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ABSTRACT 

A study has been made of the application of impact 

dampers to two types of continuous systems, a simply 

supported and a clamped beam. Previous efforts have inclu

ded the effect of impact dampers on single degree of free

dom and other systems with finite numbers of degrees of 

freedom. 

Experimental models were tested in the laboratory and 

finite element computer programs were developed to calculate 

response. Results from calculations agree favorably with 

experimental tests. Further, results from the first few 

natural modes also compare reasonably with data published 

on systems with finite number of degrees of freedom. 

Curves are presented which enable the user to apply 

impact dampers to these types of continuous systems. 

Curves show the amount of the isolation to be expected for 

values of significant system parameters. 



iii 

ACKNOWLEDGEMENTS 

The author greatefully acknowledges the guidance and 

valuable assistance of his supervising professors, Dr. R.D. 

Rocke and Dr. J.E.Foster. The author wishes to express his 

gratitude to Dr. F.M.Cunningham and Dr. D.Cronin for their 

suggestions and encouragement in the conduct of the experi

mental effort. The author also wishes to thank the tech

nicians of The Engineering Mechanics Department, members of 

the Ranco Electronics, Mr. Prakash Krishnaswamy, and Dr. P. 

Doraibabu for technical assistance. 

The author would like to acknowledge the valuable 

assistance of Dr. Foster, in the final revision of the 

manuscript. Last but not the least is author's wife, who 

deserves special appreciation for her understanding, encour

agement and assistance in preparing this report. 



TP~LE OF CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ACKNOWLEDGEHENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 
N0~1ENCLATURE AND LIST OF SYHBOLS . . . . . . . . . . . . . . . 

CHAPTER 

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
II. CONTINUOUS SYSTEM SOLUTION 

Page 

ii 

iii 

vi 

viii 

1 

5 

A. The Euler Equation for the Beam ..••••. 5 

B. Solution for Arbitrary Impact .....••.. 9 

III. FINITE ELEMENT SOLUTION . . . . • . . . . . . . . . • • • . .. 2 0 

A. Governing Equations 

B. Base Excitation Solution . . . . . . . . . . . . . . 
c. Solution with Arbitrary Impact 

IV. DIGITAL C0~2UTER SOLUTION 

A. The Collision Criterion 

. . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 

B. Finite Interval Method of Determining 

20 

20 

25 

36 

36 

Time of Impact • . . • . • . • • . • • • • • . . . • • • . • • 3 7 

v. 

c. Computer Programs ...••..••.•....•••••• 39 

D. Equivalent Single Degree of Freedom 

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
E. Discussion of Analytical Solutions 

EXPERIMENTAL INVESTIGATION . . . . . . . . . . . . . . . . 
A. 

B. 

Introduction and Objectives 

Test Description and Results 

. . . . . . . . . . . 
. . . . . . . . . . 

43 

47 

54 

54 

55 

iv 



Table of contents (continued) 

VI. CONCLUSIONS AND FUTURE WORK • • * • • • • • • • • • • • 

REFERENCES . - . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
VITA • • • • • • • • • • • • • • • ~ • • • • • • • • • • • • • 6 • • • ~ • • • • • • • • 

APPENDICES 

A. 

B. 

c. 

Continuous System Solution 

Finite Element Solution 

. . . . . . . . . . . 
. . . . . -. . . . . . . . 

Experimental Equipment and Specimens 

76 

79 

81 

82 

103 

120 

v 



LIST OF ILLUSTRATIONS 

Figure 

2.1 

2.2 

2.3 

2.4 

3.1 

3.2 

3.3 

3.4 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

Models of systems discussed in this report 

First mode frequency response of the 
simply supported beam 

Third mode frequency response of the 
simply supported beam 

Width of the resonance curve at half-power 
points 

Finite element model for fixed and simply 
supported beams 

Non-dimensional frequency root errors for 
the simply supported beam 

First mode frequency response of the 
fixed beam 

Third mode frequency response of the 
fixed beam 

Plot of the collision function 

Program outline for the finite element 
method - step one 

Program outline for the finite element 
method - step two 

Continuation of the program outline for 
the finite element method - step two 

Uniform beam with an impact damper attached 
at the middle 

Equivalent single spring-mass model 

Solution curve for the simply supported 
beam ( 44 gm. damper ) 

vi 

Page 

6 

17 

18 

19 

21 

33 

34 

35 

38 

40 

41 

42 

44 

44 

50 

4.8 Solution curve for the fixed beam (44 gm. damper) 51 

4.9 Typical response of the simply supported 
beam using the finite element program 52 



vii 

List of illustrations (continued) 

4.10 Typical response of the fixed beam 
using the finite element program 53 

5.1 Mechanical model of the fixed beam 56 

5.2 Mechanical model of the simply supported beam 57 

5.3 Photograph of the mechanical model 
and vibration exciter 58 

5.4 Photograph of the test fixture and 
the damper particles used 59 

5.5 Experimentally determined frequency response 
of the simply supported beam 64 

5.6 Experimentally determined frequency response 
of the fixed beam 65 

5.7 First mode isolation curves for the 
fixed beam ( 17 gm. damper ) 66 

5.8 First mode isolation curves for the 
fixed beam (44 gm. damper ) 67 

5.9 First mode isolation curves for the 
fixed beam ( 7 3 gm. damper ) 68 

5.10 Third mode isolation curves for the 
fixed beam 69 

5.11 First mode isolation curves for the 
simply supported beam (17 gm. damper ) 70 

5.12 First mode isolation curves for the 
simply supported beam (44 gm. damper 71 

5.13 First mode isolation curves for the 
simply supported beam (73 gm. damper 72 

5.14 Third mode isolation curves for the 
simply supported beam 73 

5.15 Solution curves for the fixed beam 
(17 gm. and 73 gm. dampers ) 74 

5.16 Solution curves for the simply supported 
beam (17 gm. and 73 gm. dampers ) 75 

A.l Bernoulli-Euler beam discussed in the report 83 

B.l Lumped mass model for a uniform beam 104 



a 

A 
n 

c. t 1n 

c 
c 

e 

E 

F 
n 

g 

h 

H 
n 

I 

L 

rn 

rn 

viii 

NOMENCLATURE AND LIST OF SYMBOLS 

cross sectional area 

constant associated with the nth mode 

= stress amplitude without the impact damper 

= stress amplitude with the impact damper 

= constant associated with the nth mode 

coefficient of internal damping 
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= collision function 
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= constants 

= modulus of elasticity 

= response amplitude due to the forcing 
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= acceleration due to gravity, 32.2 ft/sec~ 
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= mode participation factor 

= cross sectional area moment of inertia 

= length of a beam segment 

= length of the beam 

generalized mass 

= mass of the particle 

= lumped mass with the damper container 

= number of segments in the beam 
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= nth mode shape 

= velocity of the particle 

= beam displacement at the node point 

where damper is attached 

= flexural stress 

ratio of the particle mass to the 

equivalent mass 

Delta function 

= damping ratio 

phase angle 

= mass density 

natural frequency in radians per second 

= damped frequency in radians per second 
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inverse of a square matrix 
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= coefficient vectors 
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I. INTRODUCTION 

Vibration of mechanical systems are very common in na

ture. Common examples of such vibrations are the motion of 

a mass suspended from a spring, slender structures, and 

equipment mounted on a nonrigid foundation. Many kinds of 

vibrations are undesirable due to their damaging effects. 

For example, wind induced oscillations of tall antenna 

structures, vibration of bridges and airplane wings, and 

vibrations resulting from an unbalance in rotating machinery 

can become disasterous. 

Isolation of such undesirable vibrations is of great 

importance in shipboard and aerospace applications. I so-

lating materials such as rubber pads, cork, felt, or metal

lic springs placed between the vibrating system and its 

support reduce the system response. A relatively recent 

means of reducing vibration response of some systems is to 

use an impact damper. 

An impact or acceleration damper consists of a mass 

particle constrained to move between the two ends of a 

container. The container when attached to a vibrating 

mechanical system causes the particle to collide with the 

container ends. The collision of the particle reduces the 

vibration amplitude of the primary system through momentum 

transfer. 

The feasibility of using such a system was first 
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suggested by Leiber and Jensen(l) in 1944. They investigated 

the response of an undamped, single degree of freedom system 

with a single active acceleration damper. These authors 

assumed that the response of the system to a sinusoidal 

forcing function was simple harmonic and that in every cycle 

two completely plastic impacts occured. They reported that 

the travel path of the particle is n times the amplitude 

response for maximum energy dissipation. 

Grubin(2) investigated the motion of a viscously damped 

single degree of freedom system subjected to the action of 

a single damper. He determined an analytical solution for 

the motion of the system from collision to collision by 

assuming two or more impacts per cycle. A similar system 

without viscous damping has also been investigated by Arnold 

( 3) • He expressed the force acting on the mass during impact 

in a Fourier Series and showed how different parameters 

affect the system behavior. 

Masri(4,5,6) has performed extensive studies of impact 

dampers and he has defined two impacts per cycle as a 

"stable" type of motion. He determined the exact solution 

for a damped, single degree of freedom system vli th sinu-

soidal excitation and analyzed its stability. His results 

define the stable regions of solution. In later reports he 

presented a solution for the motion of the same system 

using a multiple-unit impact damper. He also investigated 

multidegree of freedom systems with an impact damper and 

presented the exact solution for the steady state motion 
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of the system in response to sinusoidal excitation. In all 

his research the assumption of two impacts per cycle was 

retainedi 

Other authors have studied the application of the 

impact damper attached to more complicated systems. Masri(S) 
1 

McGoldrick(?) 1 Leiber and Tripp(8) 1 and Duckwald(9) 1 have 

experimentally investigated single and multidegree of 

freedom systems, cantilever beam, and turbine buckets 

respectively. 

