These fragments can either be produced prior to ionization through proteolysis in 

bottom-up proteomics or after using tandem mass spectrometry (MS/MS) in a top-
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down proteomics approach. In many cases MS/MS can be applied to proteolysis-

produced peptides to more precisely assign label locations.  

1.3.1 Hydrogen/Deuterium Exchange (HDX) 

In HDX/MS the amide hydrogens of the protein are exchanged with deuterium 

(or vice versa). All but one of the 20 common amino acids have an amide bond, enabling 

the majority of a protein’s backbone to be probed. When the sample is then analyzed by 

a mass spectrometer as in Figure 1-4, a mass shift of one dalton will occur for every 

hydrogen atom that has been exchanged (Figure 1-5). The rate at which each amide 

hydrogen atom is exchanged is dependent on its accessibility to solvent and whether or 

not it is involved in hydrogen bonds. Amides involved in hydrogen bonds are protected 

from exchange. Hydrogen bonds, however, often form and re-form as the protein 

samples different conformations. Accordingly, more dynamic regions of a protein show 

greater amounts of deuterium exchange.129 The ability to measure protein dynamics 

opposed to merely solvent accessibility differentiates this method from other MS-based 

approaches.  

 

Figure 1-5 Figure illustrates amide hydrogen atoms (small blue circles) being exchanged with deuterium (red 

circles). Thus, allowing for regions in the protected core of the protein to be identified. 
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This ability to probe dynamics has led to the broad application of HDX in the 

analysis of protein structure by MS.130–134 HDX/MS has also been used to probe both 

β2m and therapeutic proteins to a limited extent.135–142 Global HDX studies have been 

used on β2m to probe the change in dynamics after its dissociation from the MHC-1 

complex,135 upon exposure to added reagents such as Cu(II),136 SDS,136 TFE,136 after the 

removal of the six N-terminal amino acids,136 and cleaving the protein at Lys58 via 

limited proteolysis.137 These studies demonstrated that the dissociation from the MHC-1 

complex, binding of Cu(II), truncation, exposure to SDS, and TFE all induce increased 

conformational flexibility of β2m. HDX has also found widespread use on many 

therapeutic proteins.138,139 Antibodies in particular have been a focus of this research.140 

The method has been used for epitope mapping,124,143,144 probing the effects of 

chemical degradation,141 and measuring the influence of deglycosylation on the 

dynamics of IgG.142 

One challenge associated with HDX/MS is the transient nature of the exchanged 

amide hydrogens. The lability of the exchangeable hydrogens can lead to scrambling of 

the added deuterium during ionization145 or fragmentation in some tandem mass 

spectrometric methods.146,147 This scrambling can lead to ambiguous data at best or 

completely incorrect results at worst. Another problem is back exchange. Under native 

conditions (e.g. pH 7 and 22ºC) exchange is fast enough that any added deuterium can 

be lost during the proteolysis, liquid chromatography, and ionization steps of the 
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analysis. As a result of these issues, special care and often expensive instrumentation 

are required to minimize back exchange and to accurately locate deuterated sites.132 

1.3.2 Covalent Labeling Based Methods 

Methods that use covalent bond formation to characterize protein structure are 

not subject to back exchange. In contrast to HDX, the covalent nature of these 

modifications enables the use of MS/MS, often in conjunction with proteolysis, as a 

means to improve label assignment. Covalent labels also provide complementary 

information to HDX in that they report on protein side chains rather than the protein 

backbone. 

1.3.2.1 Hydroxyl Radical Footprinting 

Hydroxyl radical footprinting (HRF) is a commonly used approach for covalent 

labeling.148–152 In this method, hydroxyl radicals are produced through the radiolysis or 

photolysis of water or hydrogen peroxide. The produced radicals then oxidize solvent 

accessible sites on the protein. These labels are capable of modifying numerous sites on 

a protein but tend to label sulfur-containing, aromatic, and aliphatic residues more 

rapidly than other residues.150 Just as with HDX, the labeling reagent is roughly the size 

of a water molecule allowing for a good approximation of solvent accessibility. 

HRF application to amyloidogenic systems is limited, and to our knowledge it has 

not been applied to study β2m amyloid formation. HRF has been used to probe the pre-
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amyloid oligomers of Aβ40152,153 and Aβ42.154 The method has also recently been 

applied to monitor structural changes in therapeutic proteins.83,114 The technique was 

shown to be quite sensitive to subtle structural changes as it was able to distinguish 

expired protein therapeutics from fresh ones.83 HRF also demonstrated the ability to 

identify the regions of aggregation in therapeutic monoclonal antibodies (mAbs).114 

There are some challenges associated with the implementation of HRF. Most 

notably, oxidation by hydroxyl radicals can produce over 50 different types of 

modifications that can complicate MS analysis.150 Moreover, in its most commonly used 

form, a laser or synchrotron source is necessary to generate the radicals, which limits its 

widespread applicability. 

1.3.2.2 Cross-linking 

Other covalent labeling techniques use bifunctional reagents to link residues that 

are spatially adjacent despite being distant in primary structure. The cross-linked 

peptides are then sequenced and identified by MS, thereby revealing nearby residues 

(Figure 1-6). This method has been used to probe the structures of individual proteins155 

and protein complexes.156–160 It has also been used to study amyloid forming and 

therapeutic proteins, specifically the oligomerization of Aβ161,162 and epitope mapping of 

antibodies.163 In many instances the label will only bind at a single site, thereby failing to 

produce a cross-link. These so called “dead ends” enable this method to probe solvent 

accessibility of these labeled sites, but this feature is not commonly used in protein 

structural analyses. One of the major drawbacks with cross-linking is that the size of 
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these labels may perturb the structure of the protein. Therefore, any subsequent 

labeling could be probing non-native structures. Another challenge associated with 

these bifunctional reagents is that they produce two linked peptides of various sizes 

each possessing an N- and C-termini. The ability of current proteomics software to 

identify these products is hindered by this complexity.157  

 

 

Figure 1-6 Labeling results in the linking of residues distant in primary structure but spatially adjacent due to 

folding. This enables some information about folding to be deduced.  

 

1.3.2.3 Residue Specific Covalent Labeling 

Another approach to covalent labeling uses amino acid-specific reagent 

molecules to modify solvent exposed residues.164 The extent of modification can be 

used to measure solvent accessibility of each site (Figure 1-8). This approach to labeling 

is simple as it requires no specialized equipment and typically produces only a single 

type of mass addition. A wide range of reagents are available (see Figure 1-7 for 

examples), ranging from those that have narrow specificity (e.g. succinimides and 

butanedione) to those with broad specificity (e.g. diethylpyrocarbonate (DEPC)).164 DEPC 
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is capable of labeling all nucleophilic residues, enabling the monitoring of approximately 

30% of surface residues of the average protein.65,165 The use of DEPC should maintain 

the simplicity of this type of covalent labeling while at the same time minimizing the loss 

of resolution compared to HDX and HRF. 

 

Figure 1-7 Examples of reagent molecules used for residue-specific covalent labeling.  

 

Residue-specific covalent labeling has been used to study both amyloidogenic 

and therapeutic proteins, though their application to therapeutic proteins has been very 

limited. To our knowledge, only the carboxylate-specific reagent pair of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) and glycine ethyl ester (GEE) 

has been used to probe the structure of a monoclonal antibody.166 With amyloidogenic 

proteins, this method provides insight into protein-metal and protein-protein 

interactions.65,164,165,167 For example, in β2m this method was able to both identify 

residues near the Cu(II) binding site and indentify residues near the interface of the 

preamyloid dimer.54 
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Figure 1-8 Residue specific labeling modifies solvent exposed sites enabling one to distinguish the core of the 

protein from its surface. 

  

 

Residue-specific covalent labeling is not without drawbacks. The first is that the 

sizes of these reagents preclude them from sites that are normally accessible to water. 

Consequently, this method does not strictly probe solvent accessibility. Moreover, 

labeling with such large labels may perturb the structure of the protein. Thus, any 

subsequent labeling could potentially be probing non-native structures. To ensure this is 

not happening a number of methods have been developed: (1) limiting the extent of 

labeling to approximately one label per protein, (2) monitoring the structure of the 

protein through complementary biophysical techniques, and (3) ensuring the second-

order character of the labeling reaction.65,164  

All current methodologies that probe the three-dimensional structure of 

proteins have limitations. While MS-based approaches are no exception, they provide 

complementary structural information, require little sample, and are capable of probing 

challenging proteins and protein systems. Despite these potential advantages the 

application of these MS-based methods has not been fully explored. 
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The following sections of this dissertation will investigate and discuss the 

application of HDX and residue specific covalent labeling to two model systems. The first 

system to be discussed in chapter 2 is the amyloid forming protein β-2-microglobulin. 

Here we investigate the structural changes induced by copper that make it unique 

among metals for inducing amyloid formation. In chapter 3 we will investigate the ability 

of residue specific covalent labeling to distinguish changes in therapeutic proteins after 

exposure to denaturing conditions. Chapter 4 describes a gas phase phenomenon 

where, under particular conditions, certain residue-specific labels can migrate to 

different residues within a peptide. The final chapter will discuss the impact of this work 

and its future directions. 
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CHAPTER 2 

CU(II)’S UNIQUE ABILITY TO INDUCE Β-2-MICROGLOBULIN’S AMYLOIDOGENIC 

AGGREGATION 

 

2.1 Introduction 

Protein amyloids are a special class of protein aggregates that are associated 

with several human diseases in which proteins aggregate into insoluble fibrous 

structures that are resistant to degradation. There are about 20 human diseases that 

involve this type of aggregation and in each case the identity of the protein and the 

location of fibril deposition are different. β-2-microglobulin (β2m) is a one such 

amyloidogenic protein. It is naturally found as a structural component of the MHC type 

1 complex, but in people undergoing dialysis treatment as a result of kidney disease, 

β2m forms amyloid fibrils, which are the main pathology of dialysis related amyloidosis 

(DRA).30,31 These fibrils congregate in the joints and induce acute arthropathy.32,34 

Amyloid formation by β2m is initiated by the inability to eliminate β2m effectively, 

resulting in an increase in serum concentration from ~0.1 µM to up to ~6 µM.32,33 An 

abundance of research has been dedicated to understanding the process by which these 

fibrils are generated. Despite this, the mechanism by which they are generated in vivo is 

not known, but it is known that increased concentrations of β2m alone are not 

sufficient.35,36 Research has also shown that acidic conditions,37,38 certain mutations,39,40 

cleavage of the six N-terminal amino acids,17,41 limited proteolysis,42 stoichiometric 

concentrations of Cu(II),22,43–47 and others48,49 can induce the amyloidosis of β2m in 
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vitro.
37,50 Our group has become interested in the Cu(II) mediated pathway due to the 

decreased incidence of DRA upon the use of Cu(II)-free membranes,51,52 and because 

Cu(II) is a convenient means of triggering β2m amyloid formation in vitro. 

In previous work by our group and others, it has been found that β2m fibrils are 

preceded by the formation of soluble di-, tetra-, and hexameric species upon Cu(II) 

binding (Figure 1-2).47,53 The oligomers, particularly the dimer54,55 and tetramer55,56 

maintain a native-like structure.53,55,57,58 The binding of Cu(II) has been shown to play a 

catalytic role in the formation of β2m fibrils as it is necessary for oligomer formation but 

is released before the final fibrils are formed.57,58 The influence of Cu(II) binding on 

monomeric β2m has also been extensively studied and it has been demonstrated that 

Upon binding to the monomeric β2m, Cu(II) induces several structural changes that are 

necessary for the formation of the dimer. These structural changes include the cis-trans 

isomerization of the His31-Pro32 amide bond that causes a repacking of the 

hydrophobic core and the repositioning of Arg3 and Asp59 to enable the formation of 

dimer-stabilizing salt bridges.22,55,63  

Recent work has also explored how different metals influence β2m aggregation, 

including the similar-sized metals Zn(II) and Ni(II).22 Interestingly, Zn(II) binding causes 

amorphous aggregation, while Ni(II) binding failed to initiate any aggregation. The latter 

observation is particularly intriguing as Ni(II) and Cu(II) both bind to the N-terminus and 

His31.22 It has been suggested that metal binding to His31 lowers the barrier for the cis-

trans isomerization of the His-Pro32,63 so the failure of Ni(II) to cause amyloid formation 

is a curious observation. In this work we set out to elucidate the amyloid-causing 



 

24 

structural changes initiated by Cu(II) binding that evidently do not occur upon Ni(II) and 

Zn(II) binding. Our results show that only Cu(II) is able to cause the necessary Pro32 

isomerization, but we also find other subtle structural changes that are necessary for 

the formation of β2m amyloids. Overall, our results highlight the fact that very specific 

conformational changes are necessary to achieve the amyloid-competent state of β2m. 

