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ABSTRACT 

The Application of Microeconomics to the Design 
of Resource Allocation and Control Algorithms 

Donald Francis Ferguson 

In this thesis, we present a new methodology for resource sharing algorithms in distributed systems. 

We propose that a distributed computing system should be composed of a decentralized community 

of microeconomic agents. We show that this approach decreases complexity and can substantially 

improve performance. We compare the performance, generality and complexity of our algorithms 

with non-economic algorithms. To validate the usefulness of our approach. we present economies 

that solve three distinct resource management problems encountered in large. distributed systems. 

The flrst economy performs CPU load balancing and demonstrates how our approach limits com· 

plexity and effectively allocates resources when compared to non-economic algorithms. We show 

that the economy achieves better performance than a representative non-economic algorithm. The 

load balancing economy spans a broad spectrum of possible load balancing strategies, making it 

possible to adapt the load balancing strategy to the relative power of CPU vs. communication. 

The second economy implements flow control in virtual circuit based computer networks. This 

economy implements a general model of VC throughput and delay goals that more accurately de· 

scribes the goals of a diverse set of users. We propose Pareto-optimality as a definition of optimality 

and fairness for the flow control problem and prove that the resource allocations computed by the 

economy are Pareto-optimal. Finally, we present a set of distributed algorithms that rapidly com· 

pute a Pareto-optimal allocation of resources. 

The flnal economy manages replicated, distributed data In a distributed computer system. This 

economy substantially decreases mean transaction response time by adapting to to the transactions' 

reference patterns. The economy reacts to localities in the data access pattern by dynamically ag-

signing copies of data objects to nodes in the system. The number of copies of each object is ad· 

justed based on the write frequency versus the read frequency for the object. Unlike previous work, 

the data management economy's algorithms are completely decentralized and have low computa· 

tional overhead. Finally, this economy demonstrates how an economy can allocate logical re-

sources in addition to physical resources. 
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1.0 Introduction 

This dissertation focuses on the problem of allocating and sharing resources in a distributed system. 

We propose a novel approach to the design of resource allocation and control algorithms in dis

tributed systems. Our thesis is that a distributed system should be structured as an economy of 

competitive microeconomic agents. Each agent independently tries to meet its individual goals, and 

no attempt is made to achieve system wide performance objectives. The competition between the 

agents computes a competitive equilibrium. In equilibrium, the global demand for each resource 

equals the supply of the resource, and the individual agents' demands can be satisfied. We show 

how a competitive equilibrium is an optimal, fair allocation of resources. 

As distributed systems increase in size and power, the complexity of making resource management 

decisions grows dramatically. An important contribution of microeconomics to resource manage

ment in distributed systems is a methodology for limiting the the complexity of solving resource 

allocation problems. Our implementations of the three economies demonstrate how the new 

methodology limits complexity in two ways: I) The system is inherently modular, and 2) All de

cision making is inherently decentralized. 

To evaluate our methodology, we present three economies that solve classical resource management 

problems in distributed computer systems. These are I) load balancing [29], 2) flow control in 

virtual circuit networks [9], and J) file allocation [JJ]. We compare both the structure of the 

economies and their performance to traditional algorithms for solving these resource management 

problems. 

The next se<:tion of this chapter elaborates on the complexity problems of designing resource 

management alaorithms in distributed computer systems. This sets the motivation for pursuing the 

research presented in this dissertation. After the problems are discussed, a subsection gives an 

overview of the contributions that microeconomics can make to the study of distributed systems. 

Finally, the last two sections of this chapter present the main goals of this thesis, and an overview 

of its research contributions. 

1.1 The Problem 



Backbone Network 

Figure I. A Representative Distributed System: This figure shows a simple distributed 
system. It is composed of a long haul backbone network connecting multiple 
local area networks (point-to-point, bus, ring, etc). Each LAN contains 
processors (P), disks (D) and potentially many other physical and logical 
resources. 
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Figure I on page 2 shows a representative, large scale distributed system. This system is composed 

of a backbone network connecting several local area networks. Each of the local area network has 

its own interconnect architecture that connects processors and other hardware resources. The class 

of software applications supported by such a network is potentially infInite. 

To fully acllieYe the potential of this distributed system, resources must be shared among the users 

of the system. Some resources, such as the backbone network, may be owned in cornmon and must 

be shared for this reason. Furthermore, some users may be willing to share their resources with 

others in the system, provided that they are allowed to share resources owned by others in return. 

So, a set of algorithms is needed to control the allocation and sharing of resources within the sys-

tem. 
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Computer science has a long history of pursuing research on resource sharing algorithms. In single 

processor systems, multiprocessing and virtual memory are two examples [23]. For computer net

works, multiplexing on physical links, flow control and routing are areas that have been extensively 

studied [9, 81]. Most previous research on the design of resource sharing algorithms is character

ized by at least one of two common features. The first feature is centralization. The information 

needed to make a resource sharing decision is gathered in a central location, the decision is made 

at this location and the result is distributed. For example, centralized algorithms for concurrency 

control [8] and CPU load balancing [29] have been studied. The second feature is consensus. The 

agents in the distributed system exchange information and attempt to achieve a common goal for 

the system as a whole. Consensus algorithms for routing and flow control [9], concurrency control 

[8J and load balancing [29] have also been proposed. For example, the common goal of a load 

balancing algorithm (centralized or consensus) could be either minimizing the average response or 

maximizing the total throughput. 

Centralized and consensw based resource sharing algorithms attempt to compute an allocation of 

resources that optimizes some system wide performance metric. This is done in the hope that im

proving the global performance of the system will increase the "happiness" of the individual users. 

It may be the case that the global performance objectives do not accurately represent the goals of 

the diverse individual users. Defining global objectives that accurately reflect individual goals is be

coming incre<Uingly more difficult as the users of the system become more diverse. We show how 

a competitive equilibrium is an optimal allocation with respect to the diverse, conflicting individual 

goals. 

As distributed systems increue in complexity, it is increasingly more difficult to design centralized 

or distributed consensw algorithms that effectively allocate the resources in the system. The com

plexity is cawed by many problems. The fllst problem is one of scale. As the number of nodes, 

resources and applications composing the system increases, centralizing information becomes im

practical. The communication overhead incurred by centralizing the information needed to make 

resource allocation decisions becomes prohibitively expensive. Furthermore, centralized decision 

making does not utilize the increased computational power of a distributed, multiple processor 

system. 
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Distributed, cooperative algorithms do not centralize infonnation and do utilize the multiple re

sources. However, as the size of systems increase, the rate of change of important system state in

formation needed for resource management also increases. It may be the case that the dynamic 

system state changes more rapidly than a consensus can be reached. Furthennore, the message cost 

of reaching a consensus increases with the size of the system. 

A second cause of complexity is heterogeneous users. Increased CPU power, link speeds and 

memory capacity make it possible to support progressively more diverse applications in the system. 

Diversity in the community of users makes it difficult to defme a global performance metric that 

accurately reflects the individual user goals. For example, in a database management system, the 

system may try to increase throughput by increasing concurrency. The network's goal may be low 

response time of the messages it processes. The underlying operating system may be attempting to 

maximize processor and memory utilization. It is not obvious that a single system goal can ade

quately cover these three sub-goals. Furthennore, there may be conflicting goals. For example, 

consider a distributed database management system supporting both simple update transactions and 

complex queries [21]. The submitters of the updates might be primarily concerned with response 

time, while those submitting complex queries may be concerned with throughput. It is difficult to 

define a system wide goal satisfying l?oth types of users because it is typically the case that increased 

throughput causes increased response time. The same problem occurs in the network connecting 

the remote users to the DBMS system. Complex queries may require shipping large amounts of 

data through the network. So, throughput is important. The response time goals of the updates 

imply that network delays should be minimized. which conflicts with increasing throughput. A 

fmal problem with attempting to defme a system wide goal is that the goal must be able to handle 

unforeseen new applications. 

Finally, both centralization and cooperation are inherently unstable. In a system using a single 

processor to perform resource management decisions, a single failure can cripple the system. Co

operative algorithms face the same problem. If even one processor fails to cooperate, or does not 

cooperate as expected. the entire process can fail. Techniques such as Byzantine agreement [61] can 

be used to address this problem. but at the price of increased complexity and resource requirements. 
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This thesis proposes using concepts drawn from microeconomics to design resource sharing algo

rithms. In the next subsection. the new tools made available by economics are overviewed. 

1.2 The Solution 

Microeconomics can make two contributions to the study of resource sharing algorithms. The fIrst 

is a set of tools for limiting complexity and improving perfonnance. The second is a set of math

ematical models that can yield new insights into resource sharing problems. 

Microeconomics provides three tools that can be used to limit the complexity of making resource 

sharing decisions in a distributed system. The first is decentralization. The system is structured as 

a set of autonomous agents. and each agent has its own goals. plans for attaining these goals and 

endowment of resources that it can use. All decisions are made independently. and there is no at

tempt to collaborate on improving the system as a whole. The second tool offered by microeco

nomics is competition. Each agent selfishly attempts to maximize its own happiness. The agents do 

not cooperate and do not attempt to reach a consensus. The third tool is the use of money. and a 

price system. The price charged for a resource provides a single measure of the value of a resource 

compared to all others. Money can be used to define the relative importance. or priority, of the 

agents in the system. This helps deal with heterogeneity and conflicting goals. 

The problems caused by scale are solved by decentralizing the decision making. When designing the 

resource management algorithms. it is not necessary to take the entire system state into consider

ation. and it is not necessary to obtain a coherent view of the system state. Instead. the algorithms' 

designer simply focwes on each agent as an individual. The goal is to design algorithms that max

imize each agents satisfaction independently of all others. The overall efficient allocation of re

sources is the indirect result of the competition among agents. It is not intuitively obvious that 

local. selfish optimization yielw a globally effective allocation of resources. One of the main results 

of this thesis is demonstrating that this assertion is true for problems in distributed computer sys

tems. 

Designing the system as a set of competing agents improves the system's software structure because 

the resulting algorithms are inherently modular. Agents may change their algorithms. and enter and 
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exit the system without necessitating changes in any other agents. This will be demonstrated with 

examples in this dissertation. 

Decentralization and competition also solve the problems caused by heterogeneity and diversity. It 

is no longer necessary to define a common system goal that adequately reflects the wants and desires 

of the diverse community. It is simply necessary to understand the goals of the individuals, and the 

economic competition computes a system state that is "optimal" with respect to the community 

of users. One of the major contributions of microeconomics is a new defmition of optimality for 

resource allocation in a heterogeneous distributed system: Pareto-optimality [40]. The effectiveness 

of this definition is demonstrated in this dissertation. 

Conflicting goals are resolved by competition among the agents whose goals conflict. The economy 

computes a resultant state that is an equilibrium point between the conflicting goals. The resulting 

state may not be optimal with respect to any individual. but is optimal with respect to the system 

as a whole. The economic competition in the system detennines the prices charged for resources 

and services. These prices reflect the relative value of resources and provide a single measure of 

value for all resources. Agents are allocated money by some policy that is external to the economy, 

and this money is used to purchase the resources the agent demands. The initial endowment of 

money allocated to an agent defines its priority relative to other agents. The agents simply purchase 

the resources they desire at the given set of prices and use these resources as they see fit. There is 

no attempt to merge disparate goals into a single system wide goal. 

Finally, competition is inherently stable. The failure of agent A in an economy can only harm A 

itself. Such a failure cannot cripple the system al a whole. The reliability of distributed systems 

structured using microeconomics concepts is a major benefit, but it is not addressed in this disser

tation. This disaertation focuses on the improvements in performance and system structure that are 

achieved when these tools are used. Reliability of economies is a promising area of future work. 

The mathematical models of microeconomics can provide new insights when computer systems are 

structured as competitive economics. These models can be used to prove optimality of resource 

allocations computed. It is also possible to prove the existence of an optimal equilibrium point. 

In this dissertation, we demonstrate the effectiveness of these models by applying them to the flow 

control problem in computer networks [9]. We also show that these models must be altered to 
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accurately describe the problem being studied. Additionally. we cannot make the same assumptions 

as economists and it must be proven that the computer system possesses the properties typically 

assumed by the economic models. This is problem is explained in chapters 2 and 4. 

1.3 Goals of the Dissertation 

This dissertation has the following goals: 

I. To explore the similarities between complex distributed computer systems and economies: 

a. To see which tools provided by economics can be applied to problems encountered in 

large distributed computer systems. 

2. To transform these tools into effective resource sharing algorithms and apply them to problems 

in distributed computer systems. 

a. To compare the performance of these algorithms with non-economic algorithms. 

b. To determine the effects on complexity. 

c. To demonstrate the broad applicability of the tools by solving diverse resource sharing 

problems in distributed systems. 

3. To study the applicability of mathematical economic models to distributed systems. 

a. To determine the a"sumptions that must be changed. 

1.4 Dissertation Overview 

Chapter two presenu the economic background for the results presented in this dissertation. This 

background falls into two categories. First, we give a concise survey of the economic concepts re

lated to the work of this dissertation, and we provide examples of the ways these concepts describe 

phenomena in distributed computer systems. These examples provide further motivation for our 

research. Secondly. we survey previow work on applying economic concepts to resource manage

ment problems in distributed computer systems. We compare and contrast this previous work with 

the results presented in this dissertation. 

Chapter three presents the Load Balancing Economy. 'This economy allocates CPU resources to 

jobs submitted for execution in a distributed system. Since the economy performs load balancing 
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across multiple processors, jobs migrate from processor to processor seeking CPU service. So, this 

economy also controls the allocation of communication resources to the submitted jobs. The load 

balancing economy demonstrates the applicability of decentralized decision making, competition 

and a price system to a traditional problem in computer science. In this economy, the processors 

selfishly attempt to maximize revenue and do not cooperate with other processors in an attempt to 

minimize average response time or maximize average throughput. Similarly, the jobs in the system 

compete with each other to obtain the CPU and communication resources they need to complete. 

This economy demonstrates how structuring distributed systems as an economy of microeconomic 

agents yields resource allocation algorithms that are inherently decentralized and modular. We will 

demonstrate that both the jobs and processors can change their goals and strategies transparently 

to all other agents. 

The load balancing economy is extremely versatile and can easily be tuned to implement almost 

any load balancing strategy. The economy spans a broad spectrum of possible load balancing 

strategies. To evaluate the effectiveness of this economy, we compare its performance against a 

representative non-economic load balancing algorithm. This comparison shows why the load bal

ancing economy is a significant contribution to the load balancing problem independently of ex

ploring the applicability of economics to distributed systems. Finally, we discuss the effectiveness 

of wealth as a priority scheme, and the role of learning in determining the response time of indio 

vidual jobs and the average response time of the system as a whole. 