The objective of the present study is to investigate 

the motion of a continuous system under the action of an 

impact damper located at any point along the structure. 

Two types of uniform continuous beams with sinusoidal base 

excitation were considered for investigation and the assump

tion of stability, i.e., two impacts per cycle common to all 

previous analysis, was not made. In this work the times of 

arbitrary impacts were determined numerically with a digital 

computer. Solutions valid between the impacts were obtained 

analytically by two separate approaches. These will be 

discussed in detail in later sections. 

In Chapter II a viscously damped, Bernoulli-Euler beam 

with an impact damper attached to it is treated. It is 

assumed in this analysis that the mass of the damper 

container is very small and does not influence the normal 

modes of the system. The solution satisfying the initial 

conditions is determined in terms of the sum of an infinite 
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series. The solution defines the motion of the system from 

collision to collision and is complete when the time of 

impact is furnished. 

In Chapter III the solution by the finite element 

method is discussed. The uniform continuous beam is re-

placed by a multidegree of freedom discrete structure and 

the set of governing differential equations are solved 

exactly. The solution satisfies the initial conditions 

and defines the motion of the system from collision to 

collision. The effect of the damper container mass is 

easily incorporated in the system response; this advan

tage was not available in the former solution. 

The numerical technique which was used to compute the 

time of impact is described in Chapter IV. This is fol

lowed by Chapter V in which the description of the experi

mental effort is given and interpretation of the results 

are discussed. In Chapter VI the conclusions deduced are 

presented and the scope of future work is indicated. 
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II. CONTINUOUS SYSTEM SOLUTION 

A. THE EULER EQUATION FOR THE BEAM 

The differential equation of motion for the lateral 

vibration of a Bernoulli-Euler beam is 

( 2 .. 1) 

where EI and pa are respectively the stiffness and mass 

per unit length of the beam. The system under consideration 

consists of a uniform continuous beam with an impact damper 

of negligible container weight. The system is shown in 

Fig. 2.1. The response of any point on the beam between 

two consecutive impacts is given by the solution of Eq. (2.1). 

In the absence of any distributed force on the beam 

and with sinusoidal base excitation 

W(O,t) = W(L,t) = h Sin~t ( 2. 2) 

the equation of motion for the beam with internal and 

external relative damping becomes (see appendix A) 

( 2. 3) 



H(O,t) a ~=rS/2 rV(L,t) 

I ~S/2 I 

h Sin~t 

(a) Fixed beam 

W(O,t) 
~'V(L,t) 

h Sin0.t 

(b) Simply supported beam 

Figure 2.1 Models of systems discussed in this report 

<J\ 



where 

W(x,t) = Wr(x,t) + h Sin~t • ( 2. 4) 

The general solution of the equatinn of motion Eq. (2.3) 

when substituted in Eq. (2.4) becomes 

W (x, t) 

where 

w 
n 

2 

t;:n 

2 Wn~n = cext/(pa) 

2 
Hnhrt 

F = 
n 

\fin 

L 
H 

n 
= b Un(x) dx . 

+ h Sinstt 

2 IE + c W I f 

int n' 

2 
+ (2s s-t) 

n 

( 2. 5) 

7 



For Fixed End 

Conditions 

Kn are the roots of 

Cos(KL) Cosh(KL) = 1 

Cos(KnL) - Cosh(KnL) 

Sin(KnL) - Sinh(KnL) 

/ L 2 
L = f U (x) dx = L 

0 n 

For Simply Supported End 

Conditions 

Sin(KL) Sinh(KL) = 0 

I L 2 
L = f Un(x) dx = L/2 

0 

The orthogonality relations for these end conditions 

are 

L 

J Un(x) Um(x) dx 
0 

for m =I n 

for m = n 

8 

which when coupled with zero initial displacement and rela-

tive velocity, gives 

and 

= F 
n 

Sin\fl 
n 
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B. SOLUTION FOR ARBITRARY IHPACT 

Starting from rest, i.e., at t=O, if the time of the 

first collision is t=t
1

, then the solution Eq. (2.5) for 

the beam displacement is valid for 0 ~ t ~ t 1 • The collision 

is assumed ideal in the sense that the position of the par-

ticle and the beam at all locations remain fixed. The 

velocities of all the beam particles and the damper particle 

are discontinuously changed. The time t
1 

at which the first 

collision occurs and also the times for other collisions 

are found by a numerical technique which is discussed in 

Chapter IV. 

The differential equation of motion Eq. (2.3) describes 

the movement of the beam between the time just after the 

first collision and until just before the second. Solutions 

for subsequent individual periods between collisions may 

be represented by 

W(x,t) = I { e-snt {An+Cos(wdnt) + Bn+Sin(wdnt)} 

n=l 

( 2. 6) 

where t is reckoned from the time of collision and A , B 
n+ n+ 

are constants which are determined from the initial con-

ditions just after the impact. Eq. (2.6) is Eq. (2.5) modif-

ied to show the change in coefficients An and Bn as a result 

of the collision. 
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For a single unit impact damper attached at any point 

along the beam, say at x = x , a particle of mass, m , is 
d 

used. This particle is enclosed in a container assumed to 

be of negligible mass and it is also assumed that the 

particle makes point contact with the beam during a collision. 

Just before the impact the beam displacement and 

velocity at the damper location are obtained from the 

solution Eq. (2.5). Using subscripts (-) and (+) to imply 

quantities before and after the collision, Eq. (2.5) at 

t = t
1 

gives 

W_(x,ti = 

and 

where 

to t. 

~ 
n=l 

L 
n=l 

- s 
n 

+ F Q cos(Qt1 - ~ ) } u (x) + hQ Cosnt 1 n n n 

(2.7) 

(2.8) 

is used to denote differentiation with respect 

For Eq. (2.6) to be the solution for a period between 



collisions it must give displacement and velocity of the 

beam just after the impact at t = 0, i.e., 

00 

W+(x,O) 

11 

( 2. 9) 

and 

00 . 
vJ+ (x, o) = 

+ h~ Cos~t 1 • (2.10) 

The velocity of the particle at this time (t = 0) is 

discontinuously changed from v_ to v+ • 

Since the position of the particle and the beam 

remain unchanged during the collision, Eq. (2.7) and Eq. 

(2.9) can be equated to give 

The beam is considered to sustain the collision with damper 

particles of mass m uniformly over the entire length. If 

the particle velocities are v_ and v+ before and after 

the collision respectively, then conservation of momentum 

applied to a beam element of length dx requires t.hat 

pa W+ (x,O) dx + v+m dx = pa vv_ (x,tl) dx + v_rn dx 
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where v(+,-)rn is considered to be the momentum acquired 

in the collision per unit length of the beam. 

In the case of a collision at a point on the beam the 

momentum transferred through that point is assumed to be 

conserved over the whole length of the beam. Thus 1 for 

the entire system the momentum equation becomes 

L 

= J (v_ - v+)m 0 (x - xd) dx 
0 

( 2. 12) 

where xd = location of damper along the beam and 0 (x - xd) 

is a Delta function having the properties 

o(x - xd) = 0 

co 

f U(x) o(x- xd) dx U(xd) 
0 

L 

f U(x) o(X- Xd) dx = U(xd) 
0 

. 
Substituting W_(x,t~) and W+(x,O) 

for all x f. xd 

from Eq. ( 2 . 8) 

Eq. (2.10), respectively into Eq. (2.12) yields 

where 

I 

Gn = mUn(xd)/(pLawdn) 

and 

(2.13) 
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0
ln == (3 

An+ n 

0
2n 

-sntl 
Bn{ wdn Cos(wdntl) Sin(wdnt1 )} == e -

-B t 

DJn == 
n 1 

An{ Sin(wdntl) + Sin(wdntl)}. e wdn 

According to the definition of the coefficient of 

restitution, e, between the particle and the beam 

. . 
W+(xd 1 0) - v+ =- e(W_(xd,t1 ) - v_). (2.14) 

Substituting ~q. (2.8) and Eq. (2.1Q in Eq. (2.14) gives 

v+ = L: Un(xd)wdn B + + E2 (2. 15) 
n=l n 

where 

E2 = L: un (xd) En + El 
n=l 

and 

E = e 0 2n - e D3n - Dln + o(l + e) F Cos(nt
1 - 't'n) 

n n 

E
1 

= g(l + e) h Cosgt1 - e v_ 

The solution of Eq. (2.15) and Eq. (2.13) for Bn+ results in 
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00 

R 
n 

(2.16) 

where 

and 

z. 
l 

Solutions Eq. (2.5) and Eq. (2.6) for the beam dis-

placement before and after collision are expressed in the 

form of an infinite series of terms. For practical 

purposes however, only the first few terms are necessary 

to yield sufficiently accurate results. 

Eq. (2.16) represents a system of k nonhomogeneous 

equations ink unknowns (B, n=l,2, •••• ,k), where only 
n 

first k terms are utilized. The system of equations 

Eq. (2.16) in matrix form are 

B 
k+ 

= 

R 
k 

(2.17) 

The complete solution for the beam displacement between 

collisions is then given by Eq. (2.6), where An+ and Bn+ 
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are determined by using Eq. (2.11) and Eq. (2.17) 
1 

respectively. 

The normal stress at a point on the surface of a beam 

is obtained by determining the bending moment at that 

section which is given by the relation 

M(x,t) 
2 2 

= EI 8 W(x,t)/3x • (2.18) 

Accordingly, the flexural stress at a point located a 

perpendicular distance d/2 from the neutral surface 

becomes 

(2.19) 

where d is the thickness of the beam. 

Computer programs were developed to numerically 

determine the time of impact and to evaluate the system 

response at any particular time. The numerical technique 

and the programs used are discussed in Chapter IV. To 

determine the accuracy of the results,the stress amplitude 

was computed using Eq. (2.19) and was compared with the 

experimentally observed values. Results of these computa-

tions for a simply supported beam are shown in Fig. 2.1 

and Fig. 2.2. Damping ratios used in the computations 

were ~l = .0038, ~ 2 = .0025 and ~ 3 = ~ 4 = ••• =~n = .0016. 