2.2 Experimental Procedures 

2.2.1 Materials 

Diethylpyrocarbonate (DEPC), dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium 

bromide (HNSB), deuterium oxide, pepsin, imidazole, 3-morpholinopropanesulfonic acid 

(MOPS), potassium acetate, potassium bromide, urea, zinc sulfate, deuterium oxide, and 

dithiothreitol (DTT) were obtained from Sigma-Aldrich (St. Louis, MO). Urea was 

purchased from Mallinckrodt Chemicals (Phillipsburg, NJ). Trypsin and chymotrypsin 

were purchased from Promega (Madison, WI) and Roche Diagnostics (Indianapolis, IN) 

respectively. Tris(hydroxymethyl)-aminomethane (Tris) and 

tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) were purchased from EM 

Science (Gladstone, NJ). Human β2m purified from human urine was purchased from 

Lee Biosolutions (St. Louis, MO). Ammonium acetate, methanol, acetonitrile, glacial 

acetic acid, copper sulfate, and nickel sulfate were obtained from Fisher Scientific (Fair 

Lawn, NJ). Centricon molecular weight cutoff (MWCO) filters were obtained from 
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Millipore (Burlington, MA). Deionized water was prepared from a Millipore (Burlington, 

MA) Simplicity 185 water purification system. 

2.2.2 Sample Preparation 

For HDX experiments a stock of 4.1 mM β2m was made in 25 mM MOPS and 150 

mM potassium acetate at pH 7.4. All stocks were made fresh daily. For HNSB labeling 

experiments a 75 µM solution of β2m was prepared in 150 mM potassium acetate, and 

25 mM MOPS (pH 7.4). For DEPC reactions 100 µM β2m in 200 mM potassium acetate, 

500 mM urea, and 25 mM MOPS (pH 7.4) at 37 °C. All components were equilibrated at 

22 °C prior to metal addition, and immediately returned to 37 °C after mixing. In all 

experiments the following metal to β2m ratios were used: Cu 2:1, Ni 16:1, and Zn 4:1. 

These ratios were chosen to ensure that the metal was 95% bound based on previous Kd 

measurements.44  

2.2.3 Hydrogen/Deuterium exchange (HDX) 

Concentrated stocks of β2m, potassium acetate and MOPS buffer, and the 

desired metal salt were all made and diluted into D2O simultaneously. For all HDX 

experiments, the resulting concentrations were 75 µM β2m, 25 mM MOPS 150 mM 

potassium acetate and either 300 µM Zn, 1200 µM Ni, or 150 µM Cu. The total volume 

of the reaction mixture was 55 µL. The samples were then allowed to incubate in 

deuterium for 60, 80, 120, 240, 420, 660, 1200, 2400, 5400, or 10800 sec after which the 
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sample was placed on ice for an additional 30 sec. The exchange reaction was then 

stopped by lowering the solution pH to 2.5 using a solution of formic acid that also 

contained 100 mM TCEP. The total volume after quench was 110 µL. The sample was 

allowed to sit on ice for 1.5 min prior to proteolysis with pepsin.  

2.2.4 Covalent Labeling 

Two types of covalent labeling reactions were conducted. The first used HNSB to 

modify solvent exposed Trp residues.164 Stock solutions of HNSB were prepared in 

water. Labeling of β2m by HNSB was performed for 45 sec at 22 °C and was initiated 

through the addition of 68.5 µM of HNSB. The total reaction volume was typically 27 µL. 

The HNSB labeling reaction was quenched through the addition of 10 mM tryptophan. 

The second type of covalent labeling reaction involved the reagent DEPC, which 

can label solvent exposed His, Tyr, Thr, Ser, and Lys residues.54,55,65,164 Stock solutions of 

DEPC were prepared in acetonitrile. DEPC labeling of β2m was performed for 1 min at 

37 °C and was initiated by adding 0.25 mM DEPC. The total reaction volume for the 

experiments was 30 µL, and the total amount of acetonitrile added was < 1.5 %. The 

reactions were quenched after 1 min by adding 5 mM imidazole. 

2.2.5 Proteolytic Digestion 

β2m samples that underwent HDX were digested using pepsin. The digestion 

was initiated through the addition of ~1.9 µM pepsin to the already quenched samples, 
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resulting in a 1:20 pepsin/β2m ratio. The digestion was allowed to proceed on ice for 6 

min. The digested samples were then immediately analyzed by LC/MS.  

DEPC labeled β2m samples were purified using a 10,000 MWCO filter and 

reconstituted with 25 mM Tris-HCl (pH 7) and 1 mM CaCl2 to a final concentration of 300 

µM. Purified β2m samples were first reacted with 10 mM DTT at 37 °C for 45 min to 

reduce the disulfide bonds. The reduced protein samples were then unfolded in 12% 

acetonitrile at 37 °C for 45 min. Trypsin or chymotrypsin (1 µg/µL) was then added to 

the modified samples to yield a final enzyme/substrate ratio of 1:20. All samples were 

digested at 37 °C for 16 h before inactivating the enzymes by the addition of 2 µL of 

acetic acid. The samples were then immediately analyzed by LC/MS. 

2.2.7 HPLC Separation 

To analyze the digests from both the HDX and covalent labeling experiments, an 

HP1100 (Agilent, Wilmington, DE) HPLC system with a C18 column (15 cm x 2.1 mm, 5 

µm particle size) from Supelco, (St. Louis, MO) was used. A 5 µL injection loop and an 

injection volume of 7 µL were used for all replicates. Peptic fragments of the H/D 

exchanged samples were eluted at a flow rate of 0.25 mL/min using a gradient of 

acetonitrile containing 0.1% formic acid that increased 1 to 23% during the first minute, 

23 to 24% from 2 to 8 minutes, and then from 24 to 99% from 8 to 11 minutes. The 

remaining percentage of the mobile phase was water with 0.1% formic acid. The LC 

separation for HDX was performed on ice to minimize back exchange. The DEPC-

modified proteolytic fragments were separated using a linear gradient of methanol with 
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0.1% acetic acid that increased from 5 to 70% over 30 min and 70 to 100% over the final 

3 min. The remaining percentage of the mobile phase was water with 0.1% acetic acid.  

Some of the HNSB-labeled β2m samples were analyzed as intact proteins. To do 

this, the samples were first desalted using a Thermo Scientific Ultimate 3000 HPLC 

system (Thermo Scientific, Tewksbury, MA) fitted with a Protein MicroTrap (Michrom, 

Auburn, CA). A 5 µL injection loop and an injection volume of 7 µL were used for all 

replicates. The protein was eluted using an acetonitrile gradient that increased from 1 to 

99% over 5 min at a flow rate of 4 µL/min.  

2.2.9 Mass Spectrometry 

Mass spectral analyses of the HPLC separated samples from the HNSB labeling 

experiments and the HDX reactions were acquired on a Bruker Amazon ETD (Billerica, 

MA) quadrupole ion trap mass spectrometer equipped with an electrospray ionization 

source. The electrospray source conditions, including the voltage and temperature, 

were chosen to optimize the peptide signal. Tandem mass spectra were acquired using 

collision-induced dissociation (CID) with isolation widths of 1.0 Da and excitation 

voltages between 0.6 and 1.0 V. 

The DEPC-labeled β2m samples were analyzed using a Bruker Esquire-LC 

quadrupole ion trap mass spectrometer (Billerica, MA) equipped with an ESI source. The 

ESI source was operated at a spray voltage of 3.5 kV, and the capillary temperature was 

set at 300 °C. The voltages for the transfer optics between the ESI source and the ion 

trap were optimized for maximum signal, with typical skimmer 1 and capillary offset 
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values of 30-35 V and 50-60 V, respectively. Tandem mass spectra were acquired using 

CID with isolation widths of 1.0 Da and excitation voltages between 0.6 and 1.0 V. 

2.2.10 Solvent Accessibility Calculations 

To calculate the solvent accessibility of surface residues, the online tool 

GetArea168 was used on the intact (pdb: 2xks) and truncated (pdb:2xku) structures of 

β2m solved that were described by Eichner et al.
61 

2.3 Results  

Amyloid formation by β2m is thought to be initiated by the cis-trans isomerization 

of the His31-Pro32 amide bond. Evidence for this conformational switch has come from 

studies of β2m in the presence of acid and Cu(II) as well as from results from the ΔN6 

mutant.61,63,64 In each instance, the isomerization of the His31-Pro32 amide bond 

induces a repacking of the hydrophobic core50,53,60,62,63,112 and changes in the hydrogen 

bonding between the B, E, and D β strands. A comparison of the NMR structures of wild-

type protein and the ΔN6 mutant reveal these structural changes and provide a model 

for the amyloidogenic conformer (Figure 2-1 and Table 2-1). Because Ni(II) and Zn(II) are 

unable to stimulate β2m amyloid formation, whereas Cu(II) can, we hypothesize that 

Ni(II) and Zn(II) do not enable β2m populate the amyloidogenic state. To test the 

hypothesis, we used HDX/MS and covalent labeling/MS to probe the structural changes 

caused by metal binding and compared them to changes that are expected for the 
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amyloidogenic conformer. Changes in hydrogen bonding (e.g. fraying between the B, E, 

and D β strands) can be probed using HDX and repacking of the hydrophobic core, most 

notably the burial of Trp60, can be probed using the tryptophan specific label 

dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromine (HNSB) (Figure 2-2).164,169,170 

 

Figure 2-1 NMR structures of β2m (grey, PDB:2XKS) and ΔN6 (green, PDB:2XKU) The burial Trp60, the 

exposure of Phe30, and isomerization of the x-pro bond of Pro32 are illustrated as sticks in both structures. The 

numbers on the figure illustrate the distance between the D- and E-(left ) and the E- and B- (right) strands in 

angstroms.  

 

Figure 2-2 Scheme of NHSB labeling a tryptophan. Modification leads to a mass change of 151 Daltons. 
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Table 2-1 Observable structural changes that occur during the conversion of β2m from its native state to its 
amyloidogenic conformer 

N-terminus Displaced 

Pro32 Isomerization 

Phe30 Exposure 

Phe62 core repacking 

Phe56 core repacking 

Tyr63 core repacking 

Trp60 Burial 

B-E strand Fraying 

D-E Strand Fraying 

Surface residues Changes in solvent accessibility 

Secondary Structure Mostly intact 

 

2.3.1 Cu-β2m vs. β2m 

Cu has been shown to initiate the amyloid formation of β2m by catalyzing the 

cis-trans isomerization of the His31-Pro32 amide bond.63 Evidence for the consequent 

structural changes can be found in both HDX and covalent labeling studies. A 

comparison of the HDX/MS results (Figure 2-3) from β2m with and without Cu(II) reveal 

increased amide exchange around Tyr66 and Tyr67, just as would be expected from the 

fraying of the B, E, and D β strands (Figure 2-3 Table 2-1). Increased amide exchange 

would also be expected around Cys25 and His51. While this increased exchange is 

evident at longer exchange times, the large proteolytic fragments (10-25 and 40-55) that 

are obtained also include the A-B loop and C-D loop. Thus, these fragments also have 9 

and 11 unprotected amide hydrogens, respectively, causing the change to be less clear 

on these rapidly exchanging fragments (Figure 2-4). HDX in the remainder of the 

protein’s backbone remains essentially the same with and without Cu(II), which is 



 

32 

consistent with most of the protein’s backbone retaining its native-like structure upon 

converting to the amyloidogenic state (Table 2-1).  

 

Figure 2-3 Extent of HDX at Tyr66 and Try67 without and with Cu(II). These graphs are obtained through the 

subtraction of three overlapping fragments 63-65, 63-66, and 63-67. These are indicative of increased dynamics 

between both the B- and E- β strands and the D- and E- β strands. 

 

Figure 2-4 Extent of HDX for the peptic fragments 10-25 and 40-55 without and with Cu(II). Because these 

fragments contain unstructured regions along with β strands, changes in the extent of exchange are somewhat 
obscured by the fast exchanging unstructured regions.  

 

 Another key difference between the native protein and its amyloidogenic state is 

the burial of Trp60 upon cis-trans isomerization of His31-Pro32 amide bond. To probe 

the extent of Trp60 burial upon Cu(II) binding, we used the Trp-specific reagent HNSB, 
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which reacts with solvent exposed Trp residues. β2m has two Trp residues (e.g. Trp60 

and Trp95), but only Trp60 is solvent exposed. Upon using a 45 sec pulse of HNSB, we 

find that labeling at Trp60 remains essentially unchanged for up to 60 min in the 

absence of Cu(II) (Figure 2-5). When Cu(II) is present, however, Trp60 undergoes a time-

dependent decrease in labeling that is consistent with burial of Trp60 over time as the 

amyloidogenic state is populated (Figure 2-5). Trp95 also undergoes a slight increase in 

labeling efficiency when Cu(II) is present, which is consistent with it becoming more 

exposed in the amyloidogenic state. An interesting aspect of the decrease in Trp60 

labeling over time is that it seems to indicate the rate at which the amyloidogenic state 

is formed after Cu(II) is added. Future work will explore this further. 