Chapter four presents the Flow Control Economy. This economy allocates corrununication band

width to virtual circuits in a computer network. The flow control economy illustrates the broad 

applicability of microeconomics to distributed systems by solving a vastly different problem from 

load balancing. The main contribution of this chapter is demonstrating the power of mathematical 

economics for the de!cription of distributed system problems and to the design of effective resource 

management algorithms. Mathematical economics provides tools for proving that the resource al

locations computed by an economy are Pareto-optimal. We prove that the algorithms of the flow 

control economy compute Pareto optimal allocations of communication resources. Pareto

optimality is a powerful defInition for both optimality and fairness in heterogeneous distributed 

systems. We present a formalization of fairness metrics for the flow control problem and compare 



9 

Pareto-optimality with previous definitions of fairness. Finally, we prove the existence of a 

Pareto-optimal equilibrium for arbitrary networks. 

Compared to previous work on flow control, the flow control economy implements a VC model 

that captures the diversity of users of virtual circuits in computer networks. Under this model, each 

virtual circuit's user is able to choose an independent throughput-delay goal. We also present a set 

of completely decentralized algorithm for computing optimal allocations of resources. These algo

rithms are iterative and rapidly converge to optimal allocations. 

Chapter five presents the Data Management Economy. This economy implements parts of the 

Transaction Manager and Data Manager layers of a distributed data base system [8]. This chapter 

demonstrates the self-tuning behavior of economies. The data management economy improves 

mean transaction response time by adapting to the read/write ratio of transactions, and to localities 

in transaction reference patterns. This adaptation is effective over a broad range of parameters. We 

illustrate how this behavior occurs through examples. This economy also demonstrates that our 

microeconomic approach can control the sharing of logical resources (access to data) as well as 

physical resources. Finally, we point out some limitations of the current model. 

Finally, chapter six is the conclusion. This chapter encapsulates the major results of the dissertation 

and also discusses future avenues of research opened by the results of this thesis. These fall into two 

categories. The first are direct extensions of the economies presented in this dissertation. The second 

avenue branches into new areas of research. The most promising of these is generalizing math

ematical economics so that it can be applied to a broader set of distributed computer system 

models. 
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2.0 Economic Concepts and Related Work 

This chapter serves two purposes. First, it contains a presentation of the economic concepts that 

are used in the three economies that are the research results of this dissertation. The discussion of 

economic concepts in this section is abstract. This is done so that the reader can use this section 

as a starting point to applying these concepts to other distributed resource allocation problems. 

The second purpose of this chapter is to provide a survey of previous work on applying economic 

concepts to problems in computer science. We feel that the material in this dissertation opens new 

avenues of research and compliments previous work. 

The emphasis in this dissertation is on algorithms for allocating and controlling shared resources 

that improve system performance. This is a very broad area of research, but it is not the only area 

in which economic concepts can be used by computer science. Miller and Drexler [72] discuss other 

possible contributions that the field of economics can make to computer science as a whole. ~ 

work provides a very compelling motivation for the research in this area. 

2.1 Economic Concepts and Terminology 

This section provides an overview of the economic concepts and tenninology used in the disserta

tion. For more detailed presentations of this material, Hildenbrand [40], Arrow and Hahn [5] and 

Tlte Handbook of Mathematical Economics [I] are recommended. The material in this section is 

drawn from these sources. 

2.1.1 Resources and Agents 

The major similarity between computer systems and economies is the existence of a set of resources 

to be shared between multiple usen. In economies, labor and coal are examples of physical re

sources. The physical resources in a computer system could be CPU time, storage and communi

cation bandwidth. There may are also be logical resources in both economies and computer 

systems. In an economy, a patent is an example of a logical resource. In a computer system, a da

tabase lock can be considered a logical resource. 
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Formally, the set of resources in an economy is denoted RI , Rl , ... , RN . An allocation is a collection 

or bundle of the various resources, and is a vector in !R H• If x = < XI' ~, ... , xH > is an allocation, 

then the allocation contains XI units of resource Rj • Figure 2 on page 12 depicts a simple computer 

system with two resources. Rc represents the CPU and R", represents main memory. An allocation 

x = < I Oms, 128 Kbytes> contains 10 milliseconds of CPU time and 128 Kbytes of main memory. 

In addition to resources, an economy contains a set of agents AI, Al , .... AM' which are the active 

participants in the economy. There are two types of agents in an economy. The ftrst type is a 

supplier (or producer). If agent A, is a supplier. it controls some resources that it makes available 

to be sold to the second type of agents. which are consumers. In a computer system, the operating 

system (or processor) can be modeled as a supplier. It sells CPU time and memory to users ofthe 

system. which are the consumers. Application programs and transactions are examples of con

sumers in a computer system. The sets of suppliers and consumers are not necessarily disjoint. For 

example, a database management system consumes resources (CPU, Memory) needed to perform 

its functions. It also provides access to data and locb needed by user submitted transactions. 

2.1.2 Prices, Budgets and Demand 

A price system (or price vector) is a vector p in IRN with Pi ~ O. PI is the price per unit for resource 

R,. In economic theory, p is known by all agents. In a computer system, communication delays 

may make total knowledge of p impossible. The agents must be robust in the face of limited 

knowledge. This problem is addressed in different ways in the economies of chapters 3, 4 and 5. 

Given a price system p it is possible to detennine the cost or value of an allocation of resources x. 
This is simply, 

N 

P .; = L (PI • XI)' 
i-I 

For example, in Figure 2 on page 12, if CPU time is $1 per millisecond and memory is $0.01 per 

byte. then the allocation x = < I Oms, I Kbyle> has value (costs) $20.24. Since consumers must 

purchase resources, they must be allocated some money when they enter the system. The initial 

wealth. or endowment of agent 14, is denoted W, . 
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Figure 2. Resources: A simple economy with two resources. These resources are the CPU 
and the main memory. 

Given a price system and an endowment. the set of allocations agent A, can afford is called its 

budget set and is denoted 

Figure 3 on paae 13 shows a simple computer systems. This system can be modeled as an economy 

of four apmta and two resources. The resources are CPU time and main memory. and these are 

supplied by the operating system agent (A.). There are three application programs in the system. 

They are the following: 

l. A database management system (DBMS) : This program has an endowment of $1,499.000. 

2. A numerical algorithm (NA) : This program has endowment of $401.000. 
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Figure 3. A Simple Computer System: Thi! system contains two resources (CPU and 
Memory) and four agents, 1 supplier and 3 consumen of CPU and Memory. In 
this figure, the values next to the agents represent their demand for resources. For 
example, the graphic! application demand! 100,000 instructions per second and 
as much memory as possible. Monotonic means that more of a resource is always 
better. 

J. A graphics application (GA) : endowment of $1,100,000. 

If the current price vector i! 

-::: < ~ ..J.L > 
PIPS' byte ' 

where IPS is instruction! per second, then the allocation 

; = < 1 ~IPS, lOS bytes> 

is in B(GA,p), but 
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~ 5 
x = < 1 MIPS, 10 bytes + 1 > 

is not. 

The endowment of an agent and the current price vector define the agent's budget set which is the 

set of resource allocations it can afford. Obviously, not all elements are equally "desirable," how-

ever. In the example of Figure 3 on page 13, we could we could assume most agents would rate 

allocation 

-; = < 1 MIPS, 10
6 

bytes> 

less desirable than allocation 

y = < 1.5 MIPS, 2 x 10
6 

bytes> . 

In an economy, each agent has a preference relation that formally defmes its individual notion of 

desirability. Formally, agent A,'s preference relation is denoted ~i and is a binary relation on the 

set of possible allocations. If for two allocations. x ~i y , then Ai rates allocation x at least as de

sirable as y. If it is not also the case that y ~, x , then x is slrictly prefe"ed to allocation y. Strict 

preference is denoted x >-i y. If we have x ~i y and; ~l X , then A, is indifferent between x and 

; . Indifference is denoted x ..... , y . 

In the example of Figure 3 on page 13, a!sume that the numerical application requires only 103 

bytes of storage to execute and needs a! much CPU a! possible, i.e. - the application is extremely 

CPU bound. A!sume that if more then l()l bytes is purchased, it will go unused .. Then, for the 

following three allocations: 

1. x = < 1 MIPS, l()l bytes> 

2. ; = < 1.5 MIPS, l()l bytes > 

3. Z = < I Y1IPS , 10' bytes > 

we would have 
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3. 

Given an agent Ai and a price system P I the budget set may have many elements. The agent chooses 

an optimal element in B(A" p). where optimality is defined by ~j' The set of optimal elements in 

B(A" p) is called the demand set and is denoted $(A" p). Fonnaily, 

In the example of Figure 3 on page 13, assume that p = < I, I>. The numerical application's de-

mand set has a single element 

- 5 3 $(A NA .P)={<4.0x 10 IPS, 10 bytes >}. 

The preference relation and the endowment are key tools used to handle the diversity present in a 

large, distributed system. Each agent is free to rank allocations of resources as it sees fit, and there 

is no need to define a global optimal allocation. To demonstrate the modeling of diversity, we ex-

pand on the example of Figure 3 on page 13. This example will also be used in the following 

sections. In the example of Figure 3 on page 13, assume that the DBMS application is interested 

in maximizing throughput. Furthennore, assume that the DBMS executes 10,000 instructions and 

makes 5 data referen~s per transaction. The size of the database is 101 bytes. If a data object ref-

erenced is in the cache. then it takes an insignificant amount of time to perfonn the access. Oth

erwise, 100 milliseconds are needed to fetch the object from secondary storage. Furthennore, 

assume that the DBMS executes the transactions serially, and that it is suspended while an I/O is 

being performed. Given these assumptions and assuming that the accesses are unifonnly distrib

uted, if i .. < xl.:c., > is an allocation of resources to the DBMS, then the expected delay per 

transaction is 

- I - -
and the throughput is T(x) = --_- . In this case, for two allocations X and y , we have 

D(x} 
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if, and only if, 

The third application in this example is a graphics application. Assume that this application is 

memory bound. It needs only CPU resources of lOS instructions per second, but wants as much 

memory as possible. Assume that if this agent does not get lOS IPS, it cannot execute at all. Let 

x and; be two allocations. This agent's preference relation is given by the following rules: 

1. If Xl < lOS andYl < lOS ,then x -GA y. In both cases, the application cannot execute at all. 

2. If x ~ lOS and y ~ lOS , then x ~GA y , iff Xl ~ Yl . 

This example highlights two aspects of preference relations. The first is that they are very general 

and can adequately model a very diverse set of resource needs in a computer system. Furthennore, 

an agent's preference relation can be defined independently of those of other agents. The second 

aspect is that to adequately define an agent's preference, it is necessary to understand the individual 

agent's resource usage in detail. The f1!st aspect is a benefit, but the second can be troublesome. 

For the remainder of this thesis, we assume that the resource demands of the agents are completely 

known by the agents. Extending this work to other scenarios is a topic for future research. 

2.1.3 Pareto-OptinuUity and Fairness 

The goal of resource management in both economies and computer systems is to compute an 

'optimal'" allocation of resources to agents. If each agent chooses its own definition of optimality, 

it is not cleat how to define an optimal allocation for the system as a whole. One approach to 

dealing with this problem is to define a utility function for each agent, and then maximize some 

function of the individual utilities. For an agent A, ' a utility function u,(x) is a function that maps 

allocations into IR with the property that x ~,; I if and only if, u,(x) ~ uAY) . In the example of 

Figure 3 on page 13, T(x) is a utility function for the DBMS agent. For any preference relation. 

it is possible to define a corresponding utility function. 
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Given a utility function for each agent, it is possible to define a global objective function by com

bining the individual utilities. For example, we could maximize the sum or product of the indi

vidual utilities. There are several problems with this strategy. First, the individual utility functions 

could reflect drastically different goals. For example, u\(x) could be throughput for agent AI' while 

u,(x) could be -I times the average response time. Secondly, maximizing the sum or product of 

utilities can lead to cheating. An agent may incorrectly report its utility function to obtain more 

resources. Finally, maximizing global performance metrics can mean assigning 0 resources to some 

agent. TIlls is demonstrated in chapter 4. 

The definition of optimality used in economics is Pareto-optimality. Intuitively, a set of allocations 

<pI, <p l , ... ,<pN of resources to agents AI' Al , ... ,AN is Pareto-optimal if no agent A, can be given a 

better allocation without forcing a worse allocation on another agent. Formally, a set of allocations 

<pI, <p l , ... , <pm to set of agents C = {AI.Al., ... ,A",} is Jeasible if 

In other words, as a group, the agents can afford the allocation. The set of agents C can improve 

- -
on the allocations <p I, <p l , ... , <p'" if there exists another allocation pI, pl, ... , P'" meeting the following 

properties: 

I. /3'~, <P', for all A, • C. That is, everybody is at least as happy. 

2. fJ1 >j cj.J, for at least one Aj II C. In other words. rome agent strictly prefers its new allocation. 

3. 

The new allocation is affordable. 
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Given these concepts, it is possible to fonnally define Pareto-optimality. 

-
Definition: A set of allocations CP' to the N agents in an economy is Pareto-optimal if no 

subset of agents can improve on their allocation. 

As an example of a Pareto-optimal allocation, return to the economy of Figure 3 on page 13. The 

following set of allocations is Pareto-optimal: 

-
l. cpDBMS = < 5 x lOS, [06 - [Ol>. 

-
2. cpNA=<4xlOS,10l>. 

-
3. cjJ GA = < I x [OS, I ()6 > . 

In this set of allocations, no single agent can unilaterally surrender resources without receiving a 

strictly less desirable allocation. So, for a subset to improve on its allocation, trading must occur. 

However, agent AGA cannot trade away CPU to get more memory and agent ANA cannot trade away 
, 

memory for CPU. So neither can be in a subset that improves on its allocation. This in tum implies 

that no subset can improve, and the allocation is Pareto-optimal. 

As an example of a set of allocations that is not Pareto optimal, consider the following allocations: 

-
l. cpDBMS = < 5 x lOS, 1()6 - l()l>. 

-
2. cpNA=<lxIOS,Sx[OS+IOl>. 

-
3. cjJGA=<4xlOS,Sx[OS>. 

By cooperating, agents ANA and AG.c can improve on their allocations. AG.c can trade 3 x [OS IPS to 

agent ANA for S x lOS bytes of memory. nus improves both agents' allocations. Agent AG.c gets the 

memory necessary to execute, so it is happier. Agent ANA meets its memory requirement and reo 

ceives more CPU, so it is happier. 

The main advantage of Pareto optimality as a definition for optimal resource allocations is that it 

does not require any coordination between the preferences or utilities of the various agents. Each 

agent defines its preferences as it sees fit. This limits the complexity of the system by breaking the 

resource allocation problem into N independent subproblems. 
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There are disadvantages to the use of Pareto-optimality as defined in the examples above. First, in 

the second example, to improve on their allocations agents ANA and AGA had to barter and cooperate 

to exchange resources for improving their lots. Bartering and trading are complex operations. For 

example, a protocol for describing proposed trades is necessary. The second problem is that 

Pareto-optimal allocations can be extremely unfair. For example, the following set of allocations 

is Pareto-optimal: 

-
I. <p DBMS = < 1O', 2 x IO' > . 

-
2. <pNA = < 0, ° > . 

3. <p
G 

.. = < 0, ° > . 