Among these, ~l and ~ 3 were determined experimentally at 
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the first and third modes respectively from the width of 

the resonance curve at the half power points (see Fig. 2~4). 

These results do not include the effect of the weight of 

the container (of the impact damper) and this is exhibited 

by the relatively lower response amplitude in the graphs 

(Figs. 2.2 & 2.3). Similar calculations for a fixed beam 

also agreed with the corresponding experimental results. 
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III. FINITE ELE!~NT SOLUTION 

A. GOVERNING EQUATIONS 

The governing differential equation of motion for a 

lumped mass model of a Bernoulli- Euler beam (see Fig. 3.1) 

can be represented in the form 

[

M 0 J- f~} 
o ~T Le 

+ 
] {:} = {:} 

( 3. 1) 

where {Y}andie}are the absolute displacements and rotations 

of the lumped masses. 
.. 

Neglecting J.G(<<Ml·Y.) for the lower modes, Eq. (3.1) 
J_ l 

can be reduced to 

( 3. 2) 

where 

and 

(3.3) 

B. BASE EXCITATION SOLUTION 

For systems with harmonic base excitation, h Sin~t, 

and for the special case of proportional damping, the 

equations of motion become 



f f 4 t ~ 2·,1-2 

~1 rt'\3 i's 1"" 1"'2N-l "'2N 

I I I I I I 

1:--z -1 L =ZN J 

(a) Rotation and translation coordinates 

pa.Q, 

I 0 0 (±) 0 I 

i-1 1--£ --L 
(b) Lumped mass model 

Figure 3.1 Finite element model for fixed and 
simply supported beams 

tv 
j--1 



~ ) 2 . 
\ M . ~ h rt S 1.n rtt 
\. 1.) 
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(3.4) 

where ~Yr} are the coordinates relative to the support, i.e., 

(3.5) 

The damping [ C l is a diagonal matrix obtained by a linear 

combination of [ M J and [ K J in the form 

c
1 

and c
2 

are constants. 

The eigenvalues and eigenvectors for the system are ob-

tained by solving the undamped homogeneous equations 

( 3. 6) 

A coordinate transformation {Yr} = [ M J-112 tz \ in 

Eq. (3.6) together with premultiplication by [MJ-l/
2 

un

couples the system of equations so that 

( 3. 7) 

Since the eigenvalues, wi, are independent of the 
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coordinate system, these are the same for both [ s J and [ H J. 
The modal matrix for Eq. {3.6),however, becomes 

""here [A J is the modal matrix of Eq. ( 3. 7) 

Further, as discussed in appendix B, [A'] is normalized 

with respect to the mass matrix to give [w J , the normalized 

modal matrix, such that 

where m = a scalar quantity. 

Substituting \Yr} ~ [<r>l{P} into Eq. (3.4) and pre

multiplying by [ <r> JT yields 

sinnt/m 

( 3. 8) 

where 

Following the standard approach used in the theory 

of differential equations, the complete solution of 

Eq. (3.8) can be cast in the form 
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-m 
[-- 2 2 J-l[-(P. + Q.) p. 

l 1- l 
SinDt - Q· 

l Co~]{F/ + l 

(3.9) 

where 

w. I 1 2 
wdi = - s· l l 

\F} 
T 

= [ ~ J t Mi ~ h~2 

p. 2 
- r22 = w· 

1. l 

tA} and tBJ are constants to be solved by initial con

ditions. 

Therefore, the complete solution to Eq. (3.5) may be 

expressed in the original coordinates as 

(3,10) 
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If the initial conditions on the system are 

{Yr (0} = {Yro} and {> (0} = {Yr~ 
the constants {A} and {a} are obtained by 

~1 = ~ [ ~ r~~ JtrO}+ ~ [~1 Q~ Q1 j{F} (3.lla) 

and 

(3.llb) 

C. SOLUTION WITH ARBITRARY IHPACT 

In the finite element method it is required that the 

damper be located at any one lumped mass points, i.e.
1

a 

node point. While formulating the mass matrix for the 

system,the mass of the damper container is included in the 

computation along with the lumped mass at the node point. 

For collisions of very short duration ( << period of osci-

llation) , the displacement of this node point remains 

unchanged while its velocity is discontinuously changed. 

The displacements and velocities of all other nodal points 

remain unaffected during the collision. 

Solution Eq. (3.10) represents the system response to 
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a sinusoidal base excitation and is valid until t=t
1

, the 

time of first impact 1 which is found numerically as discus-

sed in Chapter IV. The collision of the damper particle 

with this dynamical system produces a sudden impulse which 

gives rise to a response that is transient in nature. The 

solution after the impact can be established as 

where t is time elapsed after the impact and A. and 
l+ 

are constants which are evaluated by using the initial 

conditions just after the impact. The displacements just 

before impact may be computed by evaluating Eq. (3.10) at 

t=t
1

, thus 

The displacements just after the impact are determined 

from Eq. (3.12) at t=O, as 
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f (O} = [ ~ J Bi+ + ~ [@ J[p i SinQ:~ : :rOSQt~ ]{F} 

+ { 1} h Sin Q t ( 3 • 14 ) 

Since displacements during the impact remain unchanged, 

solving Eq. (3.14) and Eq. (3.13) yields 

( 3. 15) 

The motion of the damper particle of mass m, and the 

total mass at the damper location, must satisfy the momentum 

equation during the impact. Therefore, 

. 
rod Yd- - mv_ = md Yd+ + mv+ ( 3. 16) 

where v and Y , v 
d+ + 

are the system velocities 

before and after the impact, respectively. 

If e is the coefficient of restitution between the 

impacting materials, then by definition 

Eq. (3.17) and Eq. (3.16) can be solved to give 

v+ = 

em + e dv ) 

1 + m/md ) 

(3.17) 

(3.18) 
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and 
c + e dv ) 

yd+ = m 
e dv (3.19) 

1 + m/md ) 

where 

c = yd- + v_m/md 
m 

and 

dv = Yd- - v 

Differentiation of Eq. (3.10) yields the velocities of 

the lumped masses just before impact (at t=t
1
), i.e., 

(3.20) 

Velocities of the lumped masses just after the impact 

thus become 

yl-. 

{y+} 
y2-

(3.21) 
= . 

yd+ 

y. 
J.-



where 

by Eq. 

Y
1

_, Y
2

_ etc. are given by Eq. 

( 3. 19) 

( 3. 2 0) and y 
d+ 
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Since the solution Eq. (3.12) must satisfy these ini

tial conditions Eq. (3.21), for velocities, the constants, 

Ai+' are obtained as follows 

CosSlt 1 - Qi 

p2 + Q? 
i 1 

(3.22) 

The complete solution for the displacement of the beam 

after the collision is obtained by evaluating Eq. (3.12) 

with the new values of Ai+ and B. 
l+ 

determined from 

Eq. (3.22) and Eq. (3.15), respectively. The corresponding 

rotation at each mode at the same time is computed by 

using Eq. ( 3 • 3) • 

Knowing the displacement and rotation of the lumped 

mass points, forces and moments acting on an element can 

be determined from the relation 
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f. 6 -6 -3-t -3-t Y. l 
l 

2EI -6 6 3£ 3£ fi+l yi+l 
--- (3.23) 

£3 2£2 z2 Hi -3£ 3£ e. 
l 

Hi+l -3£ 3£ 2£ 2£2 e. 1 l+ 

which is derived in Appendix B. Thu~the bending stress 

on the surface of the beam at the ith node is 

r--·1. d 
l 

I 2 

'l'he computer program developed for this method is discus-

sed in detilil in Chapter IV C. The initial part of the 

computation involves the determination of the eigenvectors 

and eigenvalues of the system for a certain assumed number 

of segments comprising the beam. To determine the accuracy 

of the finite element method, the frequency roots obtained 

by this method for various numbers of beam segments are 

compared with the corresponding exact values. The comparison 

has been interpreted as a percentage of frequency root 

error, giving the extent by which the roots obtained by this 

n1ethod deviate from those given by the exact solutions. The 

percentage error has been expressed in the following manner 

(3.24) 
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where 

w
0 

= the frequency root obtained by the finite 

element method 

we = the exact frequency root 

er = the percentage frequency root error 

Percentage errors have been calculated for the first, 

second, third, fourth and fifth modes for a simply sup

ported beam and a plot of these values as a function of the 

number of segments in the beam is shown in Fig. 3.2. 

It can be observed from this plot that the percentage error 

for 8 segments is well below 1% in the first three 

modes. Similar calculations for fixed beams also revealed 

less than 1% error in the first and third modes for 8 

segments in the beam. 

Following the determination of the error associated 

with various numbers of segments, 8 segments in the beam 

were chosen for the remainder of the calculations. Equa

tions derived in this chapter were programmed and solutions 

were evaluated for all the desired parameters. Damping ra-

tios used in the computations were calculated from ex

perimental results using the width of the resonance curve 

at half power points, for both systems in the first and 

third modes. Values of the damping ratios at other modes 

are insignificant when the response at the first and third 

modes are considered and therefore were assigned arbitrarily 

small values. The results of these computations are 
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compared with the corresponding experimental values and 

are presented in Figs. 3.3 & 3.4. In the finite element 

approach the mass of the damper container is included with 

the lumped mass at the nodal point and the results showed 

excellent agreement with the corresponding experimental 

values. 
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Figure 3.3 First mode frequency response 
of the fixed beam 
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IV. DIGITAL COMPUTER SOLUTION 

A. THE COLLISION CRITERION 

In the previous two chapters solutions have been 

derived which are valid during the time immediately after the 

first impact until the next. In so doing, the time t
1 

at 

which the first impact occurs is assumed to be known. The 

times of first impact and subsequent impacts are actually 

determined by numerical computation with the help of a digital 

computer. The following sections explain the technique 

involved. 