 

Figure 2-5 HNSB labeling of intact β2m in the presence and absence of metals. The absence of metal and the 

presence of Zn(II) or Ni(II) induce no change in labeling with 60 minutes. The presence of Cu(II), however, 

causes a decrease in labeling over time, which is consistent with the burial of Trp60 upon formation of the 

amyloidogenic state. 

 

 Another characteristic of the amyloidogenic state is the decreased solvent 

accessibility of several residues in addition to Trp60 (Table 2.1). A fraction of these 
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residues, which are highlighted in Table 2-2 can be probed by covalent labeling with 

DEPC. A comparison of the reactivity of these residues in the presence and absence of 

Cu(II) reveals that most of these sites follow the expected trend upon Cu(II) binding 

(Table 2-3). For example, Lys19, and Lys75, which are expected to undergo a 25%, and 

15% decrease in solvent accessibility, respectively, each show a drop in labeling 

efficiency. It should be noted, though, that not all residues undergo the expected 

change in reactivity (e.g. Tyr67). This fact might be due to subtle, but important, 

differences between the Cu-induced amyloidogenic state and the amyloidogenic 

structure adopted by the ΔN6 mutant used as the model system. 
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Table 2-2 Atom specific solvent accessibility for intact β2m (2XKS), ΔN6 (2XKU), and the change between the 

structures for DEPC probable atoms 

# Atom Residue 

Solvent accessibility 
(Å2) # Atom Residue 

Solvent accessibility 
(Å2) 

2XKS 2XKU Change  2XKS 2XKU Change  

1 N ILE 1 32.1     867 OG SER 55 6.1 20.7 14.6 

65 OG1 THR 4 23.7     898 OG SER 57 17.8 13.9 -3.9 

96 NZ LYS 6 37.8     912 NZ LYS 58 30.8 37.4 6.7 

173 OH TYR 10 21.0 32.2 11.2 967 OG SER 61 9.7 10.2 0.6 

188 OG SER 11 4.6 1.5 -3.1 1004 OH TYR 63 17.3 27.0 9.7 

224 ND1 HIS 13 10.9 2.0 -9.0 1063 OH TYR 66 12.4 13.1 0.7 

227 NE2 HIS 13 15.3 13.5 -1.7 1084 OH TYR 67 26.4 34.3 8.0 

303 NZ LYS 19 34.7 26.2 -8.5 1099 OG1 THR 68 0.9 0.0 -0.9 

322 OG SER 20 21.5 27.1 5.7 1148 OG1 THR 71 17.1 12.4 -4.7 

416 OH TYR 26 29.7 31.6 1.9 1176 OG1 THR 73 1.1 0.8 -0.4 

447 OG SER 28 2.7 21.7 18.9 1208 NZ LYS 75 40.3 34.5 -5.7 

486 ND1 HIS 31 6.2 6.7 0.6 1260 OH TYR 78 5.6 5.2 -0.3 

489 NE2 HIS 31 11.4 10.1 -1.3 1350 ND1 HIS 84 0.0 0.0 0.0 

516 OG SER 33 15.9 17.4 1.5 1353 NE2 HIS 84 2.1 2.4 0.4 

642 NZ LYS 41 29.0 14.2 -14.8 1382 OG1 THR 86 0.0 28.1 28.1 

758 NZ LYS 48 35.7 39.6 3.8 1415 OG SER 88 20.0 26.9 7.0 

809 ND1 HIS 51 3.3 0.6 -2.7 1460 NZ LYS 91 36.6 29.9 -6.7 

812 NE2 HIS 51 17.3 11.8 -5.4 1517 NZ LYS 94 16.2 35.9 19.7 

825 OG SER 52 19.1 27.6 8.5               

 
Table 2-3 Modification percentages for each modified residue in the absence and presence of Cu(II), Ni(II), or 

Zn(II) 

 

Residue 
Change in 
SASA (Å2) 

apo-β2m Cu(II) Ni(II) Zn(II) 

His13 -1.7 47 ± 2 46 ± 3 46 ± 2 46 ± 3 
Lys19 -8.5 22 ± 1 19 ± 2 18.0 ± 0.7 24 ± 2 
Ty26 1.9 0.75 ± 0.07 0.79 ± 0.05 1.10 ± 0.05 0.75 ± 0.03 

Ser28α 18.9 0.24 ± 0.01 0.17 ± 0.02 0.35 ± 0.02 0.26 ± 0.01 
His31α -1.3 1.8 ± 0.1 0.7 ± 0.1 1.6 ± 0.1 1.40 ± 0.05 
Ser33α 1.5 1.7 ± 0.1 1.1 ± 0.1 1.11 ± 0.06 1.6 ± 0.1 
His51 -5.4 61 ± 3 61 ± 4 72 ± 2 81 ± 4 

Ser57/Lys58 6.7 43 ± 2 42 ± 3 19.9 ± 0.8 46 ± 2 
Tyr63β 9.7 7.1 ± 0.5 4.3 ± 0.3 3.6 ± 0.3 5.4 ± 0.3 
Tyr67 8.0 2.1 ± 0.1 1.75 ± 0.06 2.4 ± 0.1 2.01 ± 0.08 
Lys75 -5.7 0.36 ± 0.04 0.33 ± 0.02 0.35 ± 0.04 0.52 ± 0.04 
Ser88 7.0 63 ± 3 65 ± 3 60 ± 1 74 ± 1 
Lys94 19.7 30 ± 2 29 ± 2 39 ± 3 39.7 ± 0.5 

α 
Labeling may be influenced due to proximity to Cu(II) binding site.

 

β 
Labeling may be influenced by the binding of Cu by Asp59. 
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Changes in the HDX and covalent labeling behavior of β2m with and without 

Cu(II) at the expected locations provide a benchmark against which the Zn(II) and Ni(II) 

bound proteins can be compared. This comparison enables us to determine whether 

Zn(II) and Ni(II) induce the amyloidogenic conformer. 

2.3.2 Ni-β2m vs. β2m 

The influence of Ni(II) binding on β2m is particularly interesting as it binds in a 

very similar location to Cu(II), yet it induces no oligomerization or aggregation.22 When 

the Ni(II)-bound form of β2m is investigated and compared to the metal free protein 

using HDX/MS, we find no increase in exchange at Tyr66, suggesting that the hydrogen 

bonding between the B and E strands is unchanged (Figure 2-6). This lack of change is in 

stark contrast to the Cu(II) bound form (Figure 2-3). A slight increase in dynamics 

between the D and E strands (Figure 2-6, Tyr67 data) is observed, but this increase is 

extensive than when Cu(II) is bound to the protein. The complementary proteolytic 

fragments (10-25 and 40-55) do not show any significant increase in exchange upon 

Ni(II) binding (Figure 2-7). Overall, the HDX results with Ni(II)-bound form of the protein 

suggest that Ni(II) binding does not induce the same structural change as Cu(II) binding. 
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Figure 2-6 Extent of HDX at Tyr66 and Try67 without and with Ni(II). These graphs are obtained through the 

subtraction of three overlapping fragments 63-65, 63-66, and 63-67. These are indicative of increased dynamics 

between both the B- and E- β strands and the D- and E- β strands. 

 

Figure 2-7 Extent of HDX for the peptic fragments 10-25 and 40-55 without and with Ni(II). Because these 

fragments contain unstructured regions along with β strands, changes in the extent of exchange are somewhat 

obscured by the fast exchanging unstructured regions. 

 

Changes in the solvent accessibility of Trp60 upon binding Ni(II) were also 

assessed using HNSB labeling. As indicated in Figure 2-5, the metal-free protein and the 

Ni(II)-bound protein undergo no change in HNSB labeling over a period of 60 min. 

Covalent labeling with DEPC also suggests different structural changes upon Ni(II) 

binding (Table Y). DEPC labeling of the Ni(II)-bound protein shows significant deviations 

from the Cu(II)-bound form at Tyr26, Ser28, His51, Lys58, Tyr67, and Lys94. The full 
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consequences of these changes are not clear, but these data re-emphasize the intriguing 

observation that Cu(II) and Ni(II) induce different structural changes despite both having 

the N-terminus and His31 as common binding sites. The fact that Trp60 is not buried 

upon Ni(II) binding, together with minimal changes in HDX behavior, strongly suggests 

that NI(II) binding does not induce the cis-trans isomerization of Pro32. Evidently Ni(II) 

binding to His31 is not sufficient to induce the isomerization that is observed with Cu(II). 

Furthermore, the fact that Ni(II) binding does induce a slight increase in amide exchange 

between the D and E strands, yet does not induce oligomerization or aggregation, 

indicates that the destabilization of the D strand alone is not enough to induce 

aggregation. 

2.3.3 Zn-β2m vs. β2m 

The HDX behavior of the Zn(II)-bound form of β2m is notably different than the 

exchange behavior of the Cu(II)-bound form. Changes in amide exchange induced by 

Zn(II) binding are evident even at the first measured time point at many different site in 

the protein (Figures 2-8, 2-9 and 2-10), possibly signifying a decrease in protein stability. 

Increased exchange in the presence of Zn(II) is consistent with the fact that Zn(II) 

binding destabilizes β2m by as much as 14 kJ/mol.44 Like the Ni(II)-bound form of β2m, 

Zn(II) fails to induce an increase in exchange between the B and E strands, despite the 

overall increase in protein dynamics. Unlike Ni(II), however, Zn(II) does increase 

exchange at the D and E strands (Figure 2-8) and near the A-B loop (Figure 2-9). Even 



 

39 

though Zn(II) does cause an increase in the dynamics at the D and E, the increase in 

exchange is less than that observed upon Cu(II) binding. 

 

Figure 2-8 Extent of HDX at Tyr66 and Try67 without and with Zn(II). These are indicative of increased 

dynamics between both the B- and E- β strands and the D- and E- β strands. These graphs are obtained through 
the subtraction of three overlapping fragments 63-65, 63-66, and 63-67.  

 

 

 

Figure 2-9 Extent of HDX for the peptic fragments 10-25 and 40-55 without and with Zn(II). Because these 

fragments contain unstructured regions along with β strands, changes in the extent of exchange are somewhat 
obscured by the fast exchanging unstructured regions. 
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Figure 2-10 HDX uptake for each residue at after 2, 40, and 180 min of incubation in deuterium. These are 

derived from overlapping peptides produced by proteolysis. 

 

Covalent labeling results with HNSB and DEPC indicate that Zn(II) causes β2m to 

adopt a very different structure than the Cu(II)-bound form of the protein. HNSB 

labeling of the Zn(II) bound protein and the metal free protein are essentially 

equivalent, indicating that Trp60 is not buried upon Zn binding (Figure 2-5). This result 

likely suggests that the cis-trans isomerization of the His31-Pro32 amide bond does not 

occur upon Zn binding. Moreover, DEPC labeling in the presence of Zn(II) leads to 
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significant deviations in labeling as compared to the Cu(II)-bound form, including at 

Lys19, His51, Lys58, Tyr67, Lys75, Ser88, and Lys94. Taken together, the HDX and 

covalent labeling data suggest that Zn(II)-binding does not result in the formation of the 

amyloidogenic conformer. 

2.4 Discussion 

The amyloid formation by β2m is thought to proceed by the formation of an 

amyloidogenic precursor that is formed by the cis-trans isomerization of the His31-

Pro32 amide bond. This isomerization initiates the re-positioning of a number of 

residues including: Asp59, Arg3, Phe30, and Trp60.50,60,53,112,62,63 The binding of Cu(II) to 

monomeric β2m has been shown to induce these structural changes and initiate 

oligomerization.63,43 The ability of Cu binding to induce oligomerization and its binding 

site at a nearby residue (His31) lead to the thought that metal binding near Pro32 

lowered the barrier to the cis-trans isomerization.44,46 To further investigate the 

influence of transition metals on the structure of β2m, the complexes of Zn(II) and Ni(II) 

were investigated.  

The binding of these three metals to β2m leads to significantly different 

outcomes. While the binding of Zn to β2m leads to aggregation, the aggregates are SDS-

soluble amorphous aggregates, suggesting that Zn initiates a significantly different 

pathway than Cu. These amorphous aggregates are consistent with the fact that Zn 

binds to a very different site on the protein than Cu(II).22 In contrast, Ni(II) binding does 

not stimulate any oligomerization or aggregation, as the protein remains monomeric, 
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despite the fact that Ni(II) binds to a similar site as Cu(II).22 These different outcomes 

suggest that unlike Cu Zn and Ni do not promote the formation of the amyloidogenic 

precursor. To provide structural support for the hypothesis, we applied HDX and CL 

together with mass spectrometry. Most of β2m undergoes only minor structural 

changes upon the binding either metal. There are, however, regions that are affected 

differently by each metal. Zn binding initiates the most significant structural changes, 

leading to increased exchange in several locations even at the shortest time points, 

suggesting decreased stability. This decrease in stability between the D and E β strands 

and the A and B loop likely explains the propensity for the complex to amorphously 

aggregate. One region that undergoes increased HDX and that is particularly intriguing is 

the region near the B and E β strands. This region also demonstrates an increase in 

dynamics upon the binding of Cu. Because Zn also causes increased dynamics in this 

region but does not initiate amyloid formation, structural fluctuations at these sites are 

clearly not sufficient to induce the formation of the amyloid precursor.  