Agent A DBMS cannot improve its allocation through trading, and agents ANA and AGA cannot have 

their allocations improved without decreasing the desirability of ADBMS'S allocation. 

The explicit use of money in the economy eliminates these two problems. First, an agent only need! 

to state its demands at the given prices. There is no need to reveal preferences and negotiate with 

other agents. Secondly, Pareto-optimtility together with prices implements a very rigorous defmition 

of fairness. For two agents A, and Aj , the relative value of their demanded allocations at any price 
_ W 

system p will be exactly W' . The agents' endowments can be used to assign relative priority, and 
J 

the price system reflects the relative value of resources. So, each agent gets exactly it fairs share. For 

example, let p = < I, I> be the current prices in the example of Figure 3 on page 13. Assume that 

the following allocations are demanded: 

I. 4>DBMS = < S x lOS, 10' - l()l>. 

-
2. <pNA = < 4 X lOS, l()l>. 

-
3. <p GA ,. < 1 x lOS, 10' > . 

We have 

- -;'DBMS 
po", 
-'---~-= 

p. ;OA 

So, the relative value of the allocations demanded is exactly the same as the relative value of the 

agents endowments, or priorities. 
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2.1.4 Pricing Policies 

The previow subsections focused on the consumer agents. The main role of supplier agents is set

ting prices. Three policies for price setting are described in this section. 

2.1.4.1 Tatonement 

If the demand for resource Ri at prices p, denoted D,cP), is greater than the supply 5" the resource 

is undervalued and its price should be increased. If D,cP) < 5" then R, is too expensive and its price 

should fall. This policy for setting prices is a tatonement process, and it explicitly attempts to 

compute a competitive equilibrium in which supply equals demand for all resources. A competitive 

equilibrium has two desirable properties. The first is that the demand of the individual agents at the 

equilibrium prices p' can be met, and all resources are fully utilized. The second property is that the 

allocation of resources in a competitive equilibrium is provably Pareto-optimal. 

Define the excess demand/unction for resource R, as Z,cP) = D,cP) - 5,. It is important to note that 

D,(p) is a function of the entire price system, and not just p,. For example, consider the graphics 

application AaA of Figure 3 on page 13. This application cannot execute without being allocated 

lOS instructions per second, and the application has WaA = $1,100,000. If the price for CPU is 

greater than S 11, agent AGA cannot execute and will not demand any memory. If the price for CPU 

falls to SlO, AaA will demand lOS IPS. This costs $1,000,000 and AaA will use the remaining $100,00 

to purchase memory. So, the demand for memory will increase even if there is no change in the 

price of memory. 

Despite the fact that D,cP) is a function of p and not just Pi' in the tatonement process, the supplier 

of R, only updates PI based on Z,cP) = D,cP) - S,. The seller of R, may not have any control over 

the prices for the other resources since other agent5 may supply them. 

The seller's algorithm for updating p, based on Z,cP) i5 given by the formula: 

ZicP) 
PI = PI + (PI • k) • ( -- ) 

SI 

where k is a constant. This algorithm makes the change in price proportional to the relative differ-

ence between supply and demand. and the current price. 
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2.1.4.2 Auctions 

The tatonement process implicitly assumes that the demand for a resources is a smooth function 

of the price system p . This may not always be the case. For example, consider the graphics appli

cation of Figure 3 on page 13. If the price for CPU is $11.0 I per instructions per second, agent 

AGA cannot afford to meet its CPU goal and will not demand any of this resource. If, however, the 

price falls to $11 per IPS, agent AGA instantly demands lOS IPS. The total demand for a resource 

is the sum of the individual demands. So, in this example the demand for CPU is not a smooth 

function of the price system. 

A second assumption for tatonement is that the resources are infinitely divisible. Memory is almost 

infinitely divisible because it is composed of a very large number of very small units, each of which 

can be sold separately. A lock on a record in a database is an example of a resource that is not in

finitely divisible. The lock is either held, or not held. This is an example of a resource which is a 

discrete, indivisible quantity. 

If the resource is not infinitely divisible and the demand does not vary smoothly with prices, an 

alternative to tatonement must be used. In this section, we discuss auction models for setting prices 

and selling resources. 

Assume that resource R, comes in a fixed, discrete supply S,. This resource's producer Pj can hold 

an auction to sell R,. P, 's goal is to maximize revenue by selling the resource at the highest price a 

consumer agent is willing to pay. The strategy of the consumers is twofold. First, a consumer A. 

that wants to purcha3e R, attempts to obtain the resource at the lowest price. A. also must consider 

the usefulness of resource R, relative to other resources and their prices. This detennines how much 

A. is wi11ina to pay for Ri • 

There are many auction modeb for selling resources [24]. In this section, we briefly describe three 

models. The auction models used in the load balancing economy are based on the policies described 

here. 

The first auction modeled is a sealed bid auction. When resource R, becomes available for sale, the 

producer PI announces the resource's availability and solicits bids. In parallel, each agent At deter

mines how much it is willing to pay for this resource, and sends a bid containing this amount to 



22 

Pi . Agents are not aware of the amounts bid by other consumers. After all bids have been received, 

Pj opens the bids and awards R, to the agent A,. that submitted the highest bid and collects the 

amount bid from A ... . Figure 4 on page 23 depicts a sealed bid auction (as well as two other models 

described below). 

A second model is the Dutch auction. This model is controlled by the seller. Pi sets a high price p, 

for the resource and determines if any consumer will pay this price. If not, P
J 

gradually lowers P, 

until some consumer submits a bid. Figure 4 on page 23 also shows an example of the Dutch 

auction model. 

The third auction model is an English auction (Figure 4 on page 23). Under this model, an agent 

A. submits an initial bid b • . The seller P
J 

sets Pi to b. and waits for further bids. If no other con· 

sumer is willing to pay higher than b., then A. wins the auction and is allocated the resource. If, 

however, another agent AI submits a bid bl > b., the price P, is set to bl and the process repeats. The 

auction terminates when no agent is willing to pay more than the current price. 

The major advantage of the sealed bid auction is low overhead because only one round of bidding 

takes place. In both the Dutch and English auctions multiple rounds may be required to sell the 

resource. For every round, each agent must be allowed to apply its behavioral rules to determine 

if, and how much it will bid for the· resource. Each of these rounds takes time and increases the 

overhead of the resource allocation process. The main advantage of the Dutch and English auctions 

is that the sale price of a resource more accurately reflects the number and the wealth of the agents 

competing for it. 

2.1.4.3 Variable Su.,py Models 

The tatoru:ment and auction models assume that the supply of each resource R, is fixed at S" This 

is not neceaarily the cax, and the data management economy in chapter 5 contains resources for 

which the supply can contract and expand dynamically. Since the supply can expand and contract 

to match the demand, the seller can attempt to set the price P, to the value that maximizes its reo 

venue. That is, the producer P
J 

attempt to find p, that maximizes 

Pt" D/p). 
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Figure 4. Auction Models: This figure represents three different auction models. In a 
sealed bid auction, all biw are submitted in parallel and the highest bidder wins. 
In a Dutch auction, the seller progressively lowers the price of the resource until 
a bid is submitted. Under the English auction model, the consumers individually 
submit progressively higher bids until the highest bidder is determined. 

Determining P; that maximizes revenue is an extremely difficult task. There are two reasons for this. 

First, the demand for R, is a function of all resource prices, not just Pi' Secondly, the demand 

function D,cP) can be any arbitrary function of p and is not necessarily well behaved. Figure 5 on 

page 25 depicts three poMible demand functions in a two consumer (AI' A l ), one resource (R) 

economy. The three ~s are the following: 

I. AI and AJ both have wealth Wand demand as much of resource R as they can afford, up to 

limit 1.5. This is case A in the figure. 

2. A, and Al both have wealth Wand demand 1 units of the resource, if they can afford it. If not, 

their demand demand is O. (Case B) 
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3. Al has wealth WI and Al has wealth W with WI < W. Each agent demands 1/2 unit if afford-

able. (Case C) 

The unpredictability of the demand functions, and the fact that DJ.p) is a function of p (as opposed 

to only p, ) make it practically impossible to find p; maximizing revenue. Our experiments with the 

data management economy reinforce this intuition. To deal with this problem, a simple heuristic 

is used. Instead of making demand a function of price, the resource price is a function of demand. 

If the current demand for resource R, is Di, the seller sets Pi to C(Di) , where C is the seller's price 

function, and each seller is free to individually choose C. Figure 6 on page 26 shows an example 

in which qDJ is a simple function of D,. 

The main advantage of this heuristic is simplicity. The data management economy in chapter five 

will shows that even if simple functions are used, the economy can still exhibit extremely sophisti

cated and effective behavior. The main disadvantage of this heuristic is lack of theoretical founda

tion. 

2.2 Related Work 

This section presents a concise survey of previous work that has applied concepts from economics 

to resource control problems in computer systems. TIlls previous work is compared and contrasted 

with the results presented in the dissertation. 

Some previous work has applied economic concepts to the resource control problems studied in 

this dissertation. The File Allocalion Problem [33, 88], which is closely related to the data man

agement problem studied in Chapter 5, has been previously studied using economic concepts. 

Economic and game theoretic approaches have been applied to the flow control problem of chapter 

4. Finally, economic algorithms for the task allocation problem, which is related to Chapter 3's load 

balancing problem, have been proposed. In these three cases, we additionally compare previous 

work with these economies purely as solutions to given problems. 

In this dissertation, we are primarily interested in demonstrating that economic concepts can be 

used to design resource control algorithms that improve performance and decrease comple,uty. 

Using economic approaches creates a new set of problerru that must be addressed, however. For 

example, the economies in this dissertation all use money as a medium for selling and purchasing 
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Figure 5. Demand Function!: This figure presents three possible demand function in a 
two consumer, I resource economy. The X-axis represents the resource's price 
and the Y-axis represents the total demand of both agents. The cases are: A) 
Each agent has wealth W and demands as much as is affordable up to 1.5 units. 
B) Each agent has wealth Wand demands I unit if affordable. C) Agent At has 
wealth Wt and agent Al has wealth W. Each demands 1/2 if affordable. 

resources. This raises the possibility of agents counterfeiting or embezzling money. When systems 

are structured using competition, honesty becomes a major issue. Drexler and Miller [24] examine 

issues of security and agent integrity in computer systems based on economic concepts. They 

present hiah level algoritluru for allocating CPU and main memory that deal with potentially illegal 

behavior of apnts. The economies presented in this dissertation will assume that all agents are 

honest. Dealing with agents that are less than scrupulous is an area for future research. 

2.2./ The File Allocation Problem 

Kurose and Simha [58-60] have applied algorithms based on mathematical economics to the File 

A /location Problem. In their model, there is a distributed system composed of N independent 
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Figure 6. Demand Based Prices: This figure represents a simple heuristic for setting the 
price of a resource based on the current demand for it. 

processors PI' Pl , '" , P N' These processors are connected by point-to-point links. For any process-

ors P, and PI' there is a logical path composed of one or more links connecting the processors. 

There is a single fUe resource X that must be assigned to processors in the system. Each processor 

P, is to receive some fraction x, of the file resource X. If X is a fUe system, then the fraction Xj could 

represent a subset of the files in the fUe system. If the resource X is a single fUe, x, could represent 

a subset of the recot'dl in the fUe. The problem is to choose the fractions XI' Xl' ... XN in a way that 

optimizes some performance measure. The X, are percentages of the total resource assigned to the 

processor!. So, we have 

2. 0 ~ x, ~ 1. 
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Accesses to the file resource are generated at all processors in the system. As a simplification, it is 

assumed that the accesses are uniformly distributed over the entire file resource. So, Xj is also the 

probability that a file access submitted anywhere in the system will be routed to Pi for processing. 

It is assumed that there is an analytic model describing the performance of the underlying distrib-

uted system. This model is used to define a function that will be optimized by the choices of the 

X,. The model is deflned by the following parameters: 

1. 1, - The rate at which file accesses are generated at P,. This is assumed to be a poisson process. 

N 

The network wide access arrival rate is 1 = Ll, . 
1=1 

2. c" - The communication cost of transmitting an access from P, to Pj and returning the response 

3. C, - The average system wide communication cost of making an access at node Pi' This is the 

weighted average over all nodes and is 

4. ~ - The average processor service time for an access request, which is exponentially distrib

uted. 

Given these defmitioIlS, it is possible to derive the expected service time of an access operation at 

processor P,. 1lliJ is the expected service time plus the expected queueing delay and is given by 

1 is the system wide arrival rate, and X, is the probability of an access being directed at the fraction 

of the ftle resource stored at P,. So, the arrival rate at P, is lx,. 

Let K be a constant that defines the relative cost of communication versus computation. The total 

cost of an assignment, including processor and communication costs is 
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This is taken to be the utility of an assignment XI' Xl' .... X N . To keep the economic flavor, the al

gorithm attempts to maximize the function 

N 

U(X\, X2' .... XN) = ( -1.0) ~"\C/ + K Ax )XI' 
~ ~- / 
1=\ 

The algorithm for maX1IIl1ZUlg U is motivated by algorithms from mathematical economics 

[38, 39, 41] that do not use a price system. Initially, each processor P, is arbitrarily allocated some 

N 

fraction x, of the file resource. This initial allocation must be feasible, i.e - 0 ~ x, ~ I and ~::XI = I. 

The processors then cooperate by exchanging me resources in an attempt to improve the utility of 

the system has a whole. The algorithm is an iterative gradient algorithm. In the basic version of 

the algorithm each iteration is: 

Step I: Each node P, computes 

Step 2: Processor P, semi! U', to all other processors. 

Step 3: The change in processor P,'g allocation of the resource X is given by 

N 

Llx/ = a( U'1 - ~ L U'j ). 

i,.i 

[n this step, tf U', is greater than the average marginal utility over the system as a whole, increasing 

?:s share by some small amount and decrea.!ing the fraction assigned to the remainder of the system 

by the same amount will mcrease the system wide utility. The actual amount P, receives is pro-
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portional to difference between V', and the average marginal utility, and is regulated by a step size 

IX. 

Finally, the algorithm tenninates if 

Step 4: 

for all i and j. If this is not the case, the process is repeated starting at step 1. 

The basic algorithm above must be modified in step 3 to ensure that processor P, does not receive 

x, < O. This is done by excluding P, from the update of step 3 if including it would result in a 

negative allocation. 

Step 2 can be computed in parallel at all processors using only local information. This is due to the 

fact that 

av(X) , x2' ... xN) 

oXI 

contains only x, and constants. Step 3 requires complete info nnation, however. Each processor P, 

must know V', for all j to compute the average marginal utility. This limits the effectiveness of the 

algorithm as a decentralized algorithm for allocating resources. Finally, the tennination detection 

of step 5 requires global information. 