If the beam displacement at the damper location is 

denoted by Ud(t) then 

Ud(t) = 

either the solution Eq. (2.6) evaluated at x=xd 

or one of the solutions Eq. 
mass plus the damper mass. 

(3.12) for the lumped 

The particle displacement, U (t), is measured from the 
p 

initial reference position of the damper location on the 

beam. Then, in order that the particle might come in 

contact with either of the container surfaces, Ud(t) and 

Up(t) must satisfy 

I ud (t) - up (t) j = S/2 ( 4 .. 1) 

where S is the clearance as shown in Fig. 2.1. 
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A measure of how close the system is to an impact is 

indicated by the difference of the quantities appearing on 

the left and the right hand sides of the condition expres-

sed in Eq • ( 4 • 1) • This difference is expressed as follows 

Cc(t) = S/2 - ( 4. 2) 

where Cc(t) is dependent on time and is termed the col-

lision function. The roots of 

Cc(t) = 0 ; ( 4. 3) 

are the times of the collisions. Since the particle is 

constrained to move within the clearance s, Cc(t) is 

never negative. 

B. FINITE INTERVAL METHOD OF DETERMINING TIME OF IMPACT 

The function, Cc(t), may be expressed either explicitly 

as a polynomial in time t, or as a transcendental function. 

Geometrically a root of the equation is a time, t=tr , for 

which the curve Y=Cc(t) intersects the line Y=O (Fig. 4.1). 

It may,of course,happen that these curves do not intersect, 

in which case the condition given by Eq. (4.3) is not satis

fied and as such no impact will occur. 

Computer programs to evaluate Cc(t) were written 

in FORTRAN IV language using the solution expressed by 



Eq. (2.6) and Eq. (3.12). Values of Cc(t) were computed at 

t = 0, 6t, 26t, 3~t, and so on until Cc(t) changed sign. 

This means that an impact has occured. A linear iteration 

technique namely, the method of false position, was used at 

this point to obtain a root of the equation. For this 
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method, it is assumed that there exist a simple root, ti, 

within the interval between ti-l and ti+l such that 

Cc(ti-l) and Cc(ti+l) are opposite in sign. An approximation 

/ 

ti of ti is (see Fig. 4.1) the geometrical intersection of 

the line connecting {ti-l,Cc(ti-1)} and {ti~l'Cc(ti+l)} 

with the t axis, and can be mathematically expressed as 

/ 

t. = 
l 

ti-l Cc(ti+l) - ti+l Cc(ti-1) 

Cc(ti+l) - Cc(ti-1) 

t. 1 l-

t 

• 

Figure 4.1 Plot of the collision function 

(4.4) 
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and C (t. ) 
c 1.-l 

are opposite in sign, as can be 

seen in Fig. 4.1, ti+l is replaced by ti' ti-l is unchanged, 

and a new approximation is obtained from Eq. (4.4). Other

wise ti-l is replaced by ti' ti+l is left unchanged, and 

again ahother approximation is obtained. 

C. COMPUTER PROGRA].1S 

Digital computer programs were written to find the 

step by step solutions of the basic equations of motion as 

related to the system under investigation. Two separate 

programs were developed to evaluate results for the same 

system using the series and the finite element analysis. 

Major programs were written in FORTRAN IV language, and 

executed on the University of Missouri-Rolla, computer 

system, which is an IBM 360, Model 50, with IBM 2314 disk 

storage. Each program required a maximum core storage of 

150 k bytes. Small check programs were executed through 

CPS, IBM 2741 terminal and an IBM teletype using the PL 1 

language. The Calcomp Plotter was used to plot computer 

outputs. 

The finite element solution was completed in two 

separate programs. Quantities such as eigenvalues, eigen-

vectors, stiffness matrices etc., which are characteristics 

of the system, are calculated in one program. The output 

from this code (punched cards) is used as input to the 

second program which computes system response at any time. 

Brief outlines of these are shown in Figs. 4.2, 4.3, & 4.4. 
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l Read Input Data I 
I 

j Generate Addi tiona! Structure Datal 

I 
Formulate Components of the 

Total Stiffness Matrix 

I 
Invert d Matrix and Check 

for [d]-
1

[d] = [I] 

I 

I Evaluate [b] [dl-l lc] j 

I 
l Formulate t·1ass Matrix and s Matrix l 

1 

Evaluate [H] Matrix l 
I 

Determine Eigenvalues 

and Eigenvectors of [H) 

l 
Normalize the Eigenvectors 

I 

-1 
Punch output Matrix ld J [cJ, fD 
Eigenvectors & Eigenvalues 

Figure 4.2 Program outline for the finite element 

method - step one 



I Read 
I 

toLFig. 4.21 Input Data lRefer 

I 
Generate All Constants which 

are Independent of Time 

I 
Evaluate Constants Dependent 

pn Initial Conditions 
L-

I 
Calculate Beam Displacement at 

Damper Location, Particle Location 

at that Time and Compute the 

Collision Function cc {t) 

I 
jcomputes Stresses at Desired Locations I 

I 
I I 

If cc ( t) = o I I If cc (t) -1 0 I 
I I 

Print Displacement, Stress etc. Refer to~Fig. 4.4 

Chec Stress for Maximum Value 

I 
Increment Time 

Yes 
Check if t=t 

max 
I 

No 
I 

!Refer to XB Fig. 4.4 

Figure 4.3 Program outline for the finite element 

method - step two 
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Use the Linear Iteration Technique 

to Find Time t for which C (t) = 0. 
c 

Obtain Time of Impact. 

Compute the Initial Conditions for 

the System, Immediately After Impact 

and Calculate Velocities, Constants 

A,B, etc. 

Check to see if Number of Impacts 

are Within the Limit 

- No 

Print Conditions Before and After 

All Impacts 

Punch Data Cards for Plot if 

Desired 

Print the Magnitude of Maximum 

Stress at the Desired Location 

I END I 

E& 

Yes 

Figure 4.4 Continuation of the program outline 

for the finite element method-step two 
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The program for the series solution uses the characteristic 

frequencies given by Volterra(lO) and follows similar 

lines of computation as the second step of the finite 

element code mentioned above. 

D. EQUIVALENT SINGLE DEGREE OF FREEDOM SYSTEM 

Two beam systems, clamped and simply supported, were 

experimentally studied and the results obtained were 

compared with analytical solutions. Each of these actual 

systems can be described as an equivalent discrete spring-

mass model with viscous damping and an impact damper, as 

shown in Fig. 4.5 and Fig. 4.6. The mass of the equivalent 

system is such that the period of vibration of the massless 

beam loaded at the center by this equivalent mass is the 

same as the fundamental period of vibration of the actual 

system. The equivalent mass, Me' of the system is found 

by substituting the experimentally determined, fundamental 

natural frequency in 

(l/2TI) I(K /M ) 
e e 

which gives 

Me = Md + .367 (paL) 

for the clamped beam and 



h Sinstt 

h Sinstt 

Figure 4.5 Uniform beam with an impact 
damper attached at the middle 

c 
e 

M 
e 

Figure 4.6 Equivalent single spring-mass model 
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Me Md + .485 (paL) 

for the simply supported beam, where r-'ld is the mass of the 

damper container assumed to be concentrated at the center 

of the beam. 

The equivalent spring constant, K , can be obtained by 
e 

considering the static deflection of a massless beam loaded 

in the center and is (192EI)/L3 and (48EI)/L 3 for clamped 

and simply supported beams, respectively. 

The base excitation, h Sin~t, of the actual system is 

equivalent to an acceleration force amplitude 

F = M h~ 2 

e e 

on the equivalent mass and acts as shown in Fig. 4.6. 

Such simplification of the actual continuous system 

to a single degree of freedom system, will allow a com-

parison of these results with those of previous investiga

tors. The following two cases are considered in this study. 

Two steel beams each of length 25~", width 1~", and 

thickness 1/8" 

and xd=L/2 ; 

Case 1: Clamped 

Md 

Mp 

e 

for which 

beam 

= 99gm. 

= 44 gm. 

= • 8 

E=30xl0 6 psi., pg=.283 lbs./in3. 

~1 = • 0055 

Slj w
1 

= 1. 0 

h~2 = .3g (base acceleration) 
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s = .06 in. 

i.e. , 

Me M.d + .367 (paL) = 324 gm. 

Ke = 192EI/L3 = 84.809 lbs./in. 

Fe 
2 

.2142 lbs. = M hD = e 

ll Mp/Me == .136 

s 
13.85 . 

Fe/Ke ' 
Case 2 : Simply supported beam 

Md = 90.5 gm. t;l = .0038 

Mp 44 grn. s-2/wl = 1.0 

e = • 8 hD2 = .2g (base 

s = • 06 in • acceleration) 

i.e. , 

Me = 389 gm. 

Ke = 21.2 lbs./in. 

= .1716 

.113 

s = 7.4 

For both the above cases, stresses were computed 

using analytical solutions (Eqs. 2.19 & 3.24) and found to 

agree favorably with the experimental results (see Figs. 



4.7 & 4.8). The stress amplitude ratio for case (1) and 

case (2) were found as Ad/A
0 

= .185 and .190 respectively. 

Masri(4), using n/w = 1, ~ = .1, e = .8 and s = .1 in his 

investigation, obtained (X/A) = .2 for 
max 

d 

F/K 
= 17.0. 

Numerical solutions for a wide range of parameters 

obtained by computer have been compared with the experi-

mental results and are shown in Figs. 4.7 through 4.10. 