Covalent labeling of Trp60 provided an important indicator of the formation of 

the amyloidogenic precursor. Only Cu(II) of the three metals was able to induce the 

burial of Trp60; burial of this residue is a key signature of the amyloidogenic 

precursor.63,64 DEPC labeling also revealed other residues that undergo changes in 

solvent accessibility, and only Cu(II) binding show changes that are consistent with the 

amyloidogenic precursor as each metal has different effects on the solvent accessibility 

of residues including Lys19, His51, Lys58, Tyr67, Lys75, Ser88, and Lys94. The differences 
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in solvent accessibility upon binding each metal further suggest that each metal 

promotes the formation of different structures.  

The use of both HDX and CL provides complementary information that can be 

used to generate a more detailed understanding of the changes in β2m structure upon 

metal binding. The use of HNSB, in particular, is interesting because it is an easy method 

for monitoring the formation of the amyloidogenic species of β2m. The ability to easily 

monitor this species could allow one to probe the rate at which the amyloidogenic 

precursor is formed under different conditions.  

2.5 Conclusions 

In this work we demonstrate that only Cu(II) binding to β2m, and not Ni(II) and 

Zn(II) binding, is capable of inducing its transformation into an amyloid competent state. 

The results described here highlight the fact that specific structural changes, and not 

just any partial unfolding, are essential for achieving the amyloidogenic state of this 

protein. This conclusion is most evident from a comparison of the structural changes 

caused by Cu(II) and Ni(II). While Ni(II) binds the protein in a similar manner as Cu(II), it 

appears to be unable to cause the cis-trans isomerization of the His31-Pro32 amide 

bond, which is essential for the formation of the amyloidogenic conformer. Zn(II) 

binding increases the overall structural dynamics of β2m, but these increased dynamics 

do not result in the formation of the amyloidogenic conformer. Instead, the overall 

decrease in stability caused by Zn(II) binding leads to the amorphous aggregation of 

β2m observed in the presence of this metal. In addition to obtaining some new insight 
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into the specific structural changes that are necessary for β2m amyloid formation, this 

work also demonstrates that covalent labeling of Trp60 by HNSB has the potential to 

measure the formation rate of the amyloidogenic conformer, which could be a useful 

tool for understanding more deeply the factors that influence β2m amyloid formation.  
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CHAPTER 3 

INVESTIGATING THERAPEUTIC PROTEIN STRUCTURE WITH DIETHYLPYROCARBONATE 

LABELING AND MASS SPECTROMETRY 

 
 
 

This chapter is adapted from a paper published as: Borotto, N.B., Zhou Y.,Hollingsworth, 
S. R., Hale J. E., Graban, E., Vaughan, R. C., Vachet, R. W. (2015) Investigating 
Therapeutic Protein Structure with Diethylpyrocarbonate Labeling and Mass 
Spectrometry. Anal. Chem. (In press) 
 

3.1 Introduction 

Protein therapeutics are the fastest growing segment of the pharmaceutical 

market, accounting for one-third of the overall late-stage drug development pipeline. 

They are anticipated to represent 20% of the total pharmaceuticals market value by 

2017.171 One key element in ensuring the safety and efficacy of these biologic drugs is 

the ability to measure and control the three dimensional (3D) structure of the protein 

active ingredients. In contrast to more traditional small molecule therapeutics, however, 

obtaining accurate, high resolution measurements of protein structures has proven to 

be extremely challenging. 

Current structural techniques fall into two major categories: (1) rapid, low 

resolution techniques and (2) time and sample intensive, high resolution techniques.85 

Intrinsic fluorescence, circular dichroism (CD), dynamic light scattering (DLS), differential 

scanning calorimetry (DSC), and activity assays are examples of the first type. These 

methods provide an ensemble average of structures or are sometimes insensitive to 
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certain structural changes. NMR and X-ray crystallography are important examples of 

powerful high resolution techniques, but these methods are time-consuming, require a 

large amount of protein, and are not amenable to all proteins. Thus, there is a growing 

need for other techniques that can provide better resolution than the first category of 

techniques but do so in way that is easier and faster than the second category of 

techniques.  

Mass spectrometry (MS)-based techniques offer an alternative because they can 

be rapid, provide moderate resolution, and can be sample efficient. Accordingly, these 

techniques have begun to fill an important niche in protein therapeutic analyses. The 

primary techniques used for monitoring protein solution structure by MS are 

hydrogen/deuterium exchange (HDX), chemical cross-linking, and covalent labeling. In 

HDX the mass spectrometer is used to measure the exchange of amide hydrogens for 

deuterium (or vice versa), and the extent of exchange at individual sites provides an 

indication of solvent accessibility and protein dynamics near that site. HDX/MS has been 

widely used to analyze protein structure130,131,172–174 and recently has been applied to 

characterize the structure of protein therapeutics.139,140,142,175 One challenge associated 

with HDX/MS is the transient nature of the label. As a result, special care and often 

expensive instrumentation are required to minimize back exchange and to accurately 

locate deuterated sites. 

Methods that use covalent bond formation to characterize protein structure are 

not subject to back exchange. They also provide complementary information by 

reporting on protein side chains. Chemical cross-linking typically uses bifunctional 
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reagents to link residues that are spatially adjacent despite being distant in linear 

sequence. The cross-linked peptides are then sequenced and identified by MS, thereby 

revealing nearby residues. This method has been used to probe the structures of 

individual proteins155 and protein complexes.156,158–160 While this technique is not 

commonly used to study protein therapeutics, it has been used for antibody epitope 

mapping.163 Other covalent labeling techniques use monofunctional reagents to monitor 

residue solvent accessibility as a means of probing structure. Hydroxyl radical 

footprinting (HRF) is the most common of these techniques.148–151 In this method, 

hydroxyl radicals are produced through radiolysis or photolysis of water or hydrogen 

peroxide, and the resulting radicals then oxidize solvent accessible sites on the protein. 

Because of its broad reactivity and success with other protein systems, HRF has recently 

been applied to monitor structural changes in therapeutic proteins.83,114 The technique 

was shown to be quite sensitive to subtle structural changes as it was able to distinguish 

expired protein therapeutics from fresh ones.83 HRF also demonstrated the ability to 

identify the regions of aggregation in therapeutic monoclonal antibodies (mAbs).114 

While HRF shows great promise for studying therapeutic proteins, there are some 

challenges associated with implementation. Most notably, oxidation by hydroxyl radicals 

can produce over 50 different types of modifications, which can complicate MS 

analysis.150 Moreover, in its most commonly used forms, a laser or synchrotron source is 

necessary to generate the radicals, which adds complexity and limits its wide 

applicability. 
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Another approach to covalent labeling uses amino acid-specific reagent 

molecules to modify solvent exposed residues. A wide range of reagents are available, 

ranging from those that have narrow specificity (e.g. succinimides) to those that have 

broad reactivity (e.g. DEPC).164 This approach to labeling is simple as it requires no 

specialized equipment and typically produces only a single type of product, facilitating 

mass spectral analysis. While amino acid-specific reagents have been widely used to 

probe monomeric and oligomeric proteins,164 their application to therapeutic proteins 

has been very limited. To our knowledge, only the carboxylate-specific reagent pair of 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and glycine ethyl 

ester (GEE) has been used to probe the structure of a mAb.74 This particular labeling 

chemistry is relatively simple to implement; however, because it is limited to only Asp 

and Glu residues, it results in relatively poor coverage of the protein’s surface area and 

thus low effective structural resolution. Another reagent with broader reactivity such as 

DEPC should maintain the simplicity of this type of covalent labeling, while at the same 

time increasing resolution. Because DEPC is capable of labeling all nucleophilic residues, 

our group has shown that this reagent is capable of monitoring approximately 30% of 

surface residues of the average protein.65,176 Such broad reactivity has enabled this 

reagent to provide insight into protein structure as well as protein-metal and protein-

protein interactions.54–56,65,164 In this work, we demonstrate the ability of DEPC labeling 

to assess structural perturbations in protein therapeutics by investigating three proteins 

before and after stressed conditions. We find that covalent labeling is capable of 
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identifying stress-induced structural perturbations in protein therapeutics, including the 

interface through which the protein therapeutics aggregate.  

3.2 Experimental Procedure 

3.2.1 Materials  

Diethylpyrocarbonate (DEPC), imidazole, iodoacetamide, L-cysteine, papain from 

papaya latex, tris(2-carboxyethyl)phosphine (TCEP), and DL-dithiothreitol (DTT) were 

obtained from Sigma Aldrich (St. Louis, MO). The mAb immunoglobulin G1 (IgG1) was 

purchased from Waters Corporation (Milford, MA). Human β-2-microglobulin (β2m) was 

obtained from Fitzgerald Industries International (Concord, MA). Recombinant Human 

Growth Hormone (HGH) was purchased from Biovision (San Francisco, CA). Urea was 

purchased from Acros Organics (Geel, Belgium). Both immobilized trypsin and 

chymotrypsin were obtained from Princeton Separations (Adelphia, NJ). Sodium 

phosphate monobasic monohydrate was purchased from EM Science (Darmstadt, 

Germany). Sodium phosphate dibasic anhydrous, hydrogen peroxide, methanol, formic 

acid, acetonitrile, and water were purchased from Fisher Scientific (Fair Lawn, NJ). 

Centricon molecular weight cutoff (MWCO) filters were obtained from Millipore 

(Burlington, MA).  
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3.2.2 Sample Preparation 

β2m and IgG1 were prepared in 50 mM ammonium acetate (pH 7.4) and 50 mM 

sodium phosphate buffer (pH 7.4), respectively. Both proteins were then incubated at 

75 °C for 15 min (IgG) or 1 day (β2m) for thermal degradation conditions. Oxidative 

conditions were carried out by incubating the protein in the presence of 3% H2O2 (w/w) 

at room temperature for 1 day. HGH was prepared in 10 mM sodium phosphate buffer 

(pH 8.0), and incubated at 65 °C for 2, 12, and 24 hours. After the forced degradation 

conditions, the proteins were reacted with DEPC and then analyzed by MS. 

3.2.3 DEPC Labeling Reactions 

Stock solutions of DEPC were prepared in acetonitrile. The DEPC reactions of 

β2m were performed for 1 min at 37 °C and were initiated by adding DEPC in a molar 

excess of 2.5. The total reaction volume for the experiments was 100 µL, and the total 

amount of acetonitrile added was 1%. Based on our previous work, this low percentage 

of acetonitrile has no noticeable influence on protein structure.54–56,65 Experiments with 

β2m were performed in triplicate. The reactions were quenched after 1 min by adding 

10 mM imidazole. Labeling of IgG1 (5 µM) was performed at a protein to DEPC molar 

ratio of 1:4 in a 50 mM phosphate buffer at pH 7.4. The solution was reacted for 5 min 

at room temperature before quenching by the addition of imidazole at a 1:50 

(DEPC:imidazole) ratio. Five replicate reactions and analyses were conducted on the 

IgG1 samples. DEPC labeling of HGH was performed at a 1:5 (protein:DEPC) ratio for 1 
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min at room temperature. The amount of acetonitrile added was 1%. The reaction was 

quenched by the addition of imidazole at an 80 molar excess to DEPC. Three replicate 

reactions and analyses were conducted on the HGH samples. 

3.2.4 Proteolytic Digestion 

Since β2m and HGH have a single disulfide bond, TCEP (protein:TCEP=1:40 molar 

ratio) was added to reduce the disulfide bond and iodoacetamide (100 µM) was added 

simultaneously at room temperature for 30 min in the dark to alkylate the reduced Cys 

residues. The resulting samples were incubated with 10% (vol/vol) acetonitrile at 50 °C 

for 45 min prior to digestion with immobilized chymotrypsin (enzyme/substrate ratio of 

1:10) for B2m and immobilized trypsin (1:10) for HGH at 37 °C. After 2 hours, the 

reaction mixture was centrifuged for 2 min at 9000 relative centrifugal force (RCF) to 

separate the enzyme from the protein. After that, the samples were either immediately 

analyzed by LC/MS or flash frozen in liquid nitrogen and stored at -80°C until LC/MS 

analysis. 

To achieve complete digestion of IgG1, an initial digestion with activated papain 

was necessary. To activate papain 0.5 µM of the enzyme was incubated in 1 mM EDTA 

and 10 mM L-cysteine at 37 °C for 30 min. Once complete the cysteine concentration 

was reduced to less than 2 µM via four spins with a 3000 MWCO filter. The papain 

digestion was then performed for 2.5 hours using a 1:100 (papain:IgG1) ratio. IgG1 was 

then denatured and its disulfide bonds were reduced in a 50 mM phosphate buffered 

solution at pH 7.4 with 1 M urea and 20 mM DTT at 60 °C for 20 min. The reduced 
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disulfides were then alkylated with 40 mM iodoacetamide for 2 min. Immobilized 

trypsin was then added to achieve a 1:3 (enzyme:substrate) ratio, and the digestion 

reaction was allowed to proceed overnight at room temperature. After digestion, the 

samples were spun at 9200 RCF for 5 min, and the supernatant was collected, flash-

frozen in liquid nitrogen, and stored at -80 °C until analysis via LC/MS. 