To avoid the overhead of requiring complete infonnation in step 3, a distributed version of the al· 

gorithm is proposed. It is based on pair wise exchange of file resources in an attempt to improve 

the utility of the system a" a whole. [n the distributed version, processor P, iteratively 'pairs' with 

neighboring processors. When P, pain with neighbor PI' they compute the I5xl and I5xJ that maxi

mizes I5V subject to 15 x, - I5x, = O. Kurose and Simha present an analytic formula that defines the 

Jx, and JXr This formula contains only V', , V'" locally computed second partial derivatives and 

constants. This eliminates the need for global knowledge in step 3 of the bcuic algorithm. This 

modification does not solve the problem of tennination detection, however. This still requires 

knowledge of V', for all processors P, . 
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The main advantage of this algorithm is that it is possible to prove that it possesses the following 

properties: 

I. Optimality : The algorithm computes feasible x, that maximize the utility function 

U(X,. Xl' ... ,XN) . 

2. Convergence: The algorithm converges monotonically to an optimal allocation. The proof sets 

an upper bound for the step size Cl. With this value, simulation studies showed that the algo

rithm converges very slowly (7000 iterations). However, the algorithm converged very rapidly 

for values larger than stipulated by the proof. 

There are several potential problems with the model used for this algorithm. The most serious is 

the assumption that the behavior of the underlying distributed system can adequately be predicted 

by a simple analytic formula. These algorithms require that the analytic function be continuous and 

differentiable. A second disadvantage is that termination detection requires global information. 

There is also room for improvement over this algorithm. First, it assumes that the accesses are 

unifonnly distributed over the entire rue resource. So, the algorithm does not detect and exploit 

any locality in the reference patterns. For example, processor P, may exclusively access a specific 

fraction of the rue resource. Kurose and Simha's algorithm only determines the size of the me re

source fraction to allocate to P, and does not consider its contents. Finally, there is a single copy 

of the me resource. Varying the number of copies of fractions of the rue system may improve per

formance. For example, if some fraction xll is exclusively read, then a copy should be assigned to 

every processor. If fraction Xl is onJy written, then there should be a single copy. 

The data management economy of chapter 5 solves the above problems. First, no analytic model 

of the underlying system is assumed. Second, in the data management economy, all decision making 

is completely decentralized. Processor P, only neew to know the read and write lease prices for a 

data object oJ' and the demand for access to oJ experienced locally to make decisions. We will show 

that the data management economy exploits locality in the access patterns to improve performance. 

The economy also adjusts the number of copies of a data object to reflect the ratio of read access 

to write access for the object. 
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The main disadvantage of the data management economy compared to the work of Kurose and 

Simha is that it is not possible to prove optimality of the allocation computed. This economy is 

evaluated through an implementation and simulation study. 

2.2.2 Job and Task Allocation 

Some previous work has applied economic concepts to the task, or job, allocation problem 

[68, 87]. In this problem, there is a set of jobs or tasks, denoted Til T1, ••• , TN that have to be ex

ecuted in the distributed system. The problem is to assign the tasks to processors in the system. 

This assignment should fully utilize the processing power of each node in the system and must take 

into consideration any special dependencies a task has on hardware or software resources that are 

only available on a subset of the nodes. The object of the assignment is to optimize some per

formance metric such as task throughput, average task response time or total elapsed time. 

If the set of tasks {TI' T1 , .•• , TN} is static, i.e. - no new tasks arrive, the problem is a pure task al

location problem. There may be some precedence relation between the tasks. It is usually assumed 

that the inter-task communication between each pair of tasks is known. So, the assignment of tasks 

to processors must also consider the communication cost incurred when T, and '0 are assigned to 

different processors. In this section, we discuss the Contract Net Protocol [22, 83, 85]. This is a 

protocol for the task allocation problem that has been developed using a contract and negotiation 

metaphor. One of this protocol's sub functions is based on bidding, as is the load balancing 

economy of chapter 3. 

If the set of tasks changes dynamically due to arrivals of new tasks and completion of others, the 

problem is modeled as a 10<Jd balancing problem. The Contract Net Protocol has been used as a 

basis for the Distribultd ScMduling Protocol of the Enterprise System [66, 67]. This protocol im

plements a cfutributed, dynamic load sharing algorithm and is surveyed in this section. 

The idea underlying the Contract Net Protocol is the use of negotiation between intelligent, au

tonomous agents as a method for structuring distributed processing problems. In this model, the 

system as a whole tries to solve some single problem, e.g. - the Distributed Sensing Problem 

(DSP )[84]. In this problem, there is a set of processors and a set of sensing devices. The sensors 

collect information and report it to processing nodes, which analyze and interpret the information 
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in cooperation with other processing and sensor nodes. The system as a whole attempts to com. 

pute the location and motion of objects in the area covered. 

Complex problems such as the Distributed Sensing Problem require that the overall problem be 

broken down into separate sub problems. Each of these sub problems is a task which must be 

assigned to some node in the system. The Contract Net Protocol tries to solve a generalized task 

allocation problem. 

The Contract Net Protocol starts when node Pi has a task ~ that is suitable for remote execution. 

P, sends a task announcement message to other processors in the system. This message contains a 

description of ~ that can include estimated CPU time, memory requirements and any hardware 

dependencies. Figure 7 on page 33 depicts the phases of the Contract Net Protocol. In this exam· 

pie, PI is announcing task A and P4 is announcing task B. 

The recipient of a task announcement processes the message. This involves determining if the 

processor is able to perform the task, e.g .. contains the necessary hardware resources. 1ms an· 

nouncement is ranked using some problem specific criteria and is queued internally. When a 

processor P
J 

completes its current task and becomes idle, it picks the "best
M 

locally queued an· 

nouncement. P
j 

then submits a bid to the processor announcing the task (known as the manager). 

The bid contains a list of P
J 

'5 qualifications for performing the task. In the example of Figure 7 

on page 33, processors PI and Pl bid on task B and p) bids on task A. 

The manager of an announced task waits specified time interval for bids to be submitted. After the 

interval expires, all submitted biw are evaluated and the best bid is determined. The best bidder is 

sent an award message telling it that it has won. This message contains any additional information 

needed for the winner to process the task. The losers are sent caned messages infonning them of 

their misfortune. In the Figure 7 on page 33, p) is awarded task A and PI is awarded task task 8. 

Nodes PI and P3 are part of a contract and may exchange information on the progress of task A . 

The Contract Net Protocol is proposed as a paradigm for structuring large, complex problems in 

a distributed computing environment. In this protocol, all agents in the system are cooperating to 

achieve a single goal. In the economies in this dissertation, the agents compete for scarce resources 

and each agent attempts to meet its individual goals. The Contract Net Protocol performs resource 



P1 anounces task A 

to P2, P3 

P4 announces B to 

P" P2, P3 

I 

cD 
P3 bids on A 

P" P2 bid on B 

P1 awards A to P3 

P4 awards 8 to P 1 

P1 is manager for A 

and contractor for 8 

33 

Figure 7. The Contract Net Protocol: This figure depicts the Contract Net Protocol. 
Processor PI announces task A to P l and PJ' p. announces task B to all processors. 
P1 submits a bid for A and PI and Pl bid for B . Finally, PI wins B and P1 wins 
A. 

control in a distributed system for a different set of problems than our economies. Our economies 

operate in environments where physical and logical resources are scarce, and there is competition 

for these resources. The Contract Net Protocol is designed to match the logical demand for re

sources with the agents best capable of providing these resources. This protocol does not address 

environmenta in which there is competition for scarce resources. 

The ContrICt Net Protocol has been used for the basis of the Dislribuled Scheduling Prolocolof 

the Enterprise Syslem. The Enterprise system is applied to the task allocation problem in a local 

area network of workstations. The goal is to utilize the capacity of idle nodes by remotely submit

ting tasks on the idle workstations. The Enterprise System has three layers. These are: 1) An 

interprocessor communication protocol. 2) A remote procedure layer, and 3) The Dislribuled 
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Scheduling Protocol (DSP). The first two layers provide the ability to remotely execute the tasks, 

and the DSP implements the algorithms that assign work to processors. 

Using OSP, if processor P, has a task '0 that is a candidate for remote execution, it sends a task 

announcement message to other workstations. I This message contains the priority of the task and 

requirements for executing it. The Enterprise System's goal is minimizing the average task response 

time. So, it attempts to implement Shortest Job First scheduling. The priority of task '0 is simply 

its estimated CPU service time, with lower service time implying higher priority. No other re

quirements are considered. 

Each workstation receiving a task announcement ranks the announcement based on estimated ser

vice time and queues it. When the processor becomes idle, it submits a bid for the highest ranked 

announcement that is locally queued. The processor's estimated service time for the task, based 

on its CPU speed, is included in the bid. This is the processors qualification for executing the task. 

Processor P, waits for some time interval accumulating bids. When the interval expires, the task is 

awarded to the best bidder. The winner is the processor that reports the smallest estimated service 

time. An award message is sent to the winner, and the other bidders are sent cancel messages. 

If processor P, later receives a bid for task ~ that is ·significantly better· than the bid that won, P, 

can subsequently cancel the award and reassign the task to the better bidder. The definition of sig

nificantly better is a parameter to the system. 

The Enterprise System and the Distributed Scheduling Protocol were evaluated through simulation. 

The main results that relate to the load balancing economy are the following: 

1. Network size: 

a. Sianificant perfonnance improvements were achieved for relatively small networks (S-lO) 

nodes. 

b. \1arginally decreasing perfonnance improvements occur as network size increases. 

The Enterpme System use, dUTerent name, foc the messages sent. The names used in this section are of the equiv

~ent message In the Contract Net Protocol. 
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2. Communication delay : The system improves performance when the communication delay of 

migrating a task is from 0 - 20% of the average CPU service demand. 

3. Cancel/Reassignment: Allowing canceling and reassignment of tasks when better bids arrive 

is effective at low utilizations and counter productive at higher utilizations. 

4. Error in estimates: The system is very insensitive to errors in the estimated service times of the 

jobs. 

This dissertation's load balancing economy and the Enterprise System pursue fundamentally dif

ferent approaches to performing resource allocation. In the load balancing economy, a job's pri

ority is based on its initial endowment of money. We will show in chapter 3 that Shortest Job First 

as well as other scheduling policies can be implemented by this mechanism. 

The load balancing economy is based on selfish optimization and competition. Processors solely 

try to maximize their individual revenue, and are not concerned with performance. The jobs 

compete with each other for the scarce communication and CPU resources. The Enterprise System 

is based on altruism, and each processor attempts to optimize the performance of the system as a 

whole. 

The load balancing economy irnple~ents load balancing heuristics that the Enterprise System lacks. 

The Enterprise System works well over a wide range of CPU to communication ratios. It does not 

adapt its behavior to this ratio, however. The Enterprise System makes the same task allocation 

decisiOn! regardless of the CPU/Communication ratio. We show in chapter 3 that the load bal

ancing economy does modify its load balancing strategies based on the underlying communication 

and CPU processing rates. We will show how this economy can be tuned to change its load bal

ancing strateaY baxd on the job migration cost vs. the CPU service cost. Finally, the load balancing 

economy exhibits flow control. At high utilizations, poor jobs starve improving the performance 

of their relatively wealth competitOr!. 

2.2.3 Flow Control 

Some previous work has applied concepts from economics to the problem of flow control in com

puter communication networks. This previous work primarily deals with game theoretic models 
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for Markovian networks [51]. At the end of this survey, the main differences between the previous 

work and the material of this dissertations are discussed. 

In a computer communication network there is an implicit trade-off between throughput and delay. 

Throughput is the rate at which users transmit data through the network. Delay is the average 

elapsed time between the sending of the data and its arrival at the destination. Ideally, throughput 

should be rugh'" and delay 10w.'" However, high throughput causes high delays, and decreasing 

delay constrains throughput. An equilibrium point between these two conflicting goals must be 

achieved. 

Hsiao and Lazar [42, 43] observed the similarities between the flow control problem in a heter-

ogeneous computer network and the theory of non-cooperatives games [82]. The two main simi-

larities are: 

1. Decentralization: Each user has an individual goal. 

2. Competition: The users' goals conflict. For example, increasing the throughput of user A will 

increase the delay of another user B. 

Hsiao and Lazar applied game theoretic concepts to describe the flow control problem for 

Markovian networks. In their model, there are K classes of users, and each class is represented by 

a player in the game. Player k acts as a controller allowing class k packets into the network. Player 

k's strategy for playing the game is to choose a vector 

nus stratqy represents player k's choice of a window flow control policy [9]. At is the rate at 

which player k allows packets into the network if there are already j class-k packets in the network 

that have not yet reached their destinations. User k's window size [9] is Nk • If j = N., player k does 

not allow any packets into the network. 

Player k chooses a strategy that attempts to maximize his payoff. Hsiao and Lazar have player k 

attempt to maximize its average throughput subject to a delay constraint Tk. Let 

A = (AI, ,P, ... I A. K) be the strategies chosen by the K players. Denote the average throughput 
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achieved by wet k under this set of strategies as yk(~), and let Tk(~) denote the average delay of class

k packets. Player k's payoff function hk(~) is defined as 

2. hk(~) = 0, if Tk(..t) > P . 

Simply stated, player k wants to maximize throughput as long as the average delay is less than P. 

However, if the delay constraint cannot be met, player k 's payoff is O. This payoff function accu

rately models a network using timeout based error detection and transmission. If the packets are 

not delivered within the delay constraint, the effective throughput will be 0 due to the timeout error 

detection. 

Hsiao and Lazar prove that player k 's optimal strategy ~k for any choice of strategies of the other 

players is a window policy. In this policy, player k allows no packets into the network if there are 

Lt or more packets in the system. The value of L. can be derived as the results of a Linear Program. 

Since multiple players are individually trying to optimize different functions, Hsiao and Lazar pro

pose Nash Equilibrium [82] as the definition of the set of optimal player strategies. Simply, a set 

of strategies 

• 12K 
.( = (..i ,A , .... ..i ) 

is a Nash Equilibrium if no player can achieve a higher payoff (i.e. . More throughput without 

violating delay constraints) by unilaterally changing its strategy. Hsiao and Lazar then derive the 

set of flow control problems for which the Nash Equilibrium exists. 

Bovopouloa and Lazar [11] expand on the work of Hsiao and Lazar by presenting algorithms for 

compuling a Nub Equilibrium under two different network models. [n the first model, each player 

has the payoff function described above. There are only two players in the game, however. The first 

algorithm is as follows: 

Step I: Start with an initially empty network, with AI = Al = O. 
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Step 2: Player 1 chooses ;'1 that maximizes his average throughput yl (given ,P) without violating 

the delay coJl!t.raint or l ~ 'fI . 

Step 3: Player 2 may not be able to allow any traffic into the system without having r > 'fl. If this 

is the case, the game is over. If not, player 2 chooses ;'1 that maximizes y1 (given ;'1) with r $ 'fl. 

Step 3: If TI $ 'fI, the game is over. Otherwise, go to step 2. 

Bovopoulos and Lazar prove that this algorithm converges to the Nash Equilibrium. 

In the second model, there are K players, and each player uses power as its payoff function. Player 

k chooses a weighting factor P· and attempts to maximize 

There is a single exponential server with rate p, and each player's controls are state independent, i.e . 