E. DISCUSSION OF ANALYTICAL SOLUTIONS 

The analytical solution for a continuous system as 

determined in Chapter II is expressed as the sum of an 

infinite series of terms. Comparison of computer results 

for various numbers of terms in the series showed that 
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sufficiently accurate (<.1% error) results are obtained by 

considering only the first few terms. Based on these 

findings, computations were carried out using the first 

10 terms in the series. 

The solutions by the finite element method can be 

evaluated by assuming any number of segments in the beam. 

A study of the computer results showed that the greater the 

number of segments in the beam the better the results 

obtained, but required correspondingly longer computation 

time. The extent of the frequency root errors for various 

segments in the beam is shown in Fig. 3.2. As a result of 

this study, all computations for finite element solutions 

were carried out using 8 segments in the beam. 
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Damping ratio used in all computations were predeter

mined experimentally. The impact damper was applied at 

the center of the beam for this phase of the investigation , 

and the following features were noted: 

a. The computer programs evaluated stress at x = 11.165" 

(strain gage location on the test models) on the beam as 

well as displacement and velocity at the mid-point. The 

effect of gravitation on the free action of the damper 

particle was neglected. 

b. Initially, the damper particle was assumed to be at 

rest at the zero displacement position. If the clearance, 

s, were made sufficiently large such that S/2 was greater 

than the beam displacement at all times, the system respon

se was the same as that without the damper. 

c. The right hand side of Eq. (4.2) was evaluated with 

a finite interval, 6t, starting with t equal to zero. 

The linear iteration process for determining the time was 

continued until 

where s was chosen to be lxl0-
8 

and usually required less 

than 8 iterations. 

d. Impact between the damper particle and the beam 

excited the system in many normal modes. For example, 

when the excitation was at the first natural frequency, 

the impact produced transients which were predominantly 
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that of the third mode. This gave rise to multiple impacts 

within a single cycle of the base excitation. 

e. The system response for a given set of parameters was 

computed over a range of impacts usually (30 or 40), until 

the response amplitude ceased to increase. 

f. Double precision and single precision arithmetic were 

used for the computations with the continuous and the 

finite element solutions, respectively. The programs 

required approximately 80 seconds for compilation and 

25 seconds for execution to carry out computations through 

40 impacts. 

g. Analytical solutions yielded results which compared 

more favorably with experimental results when larger 

values of S were used. 
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V. EXPERI~lliNTAL INVESTIGATION 

A. INTRODUCTION AND OBJECTIVES 

In the theoretical determination of the solution for 

the motion of the system,certain parameters were assumed 
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to be arbitrary. In practice, however, some of these were 

unique to the system. For example, the damping of the 

system at different modes were dependent on the end condi

tions, forcing function, driving frequency,and other 

factors. Certain parameters such as the mass of the parti

cle, m, the clearance, S, and the coefficient of restitution 

had to be properly selected to obtained realistic results. 

With a view toward estimating the accuracy of the fi

nite element method discussed in Chapter III, the computer 

solution was compared with that of the continuous system 

discussed in Chapter II, for a few theoretical cases. 

This comparison was favorably concluded and,although it 

established the validity of the analytical solutions, it 

did not however, assure selection of damper parameters for 

the following reasons: 

a. Lack of information concerning the design and use 

of impact dampers on continuous systems. 

b. Design problems involved in the construction of the 

damper unit as well as the system concerned. 

To obtain some of the information mentioned above, 

tests were conducted with two types of steel beams. The 



objectives of the tests were: 

l. To determine damping present in the system for the 

first few modes. 

2. To compare results of previously obtained analytical 

solutions with observed values. 

3. To encounter and solve design problems of these types 

of systems and study the range of size of the damper unit 

to render maximum effectiveness. 

4. To determine the effects of variations of mass and 

clearance on the action of the damper. 

B. TEST DESCRIPTION AND RESULTS 

The experimental part of the investigation was con

ducted in the Engineering Bechanics Laboratory of the 

University of Missouri-Rolla. Two steel beams each of 

25~" by 1~" were machined from l/8" thick steel plate. 

Support fixtures were designed to permit positioning of 

these beams as either clamped or simply supported for two 

different tests. The entire experimental work was con

ducted on a 3500 pound-force MB C25H vibration exciter. 
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An additional fixture was designed and attached to the 

exciter to permit mounting the beam systems on the vibration 

shaker. Schematic diagrams of the mechanical models that 

were used are shown in Figs. 5.1 & 5.2 and photographs 

of the actual beams are shown in Figs. 5.3 & 5.4. 

Endevco, piezoelectric accelerometers and electric 

resistance strain gages were used to measure the accelera-



Figure 5.1 Mechanical model of the fixed beam 
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tion and strains respectively at desired locations. Sig-

nals from these transducers were monitored on a Tektronix 

dual trace oscilloscope and recorded by means of a CEC 

recording oscillograph. A Beckman counter was used to 

time the periods of oscillations. 

The impact damper in both models was located at the 

center of each beam. For the two cases of symmetrical end 

excitation the beams could be excited only in symmetrical 

modes (odd numbered modes). 

The damper unit consisted of a pair of hard steel 

collars attached to the beam and an alloy steel,nut and 

bolt assembly. The bolt was fitted into a hole drilled 

through the beam and was constrained to oscillate within 

a certain magnitude of clearance. To vary the clearance 

distance, adjustments were made by turning a threaded 

lock nut. 

Strain an(l <-'tr.~~:~._:~~-e:r ation of both types of beams were 

recorded at x=ll.l65" and x=l4.36" respectively, along 

the length. Impacts between the particle and the beam 

produced a very complex oscilloscope trace of the accele

rations making it impossible to use for comparative 

purposes. The sharpness of the strain trace,on the other 

hand, remained unaffected by the impacts and,since it was 

possible to measure accurately the strain amplitude, it 

was utilized for purposes of comparison. 
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During the course of this investigation the following 
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observations were made: 

a. The damper was most effective when its operating axis 

was horizontal. In this position, 2 impacts/cycle motion 

w~s observed over a wider frequency range than in the 

vertical direction. At the higher acceleration levels 

(>8g), the effect of gravity was negligible and the damper 

showed the same effectiveness in both the vertical and 

horizontal directions of action. For the vertical opera

tion the lightest possible particle gave the most stable 

motion over the widest range. 

b. The effect of the damper weight on the system was 

studied by making the clearance, S=O. This, in most 

cases, resulted in ~;..':_.-i_ghtly larger amplitude of vibration 

than t.hat without t:he damper particle attached. Following 

this, the damper was activated by gradually increasing the 

clearance. 'rhe arnpJitude response was observed to reduce 

to a rninimun for a particular clearance and increase from 

t~e low as the clearance was gradually increased. 

For a given damper particle, -che frequency range of 

tho 2 impacts/cycle type of motion,discussed in reference 

(4), varied as the clearance varied. Other type of 

mo·tions were irregula~c with arbitrary numbers of impacts 

per cycle. The 2 impacts/cycle motion was superior to the 

other types of motions, in the sense that it produced a 

steady response. The other types of motion, hov.Jever, were 

also effective in reducing the amplitude cf response in 

mos·t cases. 
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c. A heavier damper particle was more effective in re

ducing response in the primary mode but produced transients 

of larger magnitude. The weight of the particle lowered 

the frequency of resonance of the system. 

d. For a given base acceleration, the displacement ampli

tude at the third mode resonance is much smaller than that 

at the first. Therefore, the application of ·t.he damper in 

this mode required a more sophisticated design for clearance 

adjustment. The investigation at the third mode was car

ried out with only one value of the clearance. 

e. The primary nature of the response was sinusoidal. 

£. The damper unit used in the experimental investigation 

was relatively smaller than those used by other workers in 

the field, and as such, the level of the noise generated 

was a minimum. Illustrative of this, it may be stated that 

the noise of the damper impact was literally inaudible due 

to the noise of the operating accessories of the exciter. 

The frequency response of the system is illustrated 

in Figs. 5.5 & 5.6 as plots of stress versus the frequency 

ratio through the third mode. The reduction in stress 

amplitude when dampers were applied was interpreted as the 

ratio of the stress amplitudes with the damper to that 

without it (for the same base excitation). The amount of 

isolation obtained near the first and third mode resonance 

with various damper particles is shown in Figs. 5.7 through 

5.14. Assuming the actual system to behave as an equiva

lent single degree of freedom system, the first mode test 



results were plotted in non-dimensional form and are shown 

in Figs. 5.15 & 5.16. These curves, along with those 

shown in Figs. 4.7 & 4.8, provide information which 
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will allow application of impact dampers to similar systems. 
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VI. CONCLUSIONS AND FUTURE WORK 

A seminumerical technique has been developed to des

cribe the motion of sinusoidally excited, continuous 

systems with impact dampers attached. The solutions for 
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an arbitrary number of impacts per cycle have been deter

mined by two different approaches. In the first method, 

starting with the Bernoulli-Euler beam equation, the motion 

of the system is determined in terms of the sum of an 

infinite series. In the second approach, the system is 

described by a lumped parameter model and solutions have 

been obtained using the finite element method. For both 

procedures, the motion from collision to collision was 

determined analytically and the times of collisions were 

obtained with a computer. 

The predictions of the theory were substantiated by 

an extensive experimental study with two types of uniform 

beams, and three different damper particles. The system 

response to the base excitation was observed near the first 

and the third resonant frequencies. 

On the basis of the numerical calculations with the 

computer and the experimental investigation using the 

electrodynamic exciter, the following conclusions were 

drawn: 

l. The impact damper was observed to be very effective 

near and at the resonant frequency of the system where 
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damage might be expected to occur. Steady response was 

obtained for 2 impacts/cycle motion only for certain system 

parameters. Other kinds of motions were often effective 

in reducing system response near resonance but would be 

difficult to analyze theoretically. 