3.2.5 HPLC Separation 

β2m HPLC separations were conducted using an HP1100 HPLC system (Agilent, 

Wilmington, DE) with a Discovery C18 column (15 cm × 2.1 mm, 5 μm particle size; 

Supelco, St. Louis, MO, USA). Peptide fragments from the proteolytic digests were 

eluted using a linear gradient of methanol containing 0.1% acetic acid that increased 

from 10% to 100% methanol over 30 min at a flow rate of 0.25 mL/min. 

HPLC separations of IgG were performed using a Thermo Scientific Acclaim 

PepMap RSLC C18 (15 cm x 50 µm, 2 µm particle size) on an Easy-nLC 1000 system 

(Thermo Scientific, Tewksbury, MA). To achieve sufficient separation of the proteolytic 

peptides, a shallow gradient was used where %B (0.1% formic acid in acetonitrile) was 

increased from 0 to 40% over 90 min. The column was then flushed by jumping to 95 % 

B over 15 min. It was then held at 95% B for the remainder of the separation (i.e. 

another 20 min). A flow rate of 0.225 µL/min was used. 

HPLC analyses of HGH were performed using an Accela LC system (Thermo 

Scientific, Tewksbury, MA) with a ZORBAX 300SB-C18 MicroBore RR column (1.0 X 150 

mm, 3.5 μm particle size, Agilent, Wilmington, DE). Peptides were eluted over a 50-
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minute gradient where %B was increased from 2% to 45% over the first 35 minutes, 

then elevated to 80% for an additional 5 minutes. The column was then re-equilibrated 

with 0% B for 10 minutes. Blank runs were run in between each sample, and were each 

run at a flow rate of 0.05 mL/min.  

3.2.6 Mass Spectrometry 

On-line high performance liquid chromatography (HPLC) MS analyses were 

performed on all protein digests. The HPLC details can be found in the SI. Mass analysis 

of β2m proteolytic fragments was carried out on a Bruker AmaZon (Billerica, MA, USA) 

quadrupole ion trap mass spectrometer equipped with an electrospray ionization 

source. Typically, the electrospray needle voltage was kept at ~4 kV, and the capillary 

temperature was set to 250 °C. Either collision-induced dissociation (CID) or electron 

transfer dissociation (ETD) was used to obtain tandem mass spectra. 

For IgG, MS analyses were performed using a Thermo Scientific Orbitrap Fusion 

(Tewksbury, MA) mass spectrometer. The electrospray ionization source was typically 

operated at a needle voltage of 2200 volts, and the ion transfer tube temp was set to 

300 °C. Tandem mass spectra were collected using CID with a normalized collision 

energy of 35%. Due to the large number of measured peaks, an exclusion limit of 60 sec 

was activated after five spectra were collected for any given peak. The resolution of the 

Orbitrap was set to 60000. 

MS analysis for HGH was performed using a Thermo Scientific LTQ-XL Orbitrap 

(Tewksbury, MA) mass spectrometer equipped with an electrospray ionization source. 
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The ESI needle voltage was kept at 5 kV. Tandem mass spectra were generated using an 

HCD collision energy of 35. 

3.2.7 Peptide Identification 

Raw mass spectral data files were converted to .mgf format using msconvert 

software.177 The .mgf files were analyzed with SearchGUI.178 The search engines 

X!tandem,179,180 MS Amanda,181 MS-GF+,182 OMSSA,183 and Comet184 were all used. 

Spectra were searched against a database constructed from the cRAP database 

(http://www.thegpm.org/crap/index.html) with the sequence of the proteins of interest 

added. Spectra were searched against the custom database and against the reverse, 

decoy database. Variable modification by DEPC of the residues H, Y, K, T, S and the 

protein N-terminus was added as a user modification (mass addition of 72.0211). 

Variable oxidation of M was also used in searches. Carboxyamidomethylation of 

cysteine was used as a fixed modification. Unspecific enzyme cleavage was selected, and 

a precursor mass tolerance of 10 ppm was used. 

Search data were visualized using Peptideshaker185 with protein, peptide and 

PSM FDRs set at 1%. PTMs were scored using the PhosphoRS algorithm. Identification 

features were exported in .csv format, and these features were used to construct a 

custom database for peak identification in MZmine. 

http://www.thegpm.org/crap/index.html
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3.2.8 Peptide Peak Quantification 

Raw data files were imported into MZmine,186 and mass detection was done in 

centroid mode at the MS1 level. Chromatograms were constructed, deconvoluted and 

peak identification was performed with a custom database constructed from the 

Peptideshaker export. When multiple files were analyzed, deconvoluted spectra were 

aligned using the RANSAC algorithm. The quantified, identified and aligned data were 

exported to a .csv file using the export function.  

3.2.9 Circular Dichroism  

All IgG solutions were diluted to 0.75 µM in 50 mM phosphate buffer at pH 7.4 

prior to analysis. For HGH conditions all solutions were diluted to 5 µM in 10 mM 

phosphate buffer at pH 8.0. Circular dichroism was measured using a J-715 

spectropolarimeter (Jasco, Easton, MD). The scan ranged from 250 to 195 nm with a 

scan resolution of 0.5 nm, a scan rate of 100 nm/min, and a response time of 1 sec. Raw 

data were converted into mean residue ellipticity using the CD Analysis & Plotting Tool 

(CAPITO).187 

3.2.10 Fluorescence 

The concentration of IgG was diluted to 0.75 µM in 50 mM phosphate buffer at 

pH 7.4 prior to analysis. For HGH, the protein was diluted to 5 µM in 10 mM phosphate 

buffer at pH 8.0. A Photon Technology International Quantamaster-4SE (PTI, Edison, NJ) 
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was used to obtain fluorescence spectra for IgG. Tryptophan fluorescence was collected 

using an excitation wavelength of 295 nm and slit widths of 1 nm. Emission scans ranged 

from 310-440 nm. A Synergy H1 multi-mode plate reader (BioTek, Winooski, VT) was 

used to measure the fluorescence of HGH. Samples were excited at 295 nm and 

emissions were monitored from 300-440 nm. 

3.2.11 Dynamic Light Scattering  

A Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, U.K.) was used to 

measure the hydrodynamic radii of native and heat denatured IgG. A 1 mL solution of 1 

µM IgG was used for these experiments. Five runs were conducted for each sample, and 

volume particle size distribution is reported. For HGH the measurements were carried 

out using a Zetasizer Nano-S (Malvern Instruments, Worcestershire, U.K.). HGH was 

measured at 5 µM after treatment by the conditions indicated. Measurement duration 

was according to preset levels, and intensity/volume distributions of the samples from 

at least four runs were recorded in each dataset. 

3.2.12 Size Exclusion Chromatography 

For SEC experiments, the protein was separated using a SuperSW2000 30 cm × 

4.6 mm column (GE Healthcare Biosciences, Piscataway, NJ) installed on an Agilent 

HP1100 series HPLC system (Wilmington, DE). Before injection of the sample, the SEC 

column was first equilibrated with a 20 mM ammonium acetate mobile phase (pH = 7.4) 
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at a 0.035 mL/min flow rate for 1 h. 20 µL of the protein sample was injected into the 

sample loop. A variable wavelength detector set at 214 nm was used for detection. 

 

3.3 Results and Discussion 

3.3.1 β-2 microglobulin (β2m) 

β2m shares the same β-sandwich fold as each of the domains in IgG and thus 

was chosen as an initial model system. The protein under native and both heat- and 

oxidatively-degraded conditions was probed using DEPC. Labeling was done at a 2.5:1 

molar ratio (DEPC:protein) as previous work from our group had demonstrated that a 

labeling ratio of 4:1 or less provided good labeling yield without significantly perturbing 

a protein’s structure.65 

The modification results for the β2m residues under all three conditions reveal 

that β2m undergoes noticeable structural changes upon exposure to elevated 

temperature and H2O2 (Table 3-1). The residues that are labeled under native conditions 

are displayed as spheres in Figure 3-1A and B. All 16 of these residues are found on the 

exterior of the protein and are exposed to solvent, which is consistent with previous 

DEPC labeling results for this protein under native conditions.  
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Table 3-1. Modification percentages for individual residues of β2m before and after heating at 75 °C for 24 
hours or oxidation with 3% H2O2 for 24 hours. 

Β2m 
Native  

(control) 

Heated for 1 
day 

Significant* 3% H2O2 Significant* 

N-term 49 ± 1 44 ± 2 yes 7.6 ± 0.3 yes 

Lys6 2.5 ± 0.1 3 ± 0.5 no 0 ± 0 yes 

Ser11 20 ± 3 11.8 ± 0.3 yes 6 ± 2 yes 

His13 32 ± 2 17 ± 1 yes 4 ± 1 yes 

Lys19 2.7 ± 0.4 2 ± 2 no 0 ± 0 yes 

Ser20 1.1 ± 0.3 4.8 ± 0.7 yes 1.7 ± 0.3 no 

Ser28 0.25 ± 0.05 0 ± 0 yes 0.3 ± 0.09 yes 

His31 1.9 ± 0.2 0.72 ± 0.08 yes 0 ± 0.1 yes 

Ser33 0.68 ± 0.09 0 ± 0 yes 0.18 ± 0.01 yes 

Lys41 0.6 ± 0.1 1 ± 0.1 yes 0 ± 0 yes 

Lys48 0 ± 0 1.2 ± 0.2 yes 0 ± 0 no 

His51 2.2 ± 0.3 0 ± 0 yes 0.27 ± 0.07 yes 

Ser55 1.4 ± 0.2 0 ± 0 yes 0 ± 0 yes 

Ser57/ 
Lys58 

2.5 ± 0.4 0 ± 0 yes 0 ± 0 yes 

Tyr67/ 
Thr68 

2.2 ± 0.3 2 ± 1 no 6 ± 2 yes 

Lys91 2.1 ± 0.4 2 ± 0.2 no 0.1 ± 0.2 yes 

Lys94 3.1 ± 0.6 3 ± 0.4 no 0.2 ± 0.3 yes 
*A difference was considered significant if the p-value, calculated by performing an unpaired T-test, was less than 0.05 

(corresponding to a 95% confidence level, n=3)).  

After being exposed to thermal stress for 24 hours, the extent and pattern of 

labeling significantly changes. The residues highlighted in blue in Figure 3-1A undergo 

statistically significant decreases (p-value < 0.05) in labeling extent, while the residues in 

red undergo an increase in labeling extent. Because many residues undergo a decrease 

in labeling extent and these residues are clustered on one face of the protein, these 

results suggest that the protein aggregates upon overnight heating. Support for this 

conclusion is found from SEC measurements (Figure 3-2), which reveal protein 

aggregates are formed. The residues that decrease in labeling extent (i.e. Ile1, Ser28, 

His31, Ser33, Ser55, and Ser57) are likely at the interface(s) of these oligomers. 

Moreover, the same region of the protein is buried in the MHC complex that β2m forms 
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physiologically.28 This region’s exposure is likely thermodynamically unfavorable in the 

monomeric protein, potentially explaining its propensity for aggregation at this site. 

Interestingly, two residues (i.e. Lys41 and Lys48) on the loop that connects two of the 

aggregating β strands show an increase in labeling after heating, suggesting that this 

region of the protein unfolds upon heating to facilitate aggregation. 

 

Figure 3-1 Covalent labeling results for β2m. Spheres represent residues that were labeled with DEPC. The 

color indicates whether the residue has undergone any significant change in labeling after being exposed to a 

perturbing condition (blue: decrease, red: increase, gray: no change). A) Heating at 75°C for 24 hours. B) 

Oxidation with 3% H2O2 for 24 hours. Changes in covalent labeling are mapped onto the NMR structure of 

β2m (PDB accession code: 2XKS). 
 

Covalent labeling of the oxidized protein also indicates that the protein 

aggregates after exposure to H2O2. Nearly all residues undergo a decrease in labeling 

extent (Figure 3-1B), signifying extensive aggregation. Analysis via SEC corroborates this 

conclusion (Figure 3-2). While many of the same residues decrease in labeling as in the 

heated sample, the additional residues indicate the aggregates are also mediated by 

other interfaces. Overall, the covalent labeling experiments with β2m successfully 
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demonstrate the ability of this technique to identify structural changes, especially 

interfacial sites that are formed upon heat- and oxidatively-induced aggregation. 

 

Figure 3-2 Size exclusion chromatography of β2m before (blue) and after heating (red) and oxidation (black). 
Both chromatograms demonstrate the presence of aggregated species. These aggregated complexes are evident 

from the peaks eluting earlier than 10.5 min.  