. .l.; = .l.~ . Given this, player k '5 power is simply 

K 

(ll·· (p, - L ).1). 

1-1 

Bovopoulos and Lazar show that the Nash Equilibrium can be computed as the fixed point of 

linear system x = Bx + b . In this formulation, x T = (.l.l, ... ,).KJ, bT = [P,PI' P,Pl'"'' /-L{3K] • and B is 

a K x K matrix with: 

1. b" = O. 

2. b 
{3' . . 

'J=~.I':l=J. 

They then present an asynchronous algorithm based on chaotic iteration [16] that computes the 

fixed point x. This algorithm is composed of updating the x.'s at discrete time points t = 0, 1, .... 

At point t, the value x. at the next time point, denoted x.(t + 1), is either the value at time t,x.(t). 
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or is updated wing constant values from the matrix B and the vector b , and values of x/(t - t') for 

the other players. They then prove that this algorithm converges provided that the delay in prop

agating information from player i to player k is bounded, and if the weights p. satisfy certain con-

straints. 

Douglieris and Mazumdar [70] also studied a Nash Equilibrium in a single server queueing system 

with K users. They also used power as the players' payoff functions, but they expanded the set of 

weights {JI, {il, ... , pK for which the chaotic iteration algorithm is proven to converge. Douglieris 

and :Yfazumdar proposed an iterative, synchronous algorithm similar to the fIrst algorithm of 

Bovopoulos and Lazar for computing the Nash Equilibrium in this model. Let P,().l, ).1, ... ,).K) be 

the power of player i, i = l, 2, '" , K, and let ).. be player i's chosen throughput in iteration k. The 

following updates are performed in the k-th iteration: 

1. Player 1 chooses ).14+1) as the). maximizing PI ()., ).i, ... , ).n. 

2. Player 2 chooses ).~.+I) as the). maximizing Pl ().l.l'+Il,).' 11, ... , ).f). 

4. Player K chooses A.~+I) as the). maximizing P~).lA+l), .,. , ).~K-I), ).). 

If this algorithm converges, it computes a Nash Equilibrium [63]. Finally, they prove that their 

algorithm converges for K = 2,3 , or if pi = ... = p. = p. 

Dougliers and Mazumdar [69] examine Pareto-optimaiity in a single server queuing system in which 

each user attempts to maximize power. Let 

K 

Pi = (yil' • (JJ - L ).1) 

i_I 

be the power of player i. This set of throughputs is defmed as Pareto-optimal if for any other set 

of throughput ).b, i = 1, 2, ... , K : 

I. For all i, P,().') = P,(A.o), or 

2. For at least one j, PJ().J) > P,().;') . 
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This simply states that ,(1, ,(l, ... , ,( x is Pareto-optimal if no one can be given a higher power without 

forcing a lower power on some other player. They present a fonnula defining necessary and suffi

cient conditions for a set of k to be Pareto-optimal. Finally, they show that in special cases, the 

Pareto-optimal throughputs also maximize the weighted sum of the players' powers. The weighted 

sum of powers has been defined as system power [10, 48] and has been studied in non-economic 

contexts. 

The flow control economy uses Pareto-optimality as the definition of an optimal allocation of re

sources to the agents in the system. Pareto-optimality is a stronger definition for an optimal allo

cation of resources than the Nash Equilibrium. A Nash Equilibrium is only optimal in the sense 

that no single agent can unilaterally take an action that improves upon its allocation of resources. 

If agents are allowed to communicate or cooperate, it is possible to compute an allocation of re

sources that is as good for all agents, and strictly better for some. 

Secondly, the previous work on both Nash Equilibria and Pareto optimality can compute resource 

allocations in which some agents receive no resources. That is, some player i may receive through

put equal to O. In addition to computing an optimal throughput-delay trade-off, flow control al

gorithms try to guarantee that all agents receive a -fair
N 

allocation of resources. Through the explicit 

use of money allocated to agents with which they purchase resources, every VC receives a fair share 

of resources in the flow control economy. In chapter 4, we compare the fairness properties of the 

now control economy with Nash Equilibria. 

The flow control economy is applied to a different network model than the previous work. This 

difference has two aspects. Fim, each agent i has a throughput goal y' that it tries to achieve. If this 

can be done, agent i tries to minimize the delay of achieving this throughput. The throughput goal 

is not a constraint, however, and the agent can settle for less throughput. In some sense, this is the 

dual to the player payoff functions in the above games. 

Another difference is that the flow control economy is based on a virtual circuit computer network. 

In such a network, each agent has a predefined path connecting its SOUTce node to it single desti

nation node. [n practice, most networks are based on the virtual circuit model [9]. So, in this sense 

the flow control economy is based on a more realistic network model. 
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2.2.4 Multiple Access Protocols 

The problem of designing optimal multiple access protocols for broadcast communication networks 

[81] has been studied using concepts and algorithms from economics. In this problem, there is a 

broadcast communication medium being shared by multiple independent network nodes. The 

ethemet [71] and packet radio networks [50] are examples of such networks. Each node or station 

in the network has data packets generated by some source that it wishes to transmit over the net

work. The communication medium is divided into fixed length slots. To transmit a packet, node 

N, waits until the next slot starts and then broadcasts the packet. If no other node N, attempts to 

transmit a packet during this slot, the packet transmitted by Ni is correctly received at its destina

tion. If. however. lV, also attempts to transmit a packet during the slot used by N" a collision occurs 

and neither packet is successfully transmitted. 

Protocols for the multiple access problem assign a transmission probability Pi to each node Ni. If 

node N, has a packet it wishes to transmit in the next available slot, it broadcasts this packet with 

probability p, . If Ni does not send the packet during the slot. or there is a collision. another aspect 

of the protocol detennines the next slot to try. Figure 8 on page 42 depicts packets, slots and 

collisions in a broadcast network. The problem examined in this section is computing the trans

mission probabilities Pi for each node N, that optimizes throughput. 

Many mUltiple access protocols have been proposed [56], and different protocols are optimal for 

different traffic arrival patterns and assumptions. Yemini and Kleinrock [89. 90] showed that 

previously known protocols that arc optimal for differing assumptions arc actually special cases of 

PareeD-optimality. 

Yemini and Kleinrock showed that optimal protocols achieve a balance between throughput and 

silence. If node N, has a packet to transmit at slot s, and does not, its throughput is diminished but 

the throughput of other nodes benefits from the fact that they will not collide with N, during slot 

SJ' Let E, be node N,'s lost throughput due to choosing silence, and let S, be the attained throughput 

of node N" for j = 1, 2, ... ,K. These terms arc functions of the individual transmission probabilities 

P1, Pl, .... PIC' For every ·optimal· choice of transmi!!ion probabilities. there exists a set of prices 

CI , cl ..... CI( for which 
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for all i. The term c,E, is the dollar value of N,'g lost throughput. and 
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is the dollar value of the throughput attained by other nodes when N, is silent. For a choice of 

probabilities to be optimal, the dollar value of silence must equal the dollar value of total 
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throughput. Yem.ini and Kleinrock then show that various values of the c, correspond to previously 

known optimal protocols. 

Kurose, Yemini and Schwartz [55, 57] present a decentralized algorithm for computing the prices 

that defIne the optimal transmission probabilities. Instead of attempting to optimize a common 

system wide goal, each node attempts to maximize its individual throughput. 

This algorithm is built on the concept of a fictitious resource. These resources capture the inter· 

action between node N:s silence and N/s throughput. For each pair of nodes (i,}). there are two 

fictitious communication resources x i_, and X'_' . These resources reflect the demanded transmission 

probabilities of the node and the silence demanded of other nodes. For example, 

1. x:_, is N/ s demand to Nj that N, be allocated transmission pro bability X!_J' 

2. Conversely. xl_, is node N, 's demand that N, remain silent with probability xI_J' 

The demands are similarly defmed for xf_, and x;_,. Since the fictitious resources are transmission 

probabilities. x,'_, and X{_, are in the interval [0.1] . Furthermore, since X!_, is N,'s demand to 

transmit with respect to its competitor N, and X!_, is competitor N, 's demand that N, remain silent. 

these are only consistent if 

xl .... } + xl .... } = I. 

The economic model used for this algorithm is a pure Exchange Economy [40]. In this model, the 

agents are not allocated money for purchasing resources. Instead. the supply of the resources is 

assumed to be initially distributed among the agents in the economy. The agents then "trade" their 

initial resource allocatioru for ones they consider better. The initial allocation of resources owned 

by node NI is called its tndowment. In this economy, node N, is allocated quantities of the two reo 

sources that relate to its interaction with each other node NJ' These are xI_, and X)_, . Node N/s 

endowment of these resources is denoted 

For each fictitious resource x:-, there is an associated price PI-/, These prices define the relative value 

of the fictitious resources and determine the value of each node N,'s endowment. The value of the 
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endowment i3 the revenue Nj could earn by selling its resources at the given prices. At any set of 

pnces 

the wealth of node Nj is 

K 

Wi = L [P1-.1f-) + p)-~-a· 
i=1. i,;.) 

At a set of prices P. each node demands the allocation of fictitious resources that maximizes its 

throughput subject to its budget constraints. The cost of the resources demanded by N, at prices p 

cannot exceed the value of Nj 's initial allocation of resources al lhe current prices p. Formally, if 

{x:_" X;_, I 'V U * I)} is N/ s demand at p, then 

K 

L 

The algoritlun for computing the optimal set of fictitious resources depends on the specific multiple 

access protocol. Kurose, Yemini and Schwartz give algorithms for the Slotted Aloha Protocol 

[2, 3] and for a time window protocol [55]. 

Since the resources represent probabilities, the demands are consistent only if 

for all i. j. If. 

resource X'_I is under priced, and P'-J should be increased. If, however, 
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xI .... } + x{ .... } < 1 

the price P'-J is too low and should be increased. In their algorithm, Kurose, Schwartz and Yemini 

use a tatonement process to update prices. The update is defined by the following formula: 

where c'_J is a step size constant. 

Kurose, Yemini and Schwartz proved that if their economy computed an equilibrium in which 

xI .... } + x{-} = 1 

for all i,j, then the allocation was Pareto-optimal. Proving that an equilibrium price vector exists, 

and that this algorithm converges are extremely difficult problems. Kurose, Yemini and Schwartz 

show that the demand of the nodes in this network are not continuous, and standard techniques 

from economics cannot be applied to prove existence of equilibrium. 

Kurose. Yemini and Schwartz implemented and simulated their economy for a 4 node network. 

These simulations demonstrated empirically that the tatonement process converged to an equilib

rium. They also showed that their economy rediscovered previously known optimal transmission 

probabilities for the Slotted Aloha Protocol. Finally, they examined the effectiveness of the initial 

endowment of resources to agents as a priority mechanism. The simulations revealed that increasing 

the initial endowment did in~ the equilibrium throughput of an agent. 

The main disadvantage of this work is complexity. For a K node system, there is one physical re

source (communication medium) but there are J(l - K fictitious resources that the economy must 

allocate. 
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3.0 The Load Balancing Economy 

This chapter presents an economy that uses decentralized competition and a price system to per

form load balancing. The load balancing problem in a distributed system is to allocate CPU and 

communication resources to jobs entering the system to minjmjze the average response time [29]. 

The load balancing economy is implemented and tested on the Network Simulation Testbed 

(NEST) [25]. As with previous dynamic load balancing algorithms, the load balancing economy 

cannot be evaluated analytically [29]. A simulation study is presented to evaluate the economy's 

performance. The implementation and simulation study also allow us to evaluate the software 

structure of the economy, and determine its complexity. 

The main result of this section is a set of experiments that shows that the economy substantially 

improves performance for a wide choice of system configurations and agent behavior rules. We 

compare the economy to a representative, non-economic load balancing algorithm, and exper

iments demonstrate that the economy achieves better performance. Experiments also show that the 

economy implements a broad spectrum of load balancing strategies and can adapt its strategy to the 

relative power of CPU vs. communication. Finally, experiments evaluate the effects of the price 

system on individual jobs. These are: 1) Flow control of poor jobs, 2) lob wealth as a priority 

mechanism. 

Section I defines the load balancing problem and the model of the underlying distributed system. 

Section 2 describes the load balancing economy and presents a running example. The main results 

of this chapter are contained in section 3. This section presents the results of several experiments 

that meuure the performance of the economy and compare it to a non-economic load balancing 

algorithm. Section 4 is a comparative survey of previow work on load balancing. Section 5 contains 

a conclusion and discusses directions for future work. There are two appendices to this chapter. 

The first is a discussion of ~ome the issues raised in this chapter. The second is a detailed de

scription of the non-economic load balancing algorithm used for the comparisons in section 3. 
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3.1 Problem Statement and System Model 

The distributed system consists of N processing nodes PI . ... , PH' The CPU power of node P, is 

defined by a processing speed parameter r,. A job that requires J.L CPU seconds on an idealized 

processor with r = 1, requires ~ seconds on processor P,. The processors are connected by a 

point-to-point network defined by an edge set E = {et,,}. Edge ej,j represents a unidirectional com

munication link connecting processors Pi and PI . This link has a delay of d,J seconds per byte. 

Jobs originate at all processing nodes and seek CPU time on any processor. A job must leave the 

system at its original node. The service requirements of a job are defined by 

1. J.L - The CPU service time of the job on an idealized processor Pi with rj = 1. 

2. ReqBC - The number of bytes needed to describe the job. Each time a job migrates from one 

processor to another seeking CPU service, ReqBC bytes must be sent. 

3. RspBC - The number of bytes needed to describe the result of executing the job. 

The assumption that the resource demands of every job are known when it enters the system is not 

realistic for all applications. There may be statistical information based on previous submissions 

of the job, however. The system model of this chapter is an idealization of this case. Adding be

havioral rules that allow agents to deal with incomplete knowledge is left for future work. 

The load balancing problem is to design an algorithm that minimizes mean job waiting time by 

migrating jobs to balance the workloads of the processor nodes. The algorithm should be effective 

over a broad range of distributed system configurations. 

3.2 The Economy 

The load btJ.ncing economy regulates the sharing of CPU time and communication capacity. 

Each job J ~ provided with an initial allocation of money mJ with which it tries to purchase ~J , 

CPU secondl on some processor P,. The policy for assigning the initial endowment is discussed 

later. 'Ine job is allowed to migrate through the system in search of CPU service, but it must pay 

each time it crosses a link. 

Processor nodes sell CPU time and communication bandwidth to the jobs. Processor node P, in

dependently sets the prices it charges for its local CPU and each link e'J' P,'s goal is to maximize 
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revenue. Each processor node Pi advertises its resource prices in bulletin boards at P, and adjacent 

nodes. 

3.2.1 The Jobs 

A job performs three operations to purchase resources. These are: (I) Compute a Budget Set, (2) 

Apply a Preference Relation to the elements of the budget set and (3) Generate a Bid for the most 

preferred budget set element. 