2. The collision of the damper particle with the beam 

often produced response in many resonant modes. For 

example,at the first natural frequency the collision often 

caused response oscillations in the third mode. This 

effect, of other mode participation, increased with heavier 

damper particles and was responsible for an increase of 

vibration amplitude at some frequencies, removed from 

resonance. 

3. The performance of the impact damper was observed to 

be dependent on the magnitude of the base excitation, 

showing thereby the nonlinear character of the damper unit. 

4. For motions of higher acceleration
1
i.e., at resonance, 

the impact damper was equally effective with either a 

vertical or a horizontal operating axis. 

5. Heavier damper particles usually produced more isola

tion near resonance. For a damper of a given mass,a 

particular clearance produced the most effective reduction 

of vibration amplitude. 

6. Results obtained by analytical solution showed better 

agreement with experimental results when greater values 

of clearance were used. 

The investigations presented in this report do not 
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exhaust the scope of further research in this field. One 

general area of interest would be the determination of the 

effectiveness of impact dampers applied to more complicated 

systems,such as plates and shells by an extension of the 

finite element technique. Further, damper location on the 

structures to give optimum isolation could be investigated. 

A problem with equal bearing on the present study is the 

effect of multiple impact dampers on continuous systems. 

These studies could also be expanded to include the 

contact resonance problem~such as the vibration of shafts 

within bearings with a given clearance. This latter 

problem area could include the vibration of beams with 

curved boundaries and with motion limiting stops at parti

cular locations along the length direction. 
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APPENDIX A 

CONTINUOUS SYSTEM SOLUTION 

A.l THE DIFFERENTIAL EQUATION OF MOTION FOR THE BEAM 

For the beam under consideration {see Fig. A.l) the 

following assumptions were made: 

1. Shear deformation and rotatory inertia effects are 

negligible. 

2. The beam is of homogeneous material and uniform in 

cross section (a, P, and E are constants). 

3. The internal damping is proportional to strain rate 

and external damping proportional to velocity. 

The stress in the material is a function of strain and 

strain rate as follows 

(A .1) 

Strain in a fiber at a distance Y from the neutral sur-

face is 

= - Y/R (A. 2) 

where R is the radius of curvature and is expressed as 

1/R (A. 3) 
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since (3W/3x) 
2

<< l. 

Upon substituting the latter relation into Eq. (A.2) there 

results 

• 

From basic mechanics of material the moment at a 

sect.ion is 

H(x) = f yo da 
a • 

(A. 4) 

(A. 5) 

Substitution of Eq. (A.l) and Eq. (A.4) into Eq. (A. 5) 

gives 

M(x) (A. 6) 

where I = ~ 
2 

y da , the area moment of inertia. 

Sumn1ing forces on the beam element of length dx, 

gives (see Fig. A.l) 

2 2 
- V + V + aV/ax dx- pa(a W/at )dx + p(x,t)dx 

or 

(A. 7) 



85 

Summing moments (about the Z-axis passing through the 

right end of the element) gives 

- M - aMjax dx + M - pa (a 2w;at2 ) dx dx/2 - V dx 

+ p(x,t)dx dx/2- cext(aw;at) dx dx/2 = o (A. 7 a) 

and neglecting terms of order O(dx) 2 reduces the equation 

to 

aM/ax = - V 

On differentiating further this reduces to 

a 
2

r-1;ax 2 = - av ;ax (A. 8) 

Substituting Eq. (A.7) and Eq. (A.6) into Eq. (A.8) gives 

a~ LEI ca 2 w;ax2
) + rcintca 3 w;ax 2 at~ + pa(a

2w;at2
) 

X 

+ c taw/at = ptx,t) ex 
(A. 9) 

which is the differential equation of motion for the beam. 

A .• 2 SOLUTION WITHOUT OR BET~'VEEN THE IMPACTS 

Eq. (A.9) is the equation of motion for the beam which 
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under sinusoidal base excitation and in the absence of 

external forces reduces to 

(A. 10) 

where 

W (x, t) 

The displacement, Wr(x,t), is measured relative to the base 

and the damping is assumed to be proportional to the rela-

tive velocity. 

Using the technique of separating variables, a soluti-

on to Eq. (A.lO) can be expressed in the form 

W (x, t) 
r 

Accordingly 

and 

= U(x) Q(t) 

= 

IV . 
= u Q 

.. 
= u Q 
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where (I) denotes d and ( . ) denotes d 

dx dt 
A hOmogeneous solution of Eq. (A.lO) is obtained by 

equating the right hand side to zero so that 

uiV 

{ :: }~ [a 
. 

I (pa~ + c extQ 2 

I E ] 

= w 

[Q . 
u + cintQ 

or 

UIV - K4U = 0 (A.ll) 

and 

0 (A. 12) 

In the above w is a constant and 

(A. 13) 

The general solution of Eq. (A.ll) is 

U (x) c
1 

Cosh(Kx) + c
2 

Cos(Kx) + c
3 

Sinh(Kx) 

+ c
4 

Sin(Kx) (A. 13a) 

where c
1

, c
2

, •• c
4 

are arbitrary constants. 

The use of the boundary conditions in the above 

equation allows evaluation of these constants (c1 ,c 2 , .• c
4

) 

as well as determination of the eigenvalues 
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The general solution of Eq. (A.l2) is 

(A.l4) 

where 

2~w = (A. 15) 

and 

(A. 16) 

A. 2 • l S I~,1PL Y SUPPORTED BEA!-1 

In this case displacements and bending moments are 

zero at both ends of the beam which lead to the following 

conditions 

w ( 0, t) 0 
2 2 

0 

}·(A.l7) 
= a wr(O,t)/ax = 

'VJ (L, t) = 0 8 2 ~·Jr (L, t) I ()x
2 = 0 

These boundary conditions imply that 

(a) U(O) = 0 (c) 

(A. 18) 

(b) U (L) = 0 (d) 
• 
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Imposing these relations on Eq. (A.l3a) yields 

and 

c 3 Sinh(KL) + c 4 Sin(KL) = 0 

} (A. 19) 

c 3 Sinh(KL) - c
4 

Sin(KL) = 0 

The latter two equations are a system of homogeneous 

equations in two unknowns c
3 

and c
4 

• In order that 

c 3 and c 4 may have nontrivial solutions, the determinant 

of the coefficients must be equal to zero, i.e., 

Sin(KL) Sinh(KL) 0 (A. 2 0) 

which is the frequency equation. 

Neglecting the solution, K=O, since Sinh(KL) ~ 0 

for K~O it follows that 

Sin(KL) = 0 (A. 21) 

or 

KL = nn ( n= 1 , 2 , 3 1 ••••• oo) • (A. 2 2) 

In view of Eq. (A.l3) 1 the characteristic frequencies 

are 



w = K 2 1 EI/ pa 
n · n 
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(A. 2 3) 

using Eq. (A.l9), substitution can be made into Eq. 

(A.l3a) to give 

U (x) = C Sin (n 'fn{/L) 

where C is another arbitrary constant. 

Thus for each characteristic value Kn there cor

responds a characteristic function 

(A. 24) 

or further, normalized displacements 

Wn(x,t) = Sin(nnx/L) (A. 2 5) 

A.2.2 FIXED BE&~S 

For fixed ends, the slope and displacement must be 

zero, that is, 

Wr(O,t) = 0 'Civ~io, t) I 3x = 0 

} (A. 2 6) 

Wr(L,t) 0 3W r ( L , t) I 3 x 0 = = 
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Following the procedure previously discussed, the 

characteristic frequencies are 

w = K
2 

IEI/p a n n (l'~. 27) 

The characteristic functions are 

Un(x) = cosh(Knx) - Cos(Knx) - an[sinh(Knx> - Sin(Knx~ 

(A. 2 8) 

where 

an= 
CosKnL - CoshKnL 

SinKnL - SinhKnL 

Kn(n=l,2,3, •.•. ) are the roots of 

Cos(KL) Cosh(KL) = 1 

and the normalized displacements are 

A.2.3 RESPONSE TO HARMONIC BASE EXCITATION 

(A. 2 9) 

(A. 3 0) 

The general solution of the equation of motion, Eq. 

(A.lO), with the forcing function is the sum of all the 

characteristic vibrations 



W (x,t) = 
r . 

00 

l: 

n=l 
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U (x) Q (t) 
n n 

(A. 31) 

where Un(x) are the functions given by Eq. (A.24) or Eq. 

(A. 2 8) • 

Substitution of Eq. (A.31) into Eq. (A.lO) gives 

+ 

00 

l: Un(x) Qn(t) 
n=l 

(A. 3 2) 

The orthogonality relations for these two types of boundary 

conditions are 

L 
f Un(:x:)Um(:x:) d:x: = 0 for n ~ m (A. 3 3) 
0 

, L 2 
L = f Un(x) dx = L/2 for simply supported ends 

0 
= L for fixed ends 

Multiplying both sides of Eq. (A.32) by Um(x) dx, 

integrating from zero to L and using the orthogonality 

relations, the latter equation reduces to 

where 

• 2 1 2 
On (t) + 2~nwnQn (t) + w Q (t) = -hru H Sin~t 

L 
= f U (x) dx 

0 n 

n n L n 
(A. 34) 

(A. 3 5) 



By integration, the constants, Hn, for the simply sup

ported case become 

for n=l,3,5, •••• 
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(A. 3 6) 

for n=2,4,6, •••• 

and for the fixed beam is 

~ {a - Sinh(KnL) Sin(KnL)} 
Hn = 

K n 
n=l, 2 , 3, • . . n • 

n Sinh(KnL) - Sin(KnL) 
(A. 3 7) 

Eq. (A.33) can be compared with the equation of motion 

of a single degree of freedom system and its particular 

solution can be expressed as 

where 

'¥ 
n 

-1 
= tan 

Sin(r2t -'¥ ) 
n 

V( ,,,2 _n2)2 + (2C n)2 
~n o6 snWno6 

(A. 3 8) 

(A. 39) 

The homogeneous solution of Eq. (A.3) is of the same 

form as Eq • (A • 14 ) , i . e • , 

(A. 40) 
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The total solution of Eq. (A.34) is 

(A. 41) 

which can be incorporated into Eq. (A.31). The relative 

displacement then becomes 

where 

and 

wdn 

F = 
n 

= w I 1 - ~ 2 n n 

(A. 4 2) 

(A. 4 3) 

The first two terms on the right hand side of Eq. (A.42) 

represent free vibrations of the system while the third 

represents forced response. 