3.3.2 Immunoglobulin G (IgG) 

The promising results with β2m prompted us to apply the method to IgG under 

native and thermally degraded conditions. To minimize structural perturbations to IgG 

during the labeling reaction, we limited the DEPC:protein ratio to 4:1. We also 

monitored the protein’s structure using CD and fluorescence spectroscopy. Both 

techniques demonstrate that the protein undergoes no significant structural 
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perturbations after reacting with DEPC at these concentrations (Figure 3-3), confirming 

the structural integrity of the protein. We were pleased to find that DEPC labeling of IgG 

under these conditions results in the labeling of almost 30% of the amino acids in the 

protein (Table S1 and S2 in the SI). 

 

Figure 3-3 Circular dichroism (A) and tryptophan fluorescence (B) of IgG1 under normal (red), heated (Black), 

and DEPC-labeled (green) conditions. The essentially identical overlap between the spectra of the normal and 

DEPC-labeled samples demonstrates that covalent labeling has little effect on the structure of IgG1. 
 

Upon comparing the labeling results of the thermally degraded sample with 

those generated under native conditions, we find that numerous sites undergo changes 

in labeling. Figure 3-4 summarizes these results by showing the percent change in DEPC 

labeling that each residue undergoes upon heat treatment relative to the unheated 

sample. Figure 3-4A illustrates the labeling for IgG’s light chain, while Figure 3-4B shows 

the results for the heavy chain.  
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Figure 3-4 Bars represent changes in modification of IgG1 after heating from experiments involving five 

replicates. Negative values represent residues that are more protected after heating. A) Light chain. B) Top: VH 

and CH
1 domain of heavy chain. Bottom: CH

2 and CH
3 domain of heavy chain 

 

Because about 200 residues are labeled in the protein, these results were further 

simplified by considering only the statistically significant changes in each domain. The 

significant relative changes were broken into bins based on the magnitude of the 

change (Table 3-2). Each domain has a relatively equal number of residues undergoing 

increases or decreases in labeling; however, almost all of the residues in the light chain’s 

variable domain (VL) undergo significant decreases in labeling. This clustering of residues 
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suggests that the protein might be aggregating upon heating, and this domain mediates 

this aggregation. Indeed, DLS demonstrates that IgG undergoes significant aggregation 

after 15 min of heating at 75 ºC (Figure 3-5). 

Table 3-2. Number of residues within each domain of IgG1 whose relative labeling change after heating is 

statistically significant and whose value falls within the labeled bin. 

 
Domaina < -80% < -40% < -10% 

Total 
Decrease 

> 
200% 

> 
100% 

> 10% 
Total 

Increase 

VL 12 8 1 21 4 0 0 4 

CL 10 3 3 16 12 3 2 17 

VH 13 2 1 16 13 1 1 15 
CH

1 9 2 1 12 13 4 2 19 

CH
2 9 5 0 14 4 3 3 10 

CH
3 5 6 0 11 4 1 3 8 

aCL and VL represent the constant and variable domains of the light chain. VH and CH1-3 represent the variable and the 

three constant domains of the heavy chain, respectively. 

 

 

Figure 3-5 Dynamic light scattering data for IgG1 before (top) and after heating at 75 ºC for 15 minutes 

(bottom). These data demonstrate that IgG1 aggregates upon heating. 
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Greater structural insight is obtained by mapping the data in Table 3-2 onto an 

IgG homology model. A homology model was generated by the Swiss-Model 

workspace188,189 using an IgG crystal structure (PDB: 1IGY) as a template. As expected, 

the VL domain presents a large cluster of residues that undergo a decrease in labeling 

(Figure 3-6). Somewhat surprisingly, mapping the labeling data also reveals another 

potential interface on the VH domain, which also shows a clustering of residues 

undergoing a decrease in labeling. A color coded depiction of the different IgG domains 

in a space-filling model can be found in Figure 1-3. 
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Figure 3-6 Cartoon representations of IgG1 homology model. Side view (top) and top view (bottom). Spheres 

represent residues that are likely at the aggregate interface. Colors represent the magnitude of the reduction 

(Purple: >80%, Blue: 40-80%, and Teal: 10-40% reduction in labeling). The likely interfaces on the VL and VH 

domains are circled (VL: blue and VH: red). 

 

The possible role that the VL and VH domains play in mediating IgG1 aggregates is 

further supported by the aggregation predictor tool Zyggregator (Figure 3-7).190–193 

When Zyggregator prediction data are overlaid onto IgG1’s structure (Figure 3-7), there 
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are four surface accessible regions in the protein that have a cluster of residues with a 

strong propensity to aggregate. Two of the four predicted sites are the VL and VH 

domains, which are implicated to be involved in aggregation by covalent labeling (Figure 

3-7). The other two predicted regions clearly have smaller surface areas, decreasing 

their likelihood of being true interfaces in the aggregates. It is interesting to note that 

previous studies are divided on which domains mediate aggregation processes in IgG’s. 

Some work suggests that typically the CH
2 domain is the primary site of 

aggregation,85,194–196 while others suggest the variable regions in the Fab domain as the 

sites of aggregation.89,114,197,198 It is quite possible that the aggregation site varies from 

antibody to antibody.198 We feel our labeling results provide strong evidence for the role 

of the variable regions in the light and heavy chains in mediating aggregation in IgG1. 
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Figure 3-7 Propensities for aggregation from Zyggregator as indicated by Z-scores. Z-Score > 2 (red) Z-score > 

1 (orange). A higher score denotes an increased likelihood of aggregation. Circled sites highlight the regions 

where there is a clustering of residues with a high calculated aggregation propensity. Labeled sites 1 and 2 are 

the covalent labeling indicated aggregation sites on the VL domain and the VH domain, respectively.  
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3.3.3 Human Growth Hormone 

The results from IgG and β2m demonstrate that covalent labeling can identify 

proteins which have undergone severe structural perturbations. In order to test the 

technique’s ability to identify minor structural changes, we studied HGH. Labeling of this 

protein was performed before and after heating at 65 ºC, a temperature that is 12 ºC 

below its melting temperature.199 CD and intrinsic fluorescence spectra (Figure 3-8) both 

show only minor structural perturbations after heating to this temperature.  

 

Figure 3-8 Circular dichroism (A) and tryptophan fluorescence (B) of HGH under normal (red), heated to 65 ºC 

(black), and heated to 75 ºC (green) conditions. Both fluorescence and circular dichroism show only minor 

changes in structure after heating. The fluorescence spectrum at 75 ºC is included as a positive control to 

demonstrate that fluorescence can reveal structural perturbations for HGH. 
 

Upon DEPC labeling, 41 modification sites are identified (Table S5 in the SI) 

corresponding to over 20% of the protein. This amount of labeling ensures sufficient 

coverage of the protein’s structure. The labeling percentages of all the labeled sites for 

both native and heat-denatured HGH are summarized in Figure 3-9. When comparing 

the heat-denatured protein to the natively-structured protein, only six residues are 

found to undergo a significant change (p-value < 0.05) in labeling extent. They are His19, 
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Thr28, Thr61, Thr136, Lys159, and Tyr165. Of these six, two residues undergo increased 

labeling upon heating (Thr136 and Lys159). 

 

 

Figure 3-9 Covalent labeling results for HGH before and after heating at 65°C for 24 hours. Asterisks (*) 

indicate residues that have undergone a statistically significant change. A difference was considered significant if 

the p-value, calculated by performing an unpaired T-test, was less than 0.05 (corresponding to a 95% confidence 

level at n=3).  

 

To understand the structural implications of these changes, we mapped the six 

residues on to a crystal structure of HGH (Figure 3-10, PDB: 1HGU). The two residues 

(Thr136 and Lys159) that undergo increased labeling after heating are on opposite ends 

of a long disordered region, signifying further melting of this region. The four residues 

(His19, Thr28, Thr61, and Tyr165) that undergo decreased labeling are clustered on the 

opposite face of the protein.  
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Figure 3-10 Summary of the covalent labeling results for HGH. Spheres represent residues that underwent 

significant changes in DEPC labeling after heating at 65 ºC for 24 h (blue: decreased, red: increased). Changes 

in covalent labeling are mapped onto a crystal structure of HGH (PDB accession code: 1HGU). 

 

While such clustering might suggest aggregation, DLS measurements (Figure 

3-11) indicate that the protein does not aggregate under these conditions. Instead, the 

DLS measurements reveal that the protein undergoes a slight compaction upon heating. 

Therefore, it is possible that the four residues undergo a decrease in labeling extent 

because they become less solvent exposed during this compaction process.  
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Figure 3-11 Dynamic light scattering data for HGH before (top) and after heating at 65 ºC for 24 h (bottom). 

These data demonstrate that HGH undergoes some degree of compaction upon heating. 

 

Under denaturing conditions it has been demonstrated that HGH maintains a 

majority of its helical structure. Its loops, however, are known to become significantly 

more dynamic than the rest of the protein’s structure.96 Repositioning of these loops 

might cause Thr136 and Lys159 to become more solvent exposed, while at the same 

time causing His19, Thr28, Thr61, and Tyr165 to become less solvent exposed. Overall, 

these data for HGH suggest that DEPC labeling with MS detection is sensitive enough to 

detect minor structural perturbations. 
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3.4 Conclusions 

We have used DEPC-based covalent labeling as a means to monitor the structure 

of therapeutic proteins. Through the study of three proteins, β2m, IgG, and HGH, we 

have shown that DEPC labeling is capable of identifying specific structural perturbations 

that occur upon exposing these proteins to common forced-degradation conditions. 

Because the label can probe up to 30% of the residues in a protein, this method 

provides a high degree of structural resolution relative to other covalent labeling 

reagents. DEPC labeling is particularly valuable for identifying interfacial residues in 

protein aggregates. For example, this technique was able to identify the variable 

domains of the light and heavy chain as the regions that mediate aggregation of IgG1 

upon heating. DEPC labeling is also able to distinguish relatively minor perturbations in 

protein structure as illustrated by the experiments with HGH. Given the high effective 

resolution provided by DEPC labeling and the ease with which it can be performed 

relative to other MS-based techniques, we predict that this approach will be a powerful 

tool for studying therapeutic proteins. 
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CHAPTER 4 

LABEL SCRAMBLING DURING CID OF COVALENTLY LABELED PEPTIDE IONS 

 
 

This chapter is adapted from a paper published as: Borotto, N. B., Degraan-Weber, N., 
Zhou, Y., and Vachet, R. W. (2014) Label Scrambling During CID of Covalently Labeled 
Peptide Ions. J. Am. Soc. Mass Spectrom. 25, 1739-46. 

4.1 Introduction 

Covalent labeling along with mass spectrometry is being increasingly used to 

study higher order protein structure and protein-protein complexes.148–151,164,200–203 

Covalent labels that are typically used either label specific amino acid residues (e.g. 

succinimides for lysines) or a range of amino acid residues (e.g. hydroxyl radicals). We 

have recently shown that diethylpyrocarbonate (DEPC) is a promising reagent molecule 

because of its ability to modify a wide range of amino acids.55,56,65,164,165 This potential to 

modify numerous amino acids enables DEPC to probe approximately 30% of the average 

protein.165 Usually, proteins that are labeled with DEPC are then subjected to proteolysis 

so that the modification sites can be pinpointed to individual residues, thereby 

improving the resolution of this method.  

While DEPC has been successfully used to study the structures of proteins and 

protein complexes, this labeling reagent introduces an electrophilic site into the side 

chains of the residues it modifies, opening up the possibility for some unwanted 

chemistry. For example, we recently demonstrated that, in solution, cysteine residues 

have the ability to capture carbethoxy groups from other residues that were modified 

by DEPC. This unwanted label transfer can be eliminated by deactivating cysteine’s 
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strong nucleophilic character via alkylation just after DEPC labeling of the protein is 

finished.176 The presence of a new electrophilic site might also affect the gas-phase 

chemistry of DEPC-labeled peptides especially when subjected to slow collisional 

activation in a quadrupole ion trap mass spectrometer. Indeed, Reid and co-workers and 

others have reported that phosphorylated peptide ions can have their phosphate group 

transferred from one amino acid to another upon CID.204–206 The result is the incorrect 

assignment of the phosphorylation site on the peptide. In addition to the scrambling of 

phosphate groups in peptide ions, methyl,207 acetyl, and formyl groups208 have also been 

documented to undergo transfer from one amino acid to another during CID in the gas 

phase.  

With the known chemistry of DEPC and these previous studies in mind, we set 

out to investigate whether DEPC label scrambling can occur during CID of DEPC labeled 

peptide ions. Through the study of numerous peptides, we find that label transfer can 

occur in DEPC-labeled peptides, and it occurs with similar characteristics to phosphate 

group transfer in phosphorylated peptides. 

4.2 Experimental Methods 

4.2.1 Materials 

Diethylpyrocarbonate (DEPC), imidazole, iodoacetamide, and tris(2-

carboxyethyl)phosphine (TCEP) were obtained from Sigma Aldrich (St. Louis, MO). 