We will use a running example to illustrate job behavior. Figure 9 on page 49 depicts a small dis

tributed system. There are two jobs at processor PI' J I has Jl = 30 ms and J1 has J..L = 10 ms. Both 

jobs have been allocated $25 to purchase their resources and both have 

ReqBC = RspBC = 1000 bytes . The dollar figures next to each node and data link represent the 

information in PI'S Bulletin Board. CPU time at PI is selling for $1.00 per millisecond. The last 

advertised CPU prices at P1 and P1 are SO.IO per ms and SO.75 per ms respectively. The current price 

PI is charging to get to P1 is $0.00 I per byte and the cost to get to P1 is $0.002 per byte. How PI 

sets these prices is described below. In this figure, all processors have a CPU rate of I and each data 

link has capacity 1Mb/second. 

3.2.1.1 Compute the Budget Set 

Let m, be job J's wealth. A budget set element is an ordered pair (k, Ct ) with Ct ~ m, . CIc is the 

estimated cost of servicing job J at Pt. C. is composed of: 

I. The cost of buying ~J CPU seconds at Pic' 
Ic 

2. The cost to cross the link to get to Pic' 

3. The cost to get from p. to the processor at which J entered the system. 

The local bulletin board contains the price information used to compute CIc ' Prices for local re

sources are exact, but the prices for remote resources are only estimates. These prices may change 

as J migrates through the network. 

[n our example, the budget sets for J I and J1 are: 

• BI = {(2,SS.00)}. 

• B1 = ((l,SIO),(2,S3),(3,SI1.50)}. 
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Figure 9. A Simple Distributed System: There are three processors and two jobs in the 
system. Dollar values next to processors and links represent the bulletin board 
infonnation available at processor I. 

3.2.1.2 Computing Preferences 

A job 1 must decide which element of its budget set is "best.· To do so, the job uses a Preference 

Relation that imposes a partial ordering on the elements of the budget set. This relation is denoted 

~" and U,~) ~J (Ie, C.), if J prefen service at PI at cost ~ at least as much as sex:vice at PIr at cost 

C.. We conaider three preference relations: 

1. Price· The job wanU to be serviced as cheaply as possible. In our example, both J1 and Jl 

prefer service at Pl' 

2. Service lime • A job prefers the element of the budget set at which it can be most quickly 

serviced. The estimated service time at P Ir is the CPU service time at p. plus the link delay of 

migrating to P Ir and returning. If 1 is currently at P" the service time of neighbor p. is 



so 

JJ.J r;; + ReqBCJ • d1k + RspBCJ • dkl · [3.1] 

In our example, dll and ~l are 8 x 10-6 seconds per byte i.e. - IMb/s links, and the service time 

of i. at p. is 

26ms = IO~ + 1000(8 x 1O-6)s + 1000(8 x 1O-6)s 

3. Service Time vs. Price (STVP) - In the STVP preference relation, both service time and price 

are considered. Under this preference, (k, CJ ~) (j, C;) if C. + A • ST. ~ ~ + A • ST
i 

' where 

1) ST" is the service time at P" given by formula [3.1], and 2) A is a constant that defines the 

relative importance of service time versus cost. In our example if A = I , i 1 prefers service at 

PI' and if A = O. I, i l prefers service at p •. 

3.2.1.3 Bid Generation 

After computing the budget set and applying its preference relation, job J knows where it wants 

to be serviced. The job now submits a bid for the next resource it needs. The next resource is either 

the local CPU or a link to an adjacent node. 

If J has m} dollars remaining and the optimal element of the budget set is (k, C.) , then 1's estimated 

surplus is m, - Ct. In our example, ii's estimated surplus at P1 is $20. 

Job i bids the current price plus a fraction of its surplus defined by a parameter S}. In our example, 

the price for the link to P2 is SO.OO 1. and ii's surplus is $20. So, i l will bid 

SO.OO I • ReqBCI + (S25 - S5) • SI 

for link ell' The effects of the parameter S, are studied in the experiments discussed in section 3.3.5. 

3.2.2 Processors 

A processor node p. performs three functions: 

I. Auction Resources: When a resource (link or CPU) becomes idle, P, holds an auction to de-

termine which of the jobs gets the resource next. 
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2. Advertise: Based on a local price change, P, may send an advertisement message to its neigh

bors. 

3. Update Prices : Using arriving advertisements and the results of local auctions, P, updates 

prices in the local bulletin board. 

3.2.2.1 Auction Resources 

We studied two auction models for the economy. They are: 1) Sealed Bid and 2) A hybrid of Dutch 

and English Auctions. Sealed Bid, Dutch and English Auctions auctions were described in chapter 

2. The hybrid model tries to find the highest price that can be charged for a resource by increasing 

the asking price when a bid is submitted (English), and decreasing the asking price when no bid is 

submitted (Dutch). In both models, a job i is allowed to overbid using its surplus and S} . This 

allows strategy to playa role in the auction process. The effect of strategy is discussed later. 

3.2.2.2 Price Updates 

When a processor sells a resource to a job, the resource's entry in the bulletin board is set to the 

unit price of the sale. In our eltalIlple, if Sl = 0.33 and the Service Time preference is used, i 1 will 

bid 

S15.00 = S1.00 • J.i2 + 0.33 • (S25 - $10) 

for PI'S CPU, and if SI = 0.25, i l will bid 

$6.00 = SO.OO I • ReqBC + 0.25 • ($25 - $5) 

for link til' If these are the winning bids, PI sets its CPU price to S1.50 = S15/10 and the price for 

link ell to $0.006 s S6.00/1 000. 

3.2.2.3 Advertising 

Each time the CPU price changes at a processor, the processor broadcasts the new price to all of 

its neighbors. In our example, P1 and p) are told of PI'S new CPU price of SUO per millisecond. 

They insert this new value in their bulletin boards so that jobs at these processors can make deci· 
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sioIlll regarding service at PI· The overhead of the advertisement policy and alternate policies are 

discussed in the appendix. 

3.3 Performance Experiments 

We implemented the behavioral rules for the processors and jobs on Columbia University's Net· 

work Simulation Testbed (NEST) [25]. We then simulated the system to measure the performance 

and behavior of the economy. The distributed system we simulated was a nine processor mesh 

(Figure 10 on page 53). The processing rate of each processor was l.0, i.e .. a homogeneous system, 

and each communication link had a capacity of 1 Mb/s. 

In the simulation, jobs arrive at all processors in the system. The jobs' service times were drawn 

from an exponential distribution with a mean service time of 30 ms. The arrival process was ag

sumed to be Poisson with the same rate at all processors. The mean inter-arrival time was varied 

to generate system utilizations from 0 to 90 percent. We also assumed that both the ReqBC and 

RspBC parameters were the same for all jobs and fixed at 1000 bytes. Except for the experiments 

of section 3.3.5, all jobs were allocated $5. 

If all jobs use the same preference relation and all processors use the same auction model, the 

economy can be classified using the preference and auction names. For example, an economy in 

which all jobs use the Price preference and all processors use Sealed Bid auctions can be classified 

as a Price·Sealed Bid or a! a Sealed Bid·Price economy. lltis cla!sification will be used to defme 

the economies discussed in this section. 

3.3.1 Job Waiting Tinu 

The main performance metric we studied Wa! the mean job waiting time (response time - CPU 

service demand). Figure lion page 54 plots the mean job waiting time versus utilization for the 

Sealed Bid· Price, Sealed Bid·Service Time and Sealed Bid·STVP economies. These waiting times 

are compared to the case of no load balancing (an MIMI 1 queueing system using shortest·job·first 

scheduling (SJF)) and the case of theoretically optimal load balancing (an M/M/9 system using SJF 

scheduling). The M/M/9 case is depicted for comparison purposes only. The M/M/9 system has 

no communication delays and all information is globally available and exact. No load balancing 
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algorithm can achieve the same level of performance. Figure 12 on page 55 shows the job waiting 

times yielded by the three job preference relations when the processors use the Hybrid auction 

model to allocate the resources. 

These figures demonstrate that the load balancing economies substantially improve performance 

compared to no load balancing. The decrease in mean waiting time is greater than 60% for all 

economiea at high utilizations. A second observation that can be made is that there is little differ-

ence between the performance levels achieved by the three preference relations. Under the Sealed 

Bid model, Service is marginally better than the other two preferences. When the processors use 

Hybrid auctions, Price is the best. The explanation for the relative ordering of preference relations' 

performance are discussed in experiments in the following sections. 
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Figure II. Job Waiting Times: This graph plots mean job Waltmg time vs. system 
utilization for the three job preference relations when processors use Sealed Bid 
auctions. The no load balancing (SJF) and optimal load balancing (MM9) 
boundary cases are included for comparison. The best economy is one in which 
all jobs we the Service (ST) preference. All jobs using the Price preference is 
marginally the worst. 

We compared the Load Balancing Economy to Livny's HOP 1 algorithm [64]. We chose this al

gorithm because of its general applicability. No heuristics specific to a particular system model are 

used. To make the comparison fair, we modified the HOP 1 algorithm so that it uses the available 

information about the service times of the jobs. In its original version, the algorithm assumes that 

the CPU service times are not known. A complete description of the modified HOP 1 algorithm 

is given in an appendix. 

We simulated and tuned the HOP I algorithm to optimize its performance for the distributed sys

tem used by the load balancing economy. Figure 13 on page 56 plots the mean job waiting time 

of the HOP 1 algorithm a.g a function of system utilization. This graph includes the mean job 

waiting times of the no load sharing and optimal load sharing cases for comparison purposes. The 
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Figure 12. lob Waiting Times: This graph plots mean job waJt1ng time vs. system 
utilization for the three job preference relations when processors use the Hybrid 
auction model. The no load balancing (SJF) and optimal load balancing (MM9) 
boundary cases arc include for comparison. The best economy is one in which 
all jobs Ulle the Price preference. The worst performance occurs when all jobs 
use the Service preference. 

two best curves in this figure represent the waiting times achieved by the best preference relations 

when a Sealed Bid and a Hybrid auction model arc ulled by the processors. These preferences are 

Service Time and Price respectively. The Hybrid Auction-Price economy achieves better perform

ance than the than the HOP I algorithm for all utilizations. The Sealed Bid-Service economy is as 

good as HOP 1 at low utilizations, and better at higher utilizations. 

This study shows that for the load balancing problem, competitive economic concepts can achieve 

levels of performance that arc as good as traditional cooperative algorithms. In some cases, the 

performance achieved is actually better than a non-economic algorithm. 

3.3.2 Spectrum of Load Bakuacing Strategies 
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Figure 13. Economic vs. Non-Economic Algorithms: This graph plots the mean job 
waiting times of the HOP 1 algorithm (HOP 1), the best economy under Sealed 
Bid auctions (Service Time preference) and the best economy under Hybrid 
auctions (Price). 

[n the experiments of the preceding section, the choice of a preference relation for the jobs had a 

minor effect on perfonnance. However, the way in which the economies balance the loads is re-

markably different. Figure 14 on page 57 depicts the mean job migration distance for the three 

preferences when a Sealed Bid auction is used. The migration distance is the number of links a job 

crosses before receiving CPU service on some processor. Figure 15 on page 58 shows the mean 

migration diltance under the Hybrid auction model. In both cases, the migration distance of the 

Price preference is three times that of the Service Time preference. The STYP preference causes 

jobs to migrate more than the Service Time preference and less than Price for both auction models. 

The reason for this behavior is as foUows. In a mesh topology, each processor has at least two 

neighbors. The current price for CPU time at a processor is a random variable and the probability 

of processor P, having at least one neighbor charging less for CPU time can be large. When the 
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Figure 14. lob Migration Distance: This graph plots the mean distance a job migrates 
before receiving CPU service for each of the three preferences under a Sealed 
Bid auction model. 

Price preference is used by the jobs. all jobs at P, attempt to migrate to a cheaper processor. This 

phenomenon causes the high migration rates in the system where the Price preference is used. The 

system does not become unstable, however. because the high migration rates cause the price for 

communication bandwidth to increase and migration becomes less attractive. This is especially true 

in the Hybrid auction economies. At high utilizations. the migration rates taper off, and are ap-

proximately 40%·50% lower than in the Sealed Bid economies. 

When mipation i5 attractive, the jobs compete for the communication links. Shorter jobs have 

smaller CPU demand3. but have been allocated the same amount of money al longer jobs. Shorter 

jobs can spend more for communication resources and will submit higher bids for the communi-

cation Links. This means that the shortest jobs win the auctions for communication links and mi· 

grate to the cheaper proces!OfS. An economy in which jobs use the Price preference attempts to 
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Figure 15. Job ~1igration Distance: This graph plots the mean distance a job migrates 
before receiving CPU service for each of the three preferences under the Hybrid 
auction model. 

simulate the M/M/9 system with shortest-jab-first scheduling. It moves the relatively wealthy short 

jobs to the cheapest (least loaded) processor. 

Figure 16 on page 59 illustrates the behavior of the price preference and explains its high migration 

rates. There are three jobs at PI with CPU demands 10, 2 and 1, and each job has $5.00. If the jobs 

use the price preference. all try to migrate to P,. Assume that SI = Sl = Sl = 0.2. 11 wins the auction 

for link ft. by bidding S1.04 = $0.10 + (0.2)($4.70) and this becomes the new price. Service at Pl 

becomes cheapest and the remaining jobs compete for link etl. 11 wins and the price of ell is set to 

$1 = $0.10 + (0.2)(54.50). Finally, 11 bids $0.50 for link til and migrates to Pl' At this point, service. 

at processor PI is now the cheapest and other jobs at PI do not migrate. The increase in link prices 

make migration less preferred and prevents the system from thrashing. 
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Figure 16. Choice of Migration Strategy: This figure depicts an example that explains the 
diversity of of migration strategies of the economy. There are three jobs at 
processor PI' The prices next to resources reflect the information in the bulletin 
boaId at PI' 

When the Service Time preference is used. the behavior of the system is completely the opposite 

of the price preference. If all nodes have the same processing rate. local service is always preferred 

to migrating to another processor. This explains the low migration rates in the economies with the 

Service Tune preference. A job wants to migrate only if the local processor is not in its budget set. 

These jobs are the relatively poor jobs. and since each job is allocated the same amount of money. 

the poor jobs are the jobs with large CPU demands. 

If the jobs in Figure 16 use the Service Time preference, jobs 11 and 1] compete for service at node 

PI . J} wins with a bid of $1.80, and this becomes the new CPU price. 11 still prefers local service 

and waits until the CPU becomes available. 11 cannot afford local service and bids for link el4 and 



60 

migrates to P4' In this example, the Price preference generates 3 times as many migrations as the 

Service preference. 

When the combined STYP preference is used, the economies' performance and migration rates lie 

between those of the Price and Service Time preferences. The behavior of this economy can be 

controlled by choosing the constant A that defines the STYP preference. If behavior like the Price 

economy is desired, A should be small to place more weight on prices. If behavior like that of 

Service Time is needed, A should be large. The load balancing economy spans a spectrum of pos

sible load balancing strategies. At one extreme, the economy has a high migration rate and migrates 

short jobs. At the other extreme, there is a low migration rate and long jobs migrate. This provides 

flexibility that allows the implementer of the load balancing algorithm to choose a particular point 

in the spectrum by setting a single parameter. 