The coefficients An and Bn are constants and 

depend on the initial conditions 



vlr (x' 0) w
0 

(x) 

} for 0 < X < L - -
• 
w (x, 0) = v

0 
(x) 

r 

For zero initial conditions these becomes 

Wr(x,O) = 0 

and 

When these equations are multiplied by Urn(x) dx 

and integrated from 0 to L there results 

A 
n 

B n 

== F 
n 

1 
::::---

wdn 

Sin\f 
n 

95 

(A. 44) 

(A.45a) 

(A. 4 6) 

(A. 4 7) 

Finally the general solution for the motion of both 

beam systems can be expressed as 

(A. 4 8) 
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A.3 SOLUTION FOR AN ARBITRARY Ir~ACT 

Assumptions: 

1. Impact between the particle and the beam is elastic. 

2. The duration of impact is negligible compared to the 

time of travel of the particle. 

3. The beam as well as the particle do not change position 

during impacts. 

4. Momentum is conserved between the particle and the beam. 

5. The velocity of the particle between impacts remains 

constant. 

Let 

t
1 

= the time when the first impact occurs. 

v_ = velocity of the particle before the impact. 

v+ = velocity of the particle after the impact • 

The solution for the displacement of any point on the 

beam at a distance x and time t is given by Eq. (A.48) 

until impact occurs. The solution after the impact may be 

expressed as follows 

W(x,t) = 
= -s t 
L: [ e n { An+ Cos (wdn t) + Bn+Sin (w ~ t) } 

n=l an 

+ FnSin(s-2 (t+t1 ) -'i'n)] un (x) + hSin(Sl (t+t1 )) • 

(A. 4 9) 

Just after the impact Eq. (A.49) with t=O describes 

the beam displacement while t=t1 in Eq. (A.48) describes 

the displacement just before impact. With the assumption 



from Eq4 (A.49) and Eq. (A.48) there results 

00 

L [An++ Fn Sin(~t 1 -~n>] Un(x) + h Sin~t 1 : 
n=l 
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Use of the orthogonality condition reduces the latter 

equation to 

-B t 
An+= e n 

1
{An Cos(wdnt

1
) + Bn Sin(wdnt

1
)}. (A. 51) 

Assuming the beam has an impact over the entire length 

with an impacting particle of mass m and velocity v, an 

incremental beam length must satisfy 

during the impact. 

Integrating over the entire length of the beam gives 

L 

J pa {W+(x,O) 
0 

L 

= J (v_ - v+)m dx 
0 

(A. 52) 



If the impact is restricted to occur only at a particular 

point, xd , Eq. (A.52) can be modified to include point 

impact as 

L • • 
J pa{W+(x,O) - W_(x,t

1
)} dx = 

0 

L 

f(v_- v+)mo(x- xd) dx 
0 

98 

(A. 53) 

Substituting for W+ and w_ and multiplying both 

sides of Eq. (A.53) by Um(x) gives 

L oo 

pa Jum(x)l I Un(x){Bn+wdn- SnAn+ + ~Fn Cos(~t 1 - ~n)} 
0 Ln=l 

L 

f Urn(x) ( v_- v+ )m o(x- xd) dx 
0 

using orthogonality conditions and the relation 

L 

J Um(x) o(x- xd) dx = Um(xd) 
0 

(A. 54) 

(A. 55) 



Eq. (A. 54) 

or 

reduces to 

= 

99 

-Sntl An(w dn Sinwdntl + Sn Coswdntl) 
e 

- e 
-Sntl Bn(wdn Coswdntl- Sn Sinwdntl) 

/ 

= v - v+ ) mUn(xd)/(paL) 

Substituting 

Dln = SnAn+ 

-s tl 

D2n = e n Bn(wdn Coswdntl - Bn Sinwdntl) 

-sntl (A. 57) 

D3n = e An(Wdn Sinwdntl + Bn Coswdn t 1 ) 

and 

= 
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into Eq. (A.56) gives 

= ( v_ - v+ ) Gn (A. 58) 

Using the coefficient of restitution between the 

particle and the beam (at the damper location) gives 

= v_ (A. 59) 

or 

= (A. 6 0) 

In the above equation, e is the coefficient of restitution; 

W+ contains An+ which is known, and Bn+· 

gives 

= 

-B t 
+(BnSinwdntl + AnCoswdntl) (-Bne n 

1
) 

Using Eq. (A.57) the latter equation can be put in 



the form 

00 

+ n(l +e) L Un(xd) Fn Cos(nt1 - ~n) 

n=l 

+ n(l + e) h Cosnt1 - e v_ 

Defining the following 

and 
00 

Eq. (A.61) reduces to 

00 

Substituting this result into Eq. (A.58) 

B 
n+ 

00 

101 

(A.61) 

gives 



or 
00 

Further defining 

and 

z· J. 

Eq. (A.62) becomes 

= 
Z· B· 

J. J. 

For n=l,2, .•• ,s, Eq. (a.63) can be expanded to give 

B2+GlZ2 

B2+(l+G2Z2) 

which is a system of n (n=S) nonhomogeneous linear 

102 

(A. 6 2) 

(A. 6 3) 

equations in n unknowns. In the computer program the 

unknowns, Bn+' are solved by the Gauss Elimination Process. 
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APPENDIX B 

FINITE ELEMENT SOLUTION 

Assumptions: 

l. Bernoulli-Euler beam ; p , a, E are constants. 

2. All external loads, if any, act only at the node points. 

B.l THE STIFFNESS t1ATRIX 

The beam is divided into N equal segments as shown 

in Fig. (B.l). The stiffness matrix connecting forces and 

displacement for the ith segment is 

f, 

1-:~ 
-3£ -6 -3£ Y. 

l l 

M· 2EI 2£2 3£ 9.,2 e. 
l l 

(B. l) 
~ 

fi+ l-6 3£ 6 3£ 

r-·1 • -3£ Q,2 3£ 2£2 
l+ 

or 

f. 
l 

6 -6 -3Q, -39, y, 
l 

fi+l 2EI -6 6 3£ 39, yi+l 
= 

2£2 
(B. 2) 

H. Q,3 -3Q, 3Q, .Q,2 8. 
l l 

M. 1 -3£ 3Q, £2 2£2 8 
l+ i+l 



G . 
.1. 

1 

I 1 

14 

2 

2 

f . 
.1. 

3 4 

I 3 I 4 I I 
----k=L/N~ 

(a) Uniform 

104 

N+l 

i N I 

L .I 
Beam 

fi+11 Ln 
IL ______ M_i_= __ p_a_£------~~ G i+ 1 4-

1 
I 

i+l 

i+l 
==4 ~ .. 

(b) Free Body Diagram of a Beam Segment 

·I 
(c) Lumped Mass Model 

Figure B.l Lumped mass model for a uniform beam 
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The stiffness matrix for the simply supported beam is 

where 

12 -6 0 0 • • . • . • . • 

-6 12 -6 0 • • . . . . • • 

0 -6 12 -6 ....•.. 

-6 12 

3£ 0 -3.Q, 0 •••••••••. 

0 3£ 0 -3£ ••••.•••.• 

(2Nx2N) 

matrix 

(N-l)x(N-1) 

(N-1) X (N+1) 

3£ 0 3£ 

3£ 0 

0 3.Q, 

-3£ 0 

0 

0 • • • • • • • • • • • • 

0 . • • • • • • • • • • • 

3£ ••••••••••• 

-3.Q, 

0 0 

0 

') 

2 Q,4 

(N+l) X (N-1) 

(N+l) X (N+1) 

(B. 3) 

(B. 4) 
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For a clamped beam the stiffness matrix is given by 

[ K] = 2EI/~ 3 

[:-~--:1 ( 2N- 2) X ( 2N- 2) (B. 5) 

where 

12 -6 0 0 . . . . . . . 
-6 12 -6 0 . . . . . . . . . . . . 

[ e ]= 0 -6 12 -6 (NXN) 

-6 12 

0 -3~ 0 0 0 . . . . . . . . . . 
3~ 0 -3~ 0 0 . . . . . . . . . . 

[ f }= 0 3£ 0 -3~ 0 0 . . . . . . . (NxN) 

3£ 0 

(B. 6) 

0 3£ 0 0 0 . . . . . . . . . 
-3~ 0 3~ 0 0 . . . . . . . . 

[ g J= 0 -3£ 0 3~ 0 . . . . . . . . 
(NxN) 

-3£ 0 

4£2 £2 0 0 . . . . . . . . . . . 
£2 4£2 £2 

0 . . . . . . . . . . . 
[ h1= 0 

£2 4£2 _Q,2 
0 

(NxN) . . . . . . 