Angiotensin 1-10 (DRVYIHPFHL) , angiotensin 1-13 (DRVYIHPFHLVIH), apelin 13 
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(QRPRLSHKGPMPA), β amyloid (YEVHHQKLVFF), semastatin 

(SPWTKCSATCGGGHYMRTR), neuromedin-C (GNHWAVGHLM ) and adrenocorticotropic 

hormone (ACTH) 1-13 (SYSMEHFRWGKPV) were obtained from the American Peptide 

Company (Sunnyvale, CA). Human β-2-microglobulin (β2m) was obtained from Lee 

Biosolutions (St. Louis, MO). Immobilized chymotrypsin and triethylamine acetate (pH 

8.0) were obtained from Princeton Separations (Adelphia, NJ). Ammonium acetate, 

methanol, formic acid, acetonitrile, and water were purchased from Fisher Scientific 

(Fair lawn, NJ). Centricon molecular weight cutoff (MWCO) filters were obtained from 

Millipore (Burlington, MA).  

 

4.2.2 DEPC Labeling Reactions 

 Peptide solutions with a concentration of 100 µM in 10 mM ammonium acetate 

were reacted with DEPC at either a 1:1 or 1:4 (peptide:DEPC) ratio for 2-5 min at 37°C. A 

6 mM stock solution of DEPC in acetonitrile was added to obtain the final DEPC 

concentration. The final DEPC concentration resulted in a total acetonitrile 

concentration that was less than 2% (v/v) of the reaction mixture. The reaction time and 

ratio were chosen to ensure that the unmodified and the singly modified peaks were the 

most prominent products. The protein β2m was reacted with DEPC at a 1:4 

(protein:DEPC) ratio for 1 min at 37°C. In all cases, the DEPC reactions were quenched 

by the addition of 10 mM imidazole.65 
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4.2.3 Proteolytic Digestion 

Prior to proteolytic digestion of β2m, the quenching agent, imidazole, was 

removed using a 10,000 MWCO filter, resulting in a 40 µL solution of 250 µM β2m. β2m 

was then incubated in a buffer solution (100 mM triethylamine at pH 8.0) with 10% (v/v) 

acetonitrile at 50 °C for 45 min. Next β2m was reacted with TCEP (1:40 ratio) and 

iodoacetamide (1:80 ratio) in the dark for 30 min to reduce its disulfide bond and 

alkylate the resulting free thiols. Immobilized chymotrypsin was then added to achieve a 

1:10 ratio of enzyme to substrate. The digestion reaction was allowed to proceed at 37 

°C for 2 hours. 

4.2.4 HPLC Separation 

HPLC separations were performed using a Supelco Discovery C18 column (15 cm 

x 2.1 mm, 5 µm particle size, St. Louis, MO) on an HP1100 HPLC system (Agilent, 

Wilmington, DE). To achieve sufficient separation of DEPC-labeled peptide isomers, an 

isocratic elution was used (40% acetonitrile in water with 0.1% formic acid) for 20 min. 

This was followed by a 0.5%/min increase of acetonitrile for an additional 20 min. A flow 

rate of 0.35 mL/min was used, and the effluent from the column was split by four prior 

to introduction into the mass spectrometer. The proteolytic digests were eluted using a 

linear gradient of methanol ranging from 10 – 100% methanol over 30 min. This mobile 

phase contained 0.1% acetic acid and had a flow rate of 0.25 mL/min. 
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4.2.5 Mass Spectrometry 

Mass analysis was performed using either a Bruker Esquire-LC or a Bruker 

AmaZon (Billerica,MA) quadrupole ion trap mass spectrometer. These instruments are 

equipped with electrospray ionization sources, and the needle voltage was typically set 

to 3000 V. The capillary temperature was set to 300°C. Both CID and ETD were used to 

obtain tandem mass spectra. The ion isolation width for both methods was set to 1.0 

Da. CID voltages were typically between 0.65 and 1.1 V and were chosen to achieve 

optimal dissociation efficiency. For ETD experiments, the low m/z cutoff was typically 

set to 135, and the reaction time was typically set to 150 ms. 

4.3 Results and Discussion 

4.3.1 CID for the Label Site Identification  

CID is commonly used to determine label locations in covalently labeled peptides 

and is typically successful. As an example, CID of the peptide apelin 13 

(QRPRLSHKGPMPA) can readily enable the identification of the DEPC-labeled residues 

upon a 2 minute reaction with this reagent (Figure 4-1). LC/MS analysis of the labeled 

peptide suggests that there are three labeled sites as indicated by the chromatogram in 

Figure 4-1a. By examining the sequence ions upon CID of each peak in the 

chromatogram, the specific amino acid residues labeled by DEPC can be assigned. For 

DEPC-labeled apelin 13, the CID spectrum of the second chromatographic peak shows a 
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series of b ions that are all labeled, and several y ions that are not labeled, indicating 

that the N-terminus is the labeled site (Figure 4-1b). The CID spectrum of the third 

chromatographic peak is consistent with a label on Lys8, as suggested by labeled y6, y7, 

y9, and y11 product ions, unlabeled y4 and y5 ions, labeled b8 and b11 ions, and unlabeled 

b2 and b7 ions (Figure 4-1c). The final chromatographic peak corresponds to a labeled 

His7 product. This assignment is evident from the labeled y7, y9, and y11 product ions, 

unlabeled y4, y5, and y6 ions, labeled b7, b8 and b11 ions, and an unlabeled b2 ion (Figure 

4-1d). 
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Figure 4-1 (a) Total ion chromatogram after HPLC separation of DEPC-labeled apelin 13. (b) CID spectrum of 

the (M+2H)2+ ion of the second chromatographic peak from the DEPC-labeled sample of apelin 13, indicating 

that the N-terminus is modified. (c) CID spectrum of the (M+2H)2+ ion of the third chromatographic peak from 

the DEPC-labeled sample of apelin 13, indicating that Lys8 is modified. *Interfering ions make assignment of 

the labeled and unlabeled versions of the y6 ion somewhat ambiguous. (d) CID spectrum of the (M+2H)2+ ion of 

the fourth chromatographic peak from the DEPC-labeled sample of apelin 13, indicating that His7 is modified. 
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4.3.2 Ambiguous Label Assignment by CID 

While CID often provides correct labeling site information, as exemplified by the 

data for apelin 13, we have also found evidence that covalent labels can be scrambled 

from one site to another during the CID process. The CID data of DEPC labeled-

angiotensin I illustrates this phenomenon. Upon labeling this peptide with DEPC for 5 

min, on average a single modification site per peptide is measured, resulting in four 

isomers as indicated by the chromatogram in Figure 4-2a. Each peak in the 

chromatogram corresponds to a chemically distinct structure, and indeed the CID data 

for the first (Figure 4-2b) and second (Figure S1 in the Supplemental Information) 

labeled peaks are consistent with this assertion, as Tyr4 and the N-terminus, 

respectively, are identified as the modified sites.  
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Figure 4-2 (a) Total ion chromatogram after HPLC separation of DEPC-labeled angiotensin. (b) Example CID 

spectrum of the (M+2H)2+ ion of the second chromatographic peak from the DEPC-labeled sample of 

angiotensin I, indicating that Tyr4 is modified. Unlabeled y2 to y6 ions, labeled y7 to y9 ions, labeled b5 to b9 ions, 

and an unlabeled b2 ion indicate that Tyr4 is labeled. (c) CID spectrum of the (M+2H)2+ ion of the final 

chromatographic peak from the DEPC-labeled sample of angiotensin I. The presence of both labeled and 

unlabeled b6, b8, y4, and y2 product ions causes the labeled site to be ambiguous. (d) ETD spectrum of the 

(M+3H)3+ ion of the final chromatographic peak from the DEPC-labeled sample of angiotensin I, indicating that 

His6 is labeled. 
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The identity of the labeled sites for the modified peptides associated with the 

final two chromatographic peaks, however, are not as clear. This fact is most evident 

from the presence of both labeled and unlabeled versions of the b6, b8, y4, and y2 

product ions in both spectra (Figure 4-2c and S2). One possible explanation for this is 

that these chromatographic peaks correspond to two unseparated isomers – one 

modified at His6 and the other at His9. This possibility is unlikely considering the great 

care taken to identify LC conditions to separate any isomers present. Moreover, the ETD 

spectra of these peaks (Figure 4-2d and S3) indicate that only His6 is modified with no 

evidence for the modification of His9. This conclusion comes from the series of c and z 

product ions in which ions that include His6 are labeled and all that do not are 

unlabeled. Incidentally, the ETD spectra of peaks 1 and 2 lead to the same conclusions 

about modification sites as the CID data (see Figures S4 and S5). Another possible 

explanation is that the DEPC label is lost as a neutral. This would, for example, explain 

the presence of both labeled and unlabeled b6 and b8 product ions in the CID spectrum; 

however, the absence of an unlabeled b9 ion and no evidence for label loss during the 

CID of other DEPC-labeled peptides (e.g. apelin 13 in Figure 4-1) suggests that label loss 

is not the cause. Moreover, label loss cannot explain the presence of labeled y2 and y4 

ions. These latter ions can only arise from the label being transferred to His9. 

Upon considering the data for DEPC-labeled angiotensin I, we propose that the 

CID data for the final two chromatographic peaks of modified angiotensin I arise via a 

collision-induced transfer of the DEPC label from one His residue to another. Such a gas-
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phase rearrangement of a side chain modification has been seen before204–208 during CID 

analyses, as indicated in the introduction. The migration of the DEPC label from His6 to 

His9 during collisional activation of angiotensin I can explain the existence of all 

observed ions and is consistent with differences in dissociation mechanisms between 

ETD and CID. Unlike label loss, transfer of DEPC from His6 to His9 explains, for example, 

why the b9 product ion is only observed as a labeled species. The fact that label 

migration does not take place during ETD makes sense due to the non-ergodic nature of 

its dissociation mechanism. We suspect that the scrambling of the label is driven by the 

fact that addition of DEPC to a histidine side chain results in an electrophilic site that is 

vulnerable to attack by other nucleophilic sites on the peptide. In the case of 

angiotensin, this nucleophilic site could be the other, unlabeled histidine residue. A 

possible mechanism is illustrated in Figure 4-3.  

 

Figure 4-3 Possible mechanism of rearrangement, where the DEPC label on one histidine side chain is 

transferred to another via a nucleophilic attack. 

 

Another peptide that appears to undergo label scrambling during CID is the 

peptide adrenocorticotropic hormone (ACTH). LC/MS analysis of DEPC labeled ACTH 
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indicates that two amino acids are labeled in this peptide (Figure 4-4a). In this case, the 

label sites associated with both chromatographic peaks from the labeled peptide are 

ambiguous when CID is used. The tandem mass spectrum of the first labeled peak 

suggests scrambling between the N-terminus, His6, and Lys11 (Figure S6) as indicated by 

the presence of labeled and unlabeled versions of the b2 - b10 series of product ions and 

the y6 - y11 series of product ions. The fact that the labeling site is clearly identified as 

the N-terminus when dissociated by ETD (Figure S7) suggests that unseparated isomers 

are not the source of this ambiguity. CID of the second labeled chromatographic peak 

suggests both His6 and Lys11 as the labeled sites based on the existence of labeled and 

unlabeled versions of the b6 - b10 series of product ions and y3 - y7 series of product ions 

(Figure 4-4b). In contrast, the ETD spectrum of this labeled peptide readily identifies 

His6 as the labeled site (Figure 4-4c).  
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Figure 4-4 (a) Total ion chromatogram after HPLC separation of DEPC-labeled ACTH. (b) CID spectrum of the 

(M+2H)2+ ion of the first labeled chromatographic peak from the DEPC-labeled sample of ACTH. The presence 

of both labeled and unlabeled b10, b9, b8, and y7 product ions suggests label scrambling. (c) ETD spectrum of 

the (M+3H)3+ ion of the second labeled chromatographic peak from the DEPC-labeled sample of ACTH, 

indicating that His6 is labeled. 

 

4.3.3 Effect of Charge State on Labeling Scrambling 

Previous work has shown that the gas-phase rearrangement of phosphate and 

methyl groups in peptide ions is dependent on the precursor ion’s charge state and the 
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subsequent proton mobility within the ion.204,207 Phosphorylated and methylated 

peptide ions with non-mobile and partially mobile protons were found to have a higher 

propensity to rearrange. Proton mobility in this context refers to the number of net 

protons on the peptide ion as compared to the number of basic residues in the peptide. 

Non-mobile protons are present when the number of net protons is lower than the 

number of basic residues in the peptide. To test whether proton mobility influences 

DEPC label scrambling, we compared the CID spectra of the [M+2H+DEPC]2+ and 

[M+3H+DEPC]3+ ions of the fifth chromatographic peak of labeled angiotensin (i.e. peaks 

in Figure 4-2a). Interestingly, the different charge states result in drastically different 

dissociation patterns with regard to label scrambling. There are no longer any labeled y2 

or y4 product ions observed upon dissociation of the +3 charge state (Figure 4-5a); these 

ions were key indicators of label scrambling for the +2 ion (see Figure 2c). In addition, 

the unlabeled b6 and b8 ions, which also implied label scrambling in the +2 ion, are 

substantially reduced in relative abundance.  