3.3.3 Adapting to CPU vs. Communication 

Figure 17 on page 61 plots the performance of the Load Balancing Economy and the HOP 1 al

gorithm when the speeds of the communication links have been cut in half (i.e. - 512Kb/s). The 

three economies use Sealed Bid auctions and the Price, Service Time and STVP preferences. In this 

system, the Service Time preference yields substantially better performance than either of the other 

preferences, and is better than the HOP I algorithm at high utilizations. The Service Time prefer

ence is now 25% better than the other two preferences at high utilization as opposed to 15% in the 

case in which the link speeds were I Mb/s. 

Figure 18 on page 62 show! the situation when the communication speeds have doubled to 2 Mb/s. 

Service Time and HOPt are now the worst, and Price and the STYP preferences are approximately 

10% better. "I1W is in contrast to the fact that Price is the worst preference in the systems with 

l:'v1b/s and S12Kb/s links. 

The reasons for the changes in relative performance are due to the migration rates of jobs using the 

preferences. When the Price preference is used, the economy is very aggressive and has a very high 

migration rate. There is no disincentive under the Price preference for a very high migration rate 

when the speed of the communication links has been halved. The Price preference does not take 

the link and CPU speeds into consideration when ranking budget set elements. In the example of 



'ii" 
E -

20 

e15 
i= 
at 
C 

:!: 

~10 

c 
i 
2 

5 

Communication Speed Doubled 

"-..... ~ 
• El HOP 1 ~l . /,x 

·11 •• " 
c:!' / /, ••• 

1- S1VP .' / St" . ,~ /,.. 
~. Service • • ;. S1 ' 11' •• :.., 

o .... . ' 
.~. Price .. A-.... "" •• X 

.;' /0 .. ' ,'. ,,-

~". ~.: .... x 
.,; .~. ..... ..-:":., 

, .....-,i .•• 
;'~ , ..... 

tfA '. ,I 

:J. 
.• tt: .... ~ 

~ .. :~ 
01":\., 

O~~--~---r----~--~----~--~----~--~~--~ 

o 10 20 40 50 
Utilization 

60 70 80 90 

61 

Figure 17. Communication Speed Halved: This figure plots the mean job waiting time of 
the three preference relations in a Sealed Bid economy and of the HOP 1 
algorithm when the speed of the communication links has been halved (i.e .. 
512Kb/s). Service Time and the HOPI algorithm are the best. 

Figure 16 on page 59, the sequence of job decisions under the Price preferences does not change 

if link speeds are decreased. The high migration rate continues to occur despite the decrease in 

communication speed. This strategy becomes progressively worse as link speeds decrease. 

The Service Time preference generates a very low migration rate independently of the relative speed 

of communication to CPU power. As long as the communication speed is fmite and the CPUs have 

the same processing rates, local service is always strictly preferred. The example of Service Time 

behavior in Figure 16 on page 59 is independent of link speeds. The Service Time preference does 

well when the communication speed ha! been halved since it ha! a low migration rate and migrates 

the long jobs. 
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Figure 18. Communication Speed Doubled: This figure plots the mean job waiting time 
of the three preference relations in a Sealed Bid economy and of the HOP I 
algorithm when the speed of the communication link!! has been doubled (i.e. -
2Mb/s). Service Time and the HOPI algorithm are now the worst. 

When the communication speed is doubled. the aggressive migration policy of the Price preference 

becomes a more effective load balancing strategy. The Service Time preference cannot modify its 

behavior because local service is always faster than remote service. 

The combined STYP preference attains performance in between the extreme cases of the Price and 

Service Tune preferences. In the experiments presented in this section, equal weight is given to 

price and avice, i.e. A = 1. As demonstrated in the waiting time and migration distance exper-

iments described above, the STYP preference with A = I behaves like the Price economy. Although, 

when communication speed has been halved, the STYP preference exhibits noticeably lower wait

ing times than the Price preference for system utilizations in the range 60% - 80%. At 90% utili

zation. the Price preference cannot continue increasing its migration rate because the utilization of 

the communication links approaches 100% and its performance levels off. 
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Figure 19. Migration Distances: This figure plots the mean job migration distance for 
three preference relations in a Sealed Bid Economy and of the HOP I algorithm 
when the speed of the communication links has been doubled (i.e. - 2Mb/s) and 
when the link speeds have been halved (512 Kb/s). The three preferences are 
represented by P = Price, ST = Service Time, STYP = STYP and HO I represents 
HOP I. A 05 following the preference symbol or HOI represents the 512 Kb/s 
case and 2 represents the 2Mb/s case. 

Figure 19 on page 63 shows the migration distances of the three preferences in the Sealed Bid 

economy and of the HOP I algorithm for both the cases of 512 Kb/s and 2 Mb/s communication 

links. (n this figure P represents price, ST represents Service Time, STYP is the combined prefer

ence and HOI is the HOP I algorithm. The numerical suffix 05 indicates the 512Kb/s case and 2 

represents the 2Mb/s case. For example, P05 is the economy using the Price preference in a system 

with 512Kb/s links. 

This tigure shows that both the HOP 1 algorithm and Service Time economy do not adjust their 

migration based on the underlying ratio of communication speed to CPU rates. (n both cases, the 

rates are nearly identical. Below 80% utilization, the Price preference does not substantially alter 



64 

its migration rate either. At 80% utilization, the migration rate in the S12Kb/s system diverges from 

the rate in the 2Mb/s case and begins to level off. 1ms is due to the fact that the utilization of the 

communication links reaches 100% for the system with S12Kb/s links, and a higher migration rate 

cannot be sustained. 

The only algorithm that significantly alters its behavior is the STVP preference. At high utilizations, 

the migration rate in the S12Kb/s system is more than 20% lower than in the 2Mb/s system. De

spite the fact that the weighting factor A does not change, the economy does alter its behavior. 

Changing the weighting factor can be used to tune the economy to optimize its performance for a 

given ratio of communication to CPU power. 

The example of Figure 16 on page 59 can demonstrate the effects of the parameter A on the 

economy's behavior. Assume that the migration delay is 2ms for all jobs and links. Job 1) attempts 

to migrate at any choice of A because PI is not in its budget set. For II to prefer service at P4 , it 

must be the case that 6A + 0.40 < 2A + 2, which means A < 0.40. At this value, SA + 0.30> A + I 

and 1) still prefers local service. For 1) to prefer migration, we must have SA + 0.30 < A + I, or 

A < 0.175 . At this value, 6A + 0.50 < 2A + 2 and II migrates to Pl' The choice of A determines if 

I, 2 or 3 migrations occur in this example. 

In summary, the Load Balancing Economy is very versatile and offers a spectrum of load balancing 

strategies. Different strategies are better for differing ratios of communication to CPU speeds. It is 

possible to tune the economy to this ratio by adjusting a single weighting factor, and this can offer 

substantial performance improvements over a non-economic load balancing algorithm. The main 

disadvantage to this approach is that manual intervention is required to adjust the weighting factor. 

3.3.4 Flow C01ltrol 

The Load Balancing Economy implements flow control at high utilizations. Figure 20 on page 65 

plots the job throUghput as a function of system utilization. This figure shows the three preference 

relations in a Hybrid auction economy, and the HOP I algorithm. Above 60% utilization, the 

economies' throughputs taper off. This is caused by the intense competition at high utilizations. 

Relatively poor jobs or jobs that make poor resource purchasing decisions enter a situation in 

which they cannot acquire the resources needed to complete processing and leave the system. This 
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Figure 20. Flow Control: This figure plots the job throughput as a function of system 
utilization. The figure plots the throughput of the Hybrid Auction economies 
with all three job preferences, and the throughput of the HOP I algorithm. 

improves the performance of the wealthier jobs by decreasing the effective utilization of the system. 

Throughput is decreased to improve response time. 

The form of flow control implemented has some drawbacks. First, the flow control does not pre

vent jobs from entering the system. Instead, the jobs enter the system and are denied resources. A 

user that submiu a job does not know if the job will be serviced or not because there is no way to 

tell if the job will eventually receive service. Secondly, the jobs that are flow controlled remain in 

the system but cannot pu.rcbalC any resources. The amount of storage used to hold idle jobs in· 

creases monotonically over time. Obviously, this cannot be allowed to occur indefinitely. Potential 

solutions to these problems are discussed in an appendix. The main problem with the flow control 

mechanism implemented by the load balancing economy is that it cannot easily be controlled. 
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Unlike adapting to the CPU/Communication speed ratio, there is no effective way to set the desired 

throughput/response time goal. Correcting these deficiencies is an area for future work. 

3.3.5 Wealth, Priority and Learning 

A Job }'s bidding rule has two parameters. The first is Sj, which determines }'5 use of surplus funds. 

The second parameters is a feedback factor t5 j' Each time} wins an auction, it sets Sj = Sj - t5 j. 

Wnen } loses, it updates S, = S) + t5J • The use of the feedback b) implements a simple learning 

mechanism. The goal is to learn the minimum use of surplus funds needed to win an auction. 

When resource demands are low, } wins auction and decreases SJ' During periods of high demand, 

} loses and increases Sj' 

One of the goals of applying economic concepts to computer science resource management prob-

lems is to be able to define an agent's priority by the amount of wealth allocated to it. Ideally, the 

wealthier jobs should experience lower response times than the poor jobs. Figure 21 on page 67 

shows the results of an experiment testing the effectiveness of wealth as priority. In this test, a job 

entering the system is assigned a random amount of money independently of its CPU demand. In 

this figure, the X-axis represents a job's relative wealth. If job} has initial wealth mJ and CPU 

m 
demand J.L, ' its relative wealth is J.L: . The Y-axis in Figure 21 on page 67 represents mean job 

waiting time. The two curves plotted are both for the Hybrid Auction-Price economy. In the 

upper curve, the feedback parameter t5, in each job j'g bidding strategy is 0, i.e.- no learning occurs. 

The second curve plots the performance when b, = 0.05. 

When t5 = 0, relative wealth is a very effective priority scheme. Mean job waiting time IS a 

monotonically decreuing function of relative wealth in the interval [0, 0.80] . Above 0.08 the mean 

job waitina time levels off, and there is no distinction between the wealthy and the supper wealthy. 

The lower curve in Figure 21 on page 67 depicts the case of t5 j = 0.05 (learning occurs). In this case, 

wealth is completely ineffective as a priority scheme. However, all jobs are substantially better off 

than when J, = O. The reason for the ineffectiveness of wealth as a priority is a result of the learning 

process. A job j that has spent time in the system has lost several auctions and increases S" It 

more aggressively uses its surplus funds and submits bids higher than the asking price set by the 
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Figure 21. Wealth as Priority: Thi" figure plots the mean job waiting time as a function 
of relative wealth. Relative wealth is the job's initial allocation of money divided 
by its CPU demand. The two curves in the figure represent cases in which there 
is no feedback from auctions (b = 0) and there is feedback from auctions 
(b = 0.05) 

processors. Younger jobs have lost fewer auctions and we less of their surplus funds. So, the 

younger jobs lose to the older jobs. 

When b = 0, the price for which a resource sell! in an auction is not a good indicator of the demand 

for the resource. In a Sealed Bid auction, if the bidding constant S) is the same for all jobs, the price 

for a resource ia set by the wealthiest job. The number of other jobs demanding the resource and 

their individual allocations of money have no effect on the price. The same problem occurs in a 

Hybrid auction. The only difference is that the price is set by the two wealthiest jobs. The number 

and wealth of the other jobs demanding the resource is not reflected by the price. Figure 22 on 

page 69 depicts these situations for the Sealed Bid and Hybrid auction models. This explains the 

poor perfonnance of the Load Balancing Economy when b J = 0 . The prices charged for the reo 
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sources do not reflect the demand for them, and the CPU price is not a good measure of a 

processor's load. 

Setting b > 0 partially corrects this deficiency of the auction model. In this case, the price of a re

source is determined by the age of the job purchasing it. When resource demands are high, queueing 

delays increase and the ages of jobs purchasing resources increase also. As a job 1 loses auctions it 

increases S}, which in turn increases the sale price of the resource. Price becomes a better indicator 

of a processor's load. This explains the improved performance of the economy as a whole when 

,,= 0.05. 

Setting b} > 0 does not completely solve the problem of price being a poor indicator of load. For 

example, a surge in load does cause a price increase, but this increase peaks after the surge has 

passed and as the load starts to decrease. Figure 23 on page 70 depicts an an example of this 

problem that can occur even if "} > O. 10 part a, the system is empty and P = O. In part b, 3 jobs 

arrive simultaneously and each job has $10, S} = 0.25 and d} = 0.05. After the flrst sale P = $2.50. 

The losing jobs 11 and 1) increase S} by 0.05. In the next round (part c), the resource sells for 

$4.75( = $2.50 + 0.3. ($7.50)). If no more jobs arrive, when job 1) purchases the resource (part d) 

the price becomes $6.59 but the load is only 1- of the load when the resource was selling for 

$2.50. 

Wealth as a priority suffers from the same problem as flow control of the preceding section. Very 

sophisticated behavior is exhibited and tM behavior is more sophisticated than traditional load 

balancing algorithms. However, the behavior is not controllable. 

3.4 Comparison with Related Work 

This section compares the load balancing economy with previous load balancing algorithms. We 

focus on the novel contributions of the load balancing economy. For more detailed surveys on al

gorithms, readers are referred to [29, 74). Actual implementations of distributed systems that 

support load balancing are discussed in [6, 46, 47]. 

The performance results presented in this chapter and previous work [26, 27, 44, 54, 64, 65] 

demonstrate that the interprocessor communication medium ha.5 a major impact on the effective

ness of load balancing. The conununication medium has two sources of delay. The flrst is the static 
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Figure 22. Auctions and Prices; This figure shows why auction prices do not accurately 
renect demand. In this figure, 4 jobs bid for a resource R and all have S = 0.25. 
Values below jobs represent wealth and values next to arrows represent bids. 
In the Sealed Bid auction, the sale price is $2.50 whether or not J l , J) and J. 
demand the resource. In the Hybrid auction, J 1 and J1 compete driving the price 
to. $9.00, and J1 wins with a bid of $9.25. lobs J) and ~ have no effect on the 
pnce. 

delay of executing the communication protocols at the sender and receiver, and the transmission 

delay on the link. These are the facton included in the deftnition of ST. in the job preference re-

lations. The second source of delay is queueing delay at these resources. Some previous work has 

ignored the effec::u of the communication delay on performance [34, 35, 53, 74, 91]. Two con-

structive approaches to dealing with communication delays have studied. The first is to 

parameterize the algorithm to alter its behavior based on communication costs [26, 27, 36]. The 

second is the use of different algorithms for different configurations [54, 64, 65]. 