£2 4£2 
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B.2 THE EQUATION OF MOTION 

The differential equations of motion for a multidegree 

of freedom system are given as 

The governing homogeneous differential equations of 

motion for the lumped mass model of the Bernoulli-Euler 

beam can be put in the form 

.. 
M I 0 y K11 I Kl2 

I I 
-- -i- -- + ---~---

I .. 
0 J 8 K21 K22 

Neglecting ( ((H. y.) 
l l 

for the lower modes, the rotation 

can be expressed as 

Substituting the result into equations involving linear 

displacements gives 

which reduces to 

(B. 7) 
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where 

[ s J = 

With a sinusoidal base excitation the absolute displacement 

can be expressed in the form 

and with this substitution the equation of motion reduces 

to 

= (B. 8) 

B.3 UNDAMPED HOMOGENEOUS SOLUTION 

By substituting 

(B.8a) 

into Eq. (B. 8) 

or 

(B. 8b) 
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where 

-~ -~ 
= 

Assuming a solution to Eq. (B.8b) in the form 

(B. 9) 

the characteristic determinant becomes 

= 0 

The solution of this equation gives the eigenvalues, wi, 

and these quantities together with Eq. (B.9) can be used 

to obtain the modal rna trix [A J (eigenvectors) . These 

characteristic vectors, in t!1e original coordinate system 

become 

The matrix [A J is normalized to give [ <P J such that 

product of l <!> JT l M ][<I> J is equal to iii.l I J iii being the 

generalized mass which is a constant. If[<~>] and [A] 
are related as 

(B. 9a) 
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then the constants, Ci, can be obtained from the equation 

(B.9b) 

where 

D. = 
1 

It can also be shown that [ w j satisfies 

B. 4 VISCOUSLY DAJ.iPED DISCRETE SYS'l'EHS 

(B. 10) 

(B.ll) 

It is assumed in the following derivation that the 

damping is due to the relative velocity only and that it 

is obtained by a linear combination of stiffness and mass 

matrices, i.e., 

(B.l2) 

where c 1 and c 2 are constants. 

When damping is included the differential equation of 

motion with harmonic base excitation becomes 
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A transformation to principal coordinates can be effec-

ted by using 

(B. 14) 

where [ 1' J is the modal matrix for the undamped system. 

T 
Prem~ltiplying Eq. (B.l3) by[w J and substituting Eq. (B.l4) 

gives 

[~y[MJ[~J{P~ + [~f[c][~J{Pf +[~Y[K][~J{p? 

=[~ r {!11 h>2
2 

Sin><t 

With the help of Eq. (B.l2), Eq. (B.ll) and Eq. (B.lO) 

this equation reduces to 

ml I ~pt + [c1in[I] + c2m('wiJ ]{P} + m[ wi l{P~ 

=[ ~ r {Ni} h>l
2 

Sin>lt 

The ith equation then becomes 

.. 
p. 

l 
+ = 

1 p. Sinstt 
l 

m 

where ~i = damping ratio for the ith principal mode 

ith natural frequency 

(B.lSa) 

(B. 15b) 



and 

2t", W, 
sl.. 1.. 

= 
2 

c
1 

+ c w. 
2 1.. 

• 
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Comparing Eq. (B.lSb) with the equation of motion for 

a single degree of freedom system the solution can be 

developed as two parts, that of free and forced vibrations. 

Case I Free Vibration 

Refering to Eq. (B.lSb) 

= 0 

where 

Based on these results, the solution to Eq. (B.l5a) is 

where 

[ E J = diag. Le- F;iW~J 

[sinD] = diag.[Sinwdi \] 
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and {A} and tB} are constants to be determined using the 

initial condition. 

Case II Harmonic Base Excitation 

In this case the ith uncoupled equation of motion is 

given by Eq. (B.l5b). Applying a standard approach pi(t) 

can be expressed in the form 

i.e., the total solution consists of a homogeneous and a 

particular part. 

The former is 

The particular solution is 

p. (t) 
-l p 

Hence 

F· 
l 

-
m 

1 
= 

m 

-

((wf -r?) Sinrtt- 2f;iwis-2 Coss-2t) 

( w~ - r-22 ) 2 + ( 2 ~. w · D) 2 
l l l 

"" -1 
2 

Pi + Q~ tPJ SinQt - (QiJ Cosnt 

"" 
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where 

p, = w~ - n2 
~ J.. 

The total solution in the original coordinates 

{Y(t)} =[wJl E J{ [srN~ {A} + [cosn] {s}} 

+ ~ [ ¢ ]['Pf + Qfj -l [~ Sin>lt - Qi Cos~] { F} 

+{t} h Sin>lt (B.l6) 

If the initial conditions on the system are 

and 

then the condition on displacement gives 

T 

Multiplying both sides by ~J [Ml and using the normaliza-

tion relation, the constants B. 
l 

are given by 



If the initial displacements are zero, then 

{Bi} 
"-... 

{F} 1 Q. 

= 
~ 

- p~ + Q~ m 
l l 

""' 
The initial condition on velocity gives 

Premultiplying both sides of this equation by[~]T [MJ 
results in 

[¢Y[MJ{Yro~ = m {<Aiwdi- Bi~iwi)} + ffi [~Pfn:iQf} {F} 

or {Ai} = ~ [ ~dJL¢ r[t·1J{Yr+ t.:- Bi} 

Qp. 
l 

P~ + o? 
l l 

""-. 

Again, if the initial velocities are zero, then 

115 
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B.S RESPONSE DUE TO ARBITRARY IMPACT 

For arbitrary impacts the following general assumptions 

are made 

1. The time of impact is very small compared to the time 

period of vibration. 

2. The impact is elastic and only the masses at the 

location of damper participate in conservation and transfer 

of momentum. 

3. The beam as well as the particle do not change position 

during the impact. 

4. The damper can be located at any of the node points. 

The solution after and between impacts may be written 

as 

(B. 17) 

where A+ and B+ are to be determined from the initial 

conditions just after the impact. 

Since the displacement during the impact remains un-

changed, for an impact at time t=t1 , Eq. (B.l6) becomes 
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Equating these two results gives 

• 

For a damper particle of mass m and velocity v and 

symbols (+) and (-) as subscripts to denote a quantity 

after and before impact respectively, then from the defini-

tion of the coefficient of restitution 

or 

where 

and 

- e(Yd-- v _) 

Yd+ - v = - e dv 

Yd = beam velocity at damper location 

dv = y -
d-

v_ 

(B.l8) 

Since the motion of the system during impact must satisfy 

the momentum equation, then 

rnd yd- + mv = rnd yd+ + mv+ -

or 
m 

yd+ + v+ = em (B.19) 

md 

rn 
em = yd- + - v_ 

md 
where 
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and md = mass at the damper location including the damper 

container. 

Solving Eq. (B.l8) and Eq. (B.l9) gives 

v = 

and 

(Cm + e dv) 

(l + m/md) 

(Cm + e dv) 

(1 + m/md) 

- e dv (B.20) 

For all node points in the beam the velocity before 

and after impact remain the same except at the damper loca-

tion. The velocity just after the impact at this node is 

given by Eq. (B.20). Differentiating Eq. (B.l6) and 

setting t=t1 gives the velocity before impact as follows 

Hence the beam velocity just after impact becomes 

(B.2l) 



Differentiating Eq. (B.l7) and setting t=O gives 

{ ~} + = [ ¢ J { Ai+ Wdi -

+ ~ c ¢ J r (Pi 

+{H h Sin~tl 

w.~. B.+} 
l l l 

Cosstt1 + Qi 

p, + Q? 
1 l. 

which together with Eq. (B.21) yields 

These are the new constants which enable the solution to 

be carried forward to the next impact. 
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APPENDIX C 

EXPERIMENTAL EQUIPHENT AND SPECIMENS 

C.l ELECTRODYNAMIC EXCITER 

The r~ Model C25H vibration exciter was used in this 

study. This unit is an air cooled, vibration exciter 

capable of producing sinusoidal mechanical vibrations over 

the frequency range of 5 - 2000 cycles per second. It has 

a force rating of 0 - 3500 pounds and a double amplitude, 

head displacement of 0.5 inch for continuous duty. 

The exciter driving unit is equipped with an HB Model 

252 Power Amplifier and MB ~odel N695 Oscillator having an 

automatic displacement, velocity and acceleration servo 

control, over a frequency range of 5 - 5000 HZ. 

c.2 RECORDING INSTRUr1ENT 

a. ACCELEROMETERS 

The following were used: 

ENDEVCO Model 224C S/N VM93 11.6 pc/g 803PF 

ENDEVCO Hodel 224C S/N VM94 11.7 pc/g 823PF 

ENDEVCO Hodel 2221D S/n PA99 17.5 pc/g 892PF 

b. CHARGE AYtPLIFIER 

120 

Three ENDEVCO I'·1odel 2710B solid State Charge l\Inplifiers 

were u:::;c6. to amplify the accelerometer signal. 

c. OSCILLOSCOPE 

A Tektronix oscilloscope equiped with Type 3B3 time 



base, Type 3C66 carrier amplifier (bridge balance), and 

Type 3A6 dual trace amplifier, was used. A Type c - 12 

Polaroid Camera was also available with the oscilloscope. 

d. DIGITAL COUNTER 

Beckman Universal Timer Model No. 5230 was used. 

e. LIGHT BEM1 RECORDER 

CEC Type 5-124 Recording Oscillograph with CEC Type 

1-118 Carrier Amplifier was used to get the strain - time 

recording~. 

f. STRAIN GAGES 

121 

All strain gages used were M _ M Type EA - 13 - 250BB

l2 0, ~", 12 0 ohms, G. F. = 2. 07. 

C. 3 TEST SPECI!c1ENS 

a. BEA1·1S 

Both clamped and simply supported beams were machined 

out of l/8" thick mild steel plate and were 25 - ~" x 1~" 

b. II'1P ACT DA~Ll'ERS 

A pair of thick washers constituting the container for 

the damper particle was made of hardened steel. The col

lars attached to the clamped ueam weighed 99gm. and those 

for the simply supported beam weighed 90.5 gm. 

Three different damper particles of weights 17 gm., 

44 gm. and 73 gm. were made of stainless steel. 

c. END SUPPORTS 

Hard steel rollers of 1/16 diameter were used to allow 



axial motion of one end of the clamped beam. The simply 

supported end was designed with~" wide, .025" thick 

spring steel as the supporting element. 

237274 
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