A similar influence of proton mobility on label scrambling is also observed for 

ACTH. As shown earlier in Figure 4-4b, the +2 charge state of third chromatographic 

peak exhibits scrambling upon activation with CID. When the +3 charge state of this 

same labeled peptide is dissociated using CID, no evidence for scrambling is observed 

(Figure 4-5b). The absence of unlabeled b6, labeled y3, and y7 product ions in this 

spectrum removes all ambiguity about the label assignment. The dramatic influence of 

charge state on the dissociation behavior of these DEPC-modified peptides further 

supports the notion that label scrambling is occurring. 
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Figure 4-5 (a) CID spectrum of the (M+3H)3+ ion of the final labeled chromatographic peak from the DEPC-

labeled sample of angiotensin I. The absence of labeled y2 and y4 product ions indicates label scrambling is not 

occurring. (b) CID spectrum of the (M+3H)3+ ion of the second labeled chromatographic peak from the DEPC-

labeled sample of ACTH. The absence of unlabeled b6, labeled y3, and y7 product ions in this spectrum indicates 

label scrambling is not occurring. 

4.3.4 Prevalence of Label Scrambling 

To test the pervasiveness of label scrambling, we examined several other labeled 

peptides, including ones from a proteolytic digest of the protein β-2-microglobulin that 

had been labeled with DEPC for 1 minute. Each collection of peptides was separated by 

LC and then subjected to both CID and ETD. In all, 34 different labeled sites were probed 

(Table 4-1). The criteria for concluding that label scrambling had occurred were: (i) 

unlabeled and labeled versions of product ions were observed during CID and (ii) CID 

and ETD identified different labeled sites in a given peptide. Of these 34 labeled 



 

88 

peptides, nine showed evidence for scrambling. Interestingly, all nine had a histidine 

residue as either the originally labeled site or the site to which the labeled was 

transferred, indicating the lability of labeled histidine residues. Another interesting 

observation from this limited data set is that an acidic residue is present in all the 

peptides that undergo scrambling. Because of the effect of proton mobility on the 

prevalence of this scrambling reaction (see Figure 4-5), it is possible that intramolecular 

interactions between charged groups may be necessary to facilitate this reaction. 

Further work is clearly needed, though, to more fully understand how amino acid 

sequence affects this scrambling reaction. 
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Table 4-1 DEPC-labeled sites on peptides as identified by ETD and CID and whether scrambling has occurred. 

Sequence ETD of 
(M+3H)3+ 

CID of 
(M+3H)3+ 

Scrambling in 
(M+3H)3+? 

CID of 
(M+2H)2+ 

Scrambling in 
(M+2H)2+? 

DRVYIHPFHL peak 1  Y4 Y4 No Y4 No 

DRVYIHPFHL peak 2  N-term N-term No N-Term No 

DRVYIHPFHL peak 3  H6 H6 No H6, H9 Yes 

DRVYIHPFHL peak 4  H6 H6 No H6, H9 Yes 

GNHWAVGHLM-NH2 peak 1  N-Term N-Term No N-Term No 

GNHWAVGHLM-NH2 peak 2  H8 H8 No H8 No 

GNHWAVGHLM-NH2 peak 3  H3 H3 No H3 No 

GNHWAVGHLM-NH2 peak 4  H8 H8 No H8 No 

GNHWAVGHLM-NH2 peak 5  H3 H3 No H3 No 

DRVYIHPFHLVIH peak 1 Y4  No Y4 No 

DRVYIHPFHLVIH peak 2 N-term  No N-term No 

DRVYIHPFHLVIH peak 3 H9  No H6, H9, H13 Yes 

DRVYIHPFHLVIH peak 4 H9  No H6, H9 Yes 

DRVYIHPFHLVIH peak 5 H13  No H9, H13 Yes 

DRVYIHPFHLVIH peak 6 H6  No H6, H9 Yes 

SYSMEHFRWGKPV peak 1 N-term N-term No N-term, H6, K11 Yes 

SYSMEHFRWGKPV peak 2 H6 H6 No H6, K11 Yes 

YEVHHQKLVFF peak 1 H4 H4, H5 Yes H4, H5 Yes 

YEVHHQKLVFF peak 2 N-term N-Term No N-term No 

YEVHHQKLVFF peak 3 H4 H4 No H4 No 

YEVHHQKLVFF peak 4 H5 H5 No H5 No 

YEVHHQKLVFF peak 5 K7 K7 No K7 No 

SPWTKCSATCGGGHYMRTR 
peak 1 

Y15  No Y15/H14* No 

SPWTKCSATCGGGHYMRTR 
peak 2 

H14  No H14 No 

SPWTKCSATCGGGHYMRTR 
peak 3 

Y15/H14*  No Y15/H14* No 

SPWTKCSATCGGGHYMRTR 
peak 4 

N-term  No N-Term No 

SPWTKCSATCGGGHYMRTR 
peak 5 

K5  No K5 No 

SRHPAENGKSNF S1/R2  No N-term No 

SRHPAENGKSNF H3  No H3 No 

IQRTPKIQVY K6  No Y3 No 

IQRTPKIQVY N-term  No N-term No 

KNGERIEKVEHSDL K1  No K1 No 

SQPKIVKW K4  No K4 No 

Glp-HWSHGWYPG-NH2 
peak1 

N-term N-term No N-term No 

Glp-HWSHGWYPG-NH2 
peak2 

His5 His5 No His5 No 

Glp-HWSHGWYPG-NH2 
peak3 

His2 His2 No His2 No 

Glp-HWSHGWYPG-NH2 
peak4 

His5 His5 No His5 No 

SRHPAENGKSNFLNCY C15  No C15 No 

* Tandem mass spectrometry is unable to identify which of the listed residues is labeled due to the absence of the 
appropriate product ions. 
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4.4 Conclusions 

Covalent labeling is increasingly used to study the surface structure of proteins 

and protein complexes, and DEPC is a labeling reagent that has shown great promise in 

these experiments because of its ability to label multiple residues simultaneously. 

Identifying the labeled sites is often done using CID after proteolytic digestion of the 

protein, but in this work, we show that scrambling of the DEPC label to another site on a 

peptide can occasionally occur during CID, resulting in ambiguous labeling site 

assignments. Like previous studies that reported the scrambling of functional groups 

(e.g. phosphate groups) on modified peptides, this scrambling occurs most readily under 

low proton mobility conditions. Also, scrambling does not appear to occur when ETD is 

used to dissociate the labeled peptides; this is consistent with the known mechanistic 

differences between CID and ETD. Based on the analysis of over 30 labeled peptides, we 

find evidence for scrambling about 25% of the time. In all the cases where scrambling is 

observed, histidine residues are involved. The increased tendency of histidine residues 

to undergo scrambling has important consequences as this residue is the most reactive 

amino acid with DEPC. A solution to this problem may be to produce larger peptides 

upon proteolysis so that the labeled peptides have higher charge states and are thus 

more amenable to ETD. Alternatively, supercharging agents could be used to produce 

higher peptide charge states to avoid the low proton mobility conditions that foster 

label scrambling during CID.  
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

 

5.1 Summary 

This dissertation has investigated the application of MS-based techniques as a 

means to study protein structure. These techniques involve the use of chemical 

modifications to label solvent exposed sites. These modified sites are then measured via 

mass spectrometry. The location and frequency of these modifications are indicative of 

solvent accessibility or, in some cases, the dynamics. These values and, more 

importantly, changes in these values give insight into the tertiary structure and changes 

in tertiary structure near each label. These MS-based techniques have proven to be a 

powerful tool. 

These methods were first applied to the amyloid forming protein β2m. This work 

illustrates that the binding of Cu(II) alone is capable of inducing the transformation of 

β2m into an amyloid competent state. Thus, explaining its unique ability to induce 

amyloid competent aggregation. In order to perform this, NMR and crystallographic 

structures of amyloidogenic conformers induced by other conditions were investigated 

in order to find common structural attributes. Two probable structural changes were 

found: (1) the burial of Trp60 and (2) the fraying of the B-, D-, and E- strands. All three 

complexes were probed looking for these changes. As expected, Cu(II) binding induces 

both of these changes. Ni(II) and Zn(II) however, did not. Suggesting that indeed, Cu(II) is 
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the only metal that induces the conformational change into the amyloidogenic 

conformer.  

This research also potentially explained the amorphous aggregation of β2m upon 

the binding of Zn(II). This binding was shown to increase the dynamics of β2m in 

multiple strands of the protein. This increase in dynamics may be indicative of structural 

instability, which could then lead to aggregation. This is supported by the fact that Zn(II) 

binding has been shown to destabilize the structure of β2m by as much as 14 kJ/mol.44 

Two other conclusions that can be drawn from the work is that metal binding proximal 

to Pro32 and His31 alone is not sufficient to induce the conversion into the 

amyloidogenic conformer and that the destabilization of the D-strand alone is not 

enough to induce aggregation.  

We then investigated the ability of a DEPC-based covalent labeling technique as 

a means to monitor the structure of therapeutic proteins. This was accomplished 

through the study of three proteins, β2m, IgG, and HGH. This work demonstrated that 

DEPC was able to identify structural perturbations after exposure to degradation 

conditions. These amino acid specific techniques require the simplest analysis and in the 

case of DEPC can probe up to 30% of the residues in a given protein, thus, providing a 

high degree of structural resolution when compared to other residue specific covalent 

labeling reagents. DEPC labeling is particularly valuable for identifying the interfaces of 

protein aggregates. In the case of IgG for example, the interface of heat induced 

aggregates was shown to be on the variable domains of the light and heavy chain. DEPC 
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labeling is also able to distinguish relatively minor perturbations in protein structure as 

illustrated by the experiments with HGH. 

 In order to identify the location of these covalent labels in the experiments 

above, the protein is subjected to proteolysis by trypsin. The resulting proteolytic 

fragments are then subjected to collision induced dissociation and the resulting tandem 

mass spectra can be used to identify the label. In this work however, we show that 

these DEPC labels can scramble to another site on a peptide during CID, resulting in 

ambiguous labeling site assignments. Similarly to the scrambling of other functional 

groups (e.g. phosphate groups) on modified peptides, this scrambling occurs most 

readily under low proton mobility conditions. This scrambling does not appear to occur 

when ETD is used to dissociate the labeled peptides; this is consistent with the known 

mechanistic differences between CID and ETD. Based on the analysis of over 30 labeled 

peptides, we find evidence for scrambling about 25% of the time. In all the cases where 

scrambling is observed, histidine residues are involved. The increased tendency of 

histidine residues to undergo scrambling has important consequences as this residue is 

the most reactive amino acid with DEPC. A solution to this problem may be to produce 

larger peptides upon proteolysis so that the labeled peptides have higher charge states 

and are thus more amenable to ETD. Alternatively, supercharging agents could be used 

to produce higher peptide charge states to avoid the low proton mobility conditions 

that foster label scrambling during CID.  
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5.2 Future directions 

 The following sections will discuss the potential applications, characterizations, 

and improvements for MS-spectrometry based structural techniques. This will also 

further discuss the mechanisms of DEPC scrambling and β2m aggregation.  

5.2.1 The applications of Trp60 labeling 

The ability to easily monitor the conversion of β2m into the amyloidogenic 

conformer is a powerful tool. It could be utilized to probe all known conditions shown to 

induce β2m oligomerization. Cataloging which conditions promote a mechanism similar 

to that of Cu(II) binding could shed light on the amyloidosis of proteins as a whole.  

There are several small molecules (i.e. Epigallocatechin-3-gallate and suramin) 

that have been shown to inhibit or modulate the formation of fibrils. The mechanisms 

by which these drugs perform this modulation are unknown. This labeling technique 

could be used to identify if these molecules act on the amyloidogenic conformer or 

prevent its formation.  

Previous work has shown that ΔN6 is capable of transforming natively folded 

β2m into amyloids. HNSB labeling could potentially be a way to monitor this 

transformation and potentially measuring its kinetics. As of now, to our knowledge, no 

other method capable of probing the kinetics of this reaction has been developed.  
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5.2.2 Investigating the sensitivity of DEPC labeling 

Protein therapeutics are rapidly transforming the pharmaceutical industry. 

Current technologies are challenged to provide the rapid, high resolution analyses of 

protein higher order structures needed to ensure drug efficacy and safety. In order for 

DEPC labeling to become widely applicable in this field it must be sufficiently 

characterized against currently used methodology. Its ability to measure subtle 

structural changes upon mishandling is of particular interest.  

5.2.3 Mechanism of Scrambling 

Covalent labeling along with mass spectrometry is finding more use as a means of 

studying the higher order structure of proteins and protein complexes. 

Diethylpyrocarbonate (DEPC) is an increasingly used reagent for these labeling 

experiments because it is capable of modifying multiple residues at the same time. As 

this technique grows in use it is important to understand the mechanism behind this 

scrambling. Thus, investigating the effect of distance and chemistry on this scrambling is 

vital. Additionally, investigating the influence of acids or lack thereof on this scrambling 

could also be enlightening.  
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