The load balancing economy deals with the two sources of communication delay with different 

approaches. The static delay of job migration relative to CPU processing is solved by setting the 
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Figure 23. Price Pathology: This figure shows how the price for a resource can be a poor 
indicator of the demand for the resource. In this figure. each job has $10. 
SJ = 0.25 and oJ = 0.05. In the first auction, the price is $2.50. By the third 
auction, when the surge has passed and the load is lower. the price is $6.59. 

parameter A in the STVP preference. The performance experiments in this chapter demonstrate that 

vastly different load balancing strategies can be implemented by different values of A. Parameters 

in previous algorithms are typically integers, while A can be any real number. This should allow 

finer control. but this has not been addressed in this dissertation. 

Delays caWJed by queueing at communication resources is handled by the price system. Higher 

demand for communication resources increases the link prices. This decreases the preference for job 

migration. The experiments with the hybrid auction model demonstrate that the load balancing 

economy decreases migration rates as the competition for communication resources increases. This 

process does not require external control to set parameters. The load balancing economy is self-

regulating, and this behavior is not present in previous algorithms. 
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Stability has been identified as a problem for dynamic load balancing algorithms [12. 86]. An al

gorithm is unstable if it can enter a state in which jobs are being migrated to balance loads but no 

productive processing is being done. The phenomenon is similar to thrashing in virtual memory 

[23]. Two approaches have been taken to ensure stable behavior. The first uses global information 

to periodically compute assignments of work to processors to minimize a system wide performance 

objective [34, 35]. The resulting assignment is fixed during the next interval and instability is 

avoided. The overhead of acquiring consistent global information can make this approach un

workable. The second solution to the stability problem is augmenting the load balancing algorithm 

with a heuristic that prevents unstable states [26, 27, 36, 53, 54, 64, 65]. Two common 

heuristics are: 

I. Each job J can only be migrated M times by the algorithm. This prevents the system from 

infinitely migrating jobs. 

2. Let L1, LJ be the loads of processors P" P,. A job can be transferred from P, to Pj only if 

I L, - L, I > T, where T is a threshold parameter greater than the load of any single job. This 

disallows migrations that would reverse the load imbalance, and prevents Pi and Pj from en

tering a state in which they infinitely migrate jobs between each other. 

There are two disadvantages to the use of heuristics. The first is increased complexity. The second 

disadvantage is that the heuristics are pessimistic. The heuristics disallow migrations that may im

prove performance to avoid the possibility of instability. 

The load balancing economy is inherently stable. A job pays a non zero fee each time it crosses a 

link. So, infinite migration is not possible. This mechanism implements a more general version of 

heuristic 1 above. The link prices increase when there is competition. This has the desirable ad

vantage that the distance a job is allowed to migrate decreases as the demand for communication 

resources increases. The experiments with the hybrid auction model demonstrated that increased 

competition for communication resources decreases the preferability of migration. This also pre

vents instability. The sealed bid auction model is less effective in this respect. 

Load balancing algorithms can be partitioned into to classes: sender initiated and receiver initiated 

[27, 74]. In a sender initiated algorithm, over loaded processors look for under loaded processors 
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to which work can be sent. In a receiver initiated algorithm, under loaded processors search for over 

loaded proccsaors from which work can be obtained. It has been shown that at high average system 

load receiver initiated algorithms achieve better performance, and at low average load sender initi

ated are better [27, 74J. 

The load balancing economy is both sender and receiver initiated and can encompass the benefits 

of both models. A heavily loaded processor charges a higher CPU price which causes jobs to look 

for cheaper, less loaded processors. lbis implements sender initiated load balancing. The less loaded 

processors advertise their lower CPU prices to attract migrating jobs (receiver initiated). The HOP 

I algorithm is sender initiated. A comparison between the load balancing economy and a receiver 

initiated algorithm is an area of future work. 

The load balancing economy limits complexity in several ways. First, all decision making is de

centralized and this decentralization removes complexity due to cooperative protocols. The only 

interaction between processors is inserting advertisements into bulletin boards. The processors do 

not make decisions based on this information. All local auctions and price updates are performed 

independently from other processors. The decision making rules of the jobs are independent. 

The decentralized decision making allows a very modular implementation. It is possible to change 

a processor's auction model without effecting the policies of any other processor. In our exper

iments, switching between sealed bid and the hybrid auction models did not require any changes 

in the job's rules. Similarly, varying a jobs preference relation does not require any modification to 

other jobs or the processors. This modularity facilitates transparent addition of processor and job 

rules and software maintenance. 

Finally, the load balancing economy decreases complexity be eliminating the need for special 

heuristics or alternate algorithms. Tuning the algorithm for the ratio of CPU vs Communication, 

preventing imtability and implementing sender/receiver initiated load balancing are inherent prop

erties of the economy. 

3.5 Summary 

This chapter presented the load balancing economy. A simulation study showed that this economy 

achieves substantially improved system performance compared to a distributed computer system in 
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which load balancing is not implemented. The economy was also compared with a non-economic 

load balancing algorithm. It was shown that performance improvements achieved by all variations 

of the load balancing economy are competitive with the improvements of the non-economic algo

rithm, and in some cases the load balancing economy is strictly better. 

The load balancing economy was shown to implement a very broad range of load balancing strat

egies. The mean distance a job migrates in search of CPU service changes by a factor of 3 for dif

ferent versions of the economy. The decision as to which type of job (short vs. long) should migrate 

to balance loads also changes. This adaptability allows the economy to be optimized for the ratio 

of communication to CPU power in the underlying distributed system. 

The load balancing economy implements a form of flow control at high utilizations. lob through

put is throttled to improve mean job response time. We studied the effectiveness of a the amount 

of money allocated to a job as a definition of priority. The role of learning and its interactions with 

the use of wealth as a priority scheme were addressed also. 

We discussed how the load balancing economy limits complexity compared to previous load bal

ancing algorithms by eliminating the need for multiple heuristics. Previous algorithms deal with 

specific sub-problems of load balancing by applying ad hoc heuristics. These heuristics are not 

necessary in the load balancing economy. The decentralized decision making in the load balancing 

economy also limits complexity by implementing a set of modular, disjoint algorithms. 

We discussed three shortcomings of the load balancing economy. The first is the potentially high 

overhead of auctioning idle re50urces. The second is the inability of auctions to set resource prices 

that accurately reflect the demand for the re50urces being sold. These two problems motivate our 

use of different pricing mechanisms in the later chapters. 

The third shortcoming is the assumption that a job's CPU service demand is known when the job 

is submitted. In general, economic models assume that individual agents know their resource de

mands. This may not always be true for the load balancing problem, but there are environments 

in which this assumption is realistic. 
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3.6 Appendix 

3.6.1 Issues 

The discussion of the design of the load balancing economy and of the performance experiments 

pointed out disadvantages of the economy and raised other issues. These issues are addressed in this 

appendix. The solutions to the disadvantages and issues raised are left for future work. 

3.6.1.1 Knowledge of Resource Demands 

The jobs' behavioral rules rely heavily of the assumption that each job} knows its resource de

mands (!J.j, ReqBCJo ReqBCj ). The assumption that individual agents know their resource demands 

is an integral part of micro economic models [40]. Modifying the algorithms to deal with incom

plete infonnation is left as an area of future research. 

\1odifying the economy to deal with incomplete information faces two problems which are 

orthogonal to the economic algorithms. If no information about a job }'s CPU demand is known, 

the infonnation must be inferred from resource consumption as the job resides in the system. For 

example, jobs can purchase time slices. The job's total CPU demand can be estimated based on the 

number of slices already purchased. This approach is similar to multilevel feedback queueing for 

CPU scheduling in operating systems [23]. Bryant and Finkel [12] studied a load balancing model 

in which job CPU demand! were estimated based on service received. The main problem with this 

approach is that load balancing mwt be preemptive, and migrate actively running jobs. (t is typically 

assumed that the communication and CPU overhead of preemptive load balancing is prohibitive 

[75]. 

An alternate approach is to estimate the resource demands based on previous execution, or based 

on job cw.s. This limits the generality of the system. Furthennore, computing these estimates 

is time consuming and requires substantial resources itself [30]. 

3.6.1.2 Auctions 

Section 3.5 pointed out several disadvantages of using auctions to allocate resources. An additional 

problem is overhead. Each time a resource is allocated all locally residing jobs participate in an 

auction to determine which job gets the resource. The overhead is a greater problem under the 
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hybrid model because there are multiple rounds of bidding. This overhead and the problems dis

cussed in section 3.5 have led us to study alternate models in chapters 4 and 5. The data manage

ment economy does successfully use an English Auction, however. 

3.6.1.3 Advertisements 

There is potentially an overhead problem associated with the processors' advertisement policy. 

Processing node P, broadcasts every CPU price change to all neighbors. The advertisement mes

sages are very small, and in a point-to-point network they can be piggybacked on nonnal data 

transfer messages. The processing overhead for receiving an advertisement and updating the bulletin 

board is also quite low. So, the advertisement policy's overhead is tolerable in point-to-point net

works. 

Livny [64, 65] has shown that broadcasting all state changes can have a prohibitive effect on the 

perfonnance of distributed systems with a broadcast interconnect medium. In such an environment, 

the load balancing economy requires heuristic rules to limit the amount of advertisements sent. For 

example, only price changes greater than a threshold A are sent. These heuristics add complexity, 

however. 

3.6.1.4 Price Guarantees 

When job J decides to migrate from proce~r P, to PJ it bases its decision on the CPU cost of PJ 

contained in P:s bulletin board. This price is not guaranteed, and can change while J is migrating. 

Furthennore. J participates in an auction for the CPU after it arrives at P
J 

and may not pay the 

pnce advertised at P,. Thcse factor3 can generate fruitless migrations that consume communication 

resources an incur overhead. 

An alternate approach is to guarantee priccs. In this case, if J sees price cj advertised in P:s bulletin 

board, P
J 

must honor tlW commitment when J arrives. This policy greatly complicates the econ

omy. however. Since prices are set by auctions, resource prices change rapidly. If n jobs arrive at 

PJ' it is possible that each job has seen a different advertised price. Processor PJ must decide which 

job to service next. Furthennore, it is not clear what price P
J 

should advertise when allocating the 

CPU to one of these jobs. Finally, if a job was guaranteed a price cf which is greater than the 
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current CPU price c" should 1 be allowed to spend less? We avoided implementing guaranteed 

pricing in the load balancing economy due to the complexity it incurs. 

3.6.1.5 flow Control 

Section 3.4 pointed out two shortcomings of the flow control policy implemented by the load 

balancing economy. These are: 

I. Flow control does not prevent entry into the system. Jobs enter the system, but never execute. 

2. The buffer space required to hold these jobs increases monotonically because jobs are never 

terminated. 

There are two potential solutions to these problems. The first is guaranteeing prices, which is dis

cussed above. A second approach is to charge queued jobs rental fees for their buffer space. This 

would mean that every job submitted either receives service and completes, or is aborted when i13 

funds are exhausted. 

3.6.1.6 Returning Jobs 

The description of the job behavior in section 2.1 did not describe how jobs return to the processor 

at which they entered the system. The algorithm for implementing this requirement is described 

here. 

Each time a job crosses a link seeking CPU time, it sets aside ("bankS) money to buy the same link 

on the way home. lob 1 may also have some surplus funds after its CPU time has been purchased. 

This surplus does not include the money "'banked' to buy the communication bandwidth for the 

journey home. In the example of Figure 9 on page 49, assume that when 11 gets to Pl , the CPU 

price has fallen to SO.OI per rnilfuccond. 11 allocated 53.00 to buy the CPU, but spends only SO.30; 

it has a surplus of 52.70. 11 also set aside SI.OO to buy the link from Pl to PIon the way home. 11 

actually has S3.70 with which it can buy link ell. 

If the link price is equal to or lower than the initial estimate, the job will only use the money set 

aside to try to buy the linl" Otherwise, it will use a percentage of its surplus based on the value of 

51. Returning to our elWIlple, if Pl is charging SO.0007 per byte to get to PI' 11 will have a surplus 

of 



77 

$1.00 - 0.0007. 1000 = $0.30 

and will bid 

1000.0.0007 + ($0.30) • S2' 

If, however, the price is $0.002, 1[ cannot afford the link with the $1.00 set aside. So, it will bid 

1000.0.002 + ($3.70 - $2.00) • S2' 

This example illustrates the important aspects of the rules jobs use when returning to their origin. 

These rules are quite simple, and should be sufficient if jobs rarely migrate more than one or two 

hops. Our simulation studies show that the mean job migration distance is usually less than 1 hop. 

3.6.2 The Hop 1 Algorithm 

This section presents the modified HOP 1 algorithm [64]. In its basic version, the HOP 1 algo

rithm does not use the service times of the individual jobs when making load balancing decisions. 

Each processor P, maintains a list of the jobs currently queued locally waiting for CPU service. This 

list is denoted N(/). Since the performance goal is to minimize average response time, and the service 

times of the jobs are known, the optimal scheduling policy is Shortest Job First [S 1]. To imple

ment this policY, the list N(l) is sorted from smallest 14J to largest J.LJ. When P/s CPU becomes idle 

due to a job completion, the fim job in N(l) is assigned the processor. 

If processor PA decides to send job J to processor PI' it first sends a Reservation Message < J, J.LJ> 

to PI' and then initiates the migration. The reservation message arrives much more quickly than 

the migraq job and allows P, to make load balancing decisions based on locally queued jobs, and 

on jobs that will soon arrive. R(/) is the set of reservation messages that Pi has received from all 

neighbors. When job 1 arrives, < J, J.LJ> is deleted from R(l) and inserted in N(I). 

The load L, of processors P, is defined as 
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Each change in LI is broadcast to all of P, 's neighbors. For each neighbor p., P, maintains the last 

reported load from p. in LI[k]. 

Processor Pj attempts migrations if: 

I. There is at least one neighbor p. with L,[k] < L, , and 

2. #(N(I) > T, i.e. - more than T jobs are queued locally. T is the Transfer Threshold, and is a 

parameter of the algorithm. 

P, migrates jobs to the neighbor p. with minimal L,[k]. 

We implemented two policies to select the job to migrate. They are: 

I. First Fit Selection Policy: Select the job with the smallest CPU time in N(i) , denoted M, pro

vided that 

In other words, do not pick any job if doing so would reverse the load imbalance. 

2. Best Fit Selection Policy: Choose the largest job (denoted 8) that satisfies the condition 

If the P, picks job J for migration to p. , the following steps are performed: 

I. Send Reservation Message < J, Ill> to p •. 

2. Initiate the migration of job J to p •. 

J. Delete < J, Ill> from N(/). 

4. Set L, - L, - III 

5. Set LI[k] '"" L,[k] + III 

The HOP 1 algorithm is invoked at P, when one of the following events occurs: 1) A local job 

arrival, 2) A Reservation Message arrival, J) A job completion, or 4) A migrating job arrival. The 

HOP I algorithm executes repeatedly until no further migrations are possible. This means that ei

ther #(N(l)) < Tor P, is less loaded than its neighbors. The algorithm also stops if no job can be 

migrated without reversing the load imbalance. 



50 

• 
E 
':30 

• E 
~ 

DII 

':20 -a 
~ 

10 

o 

Waiting Time vs. Utilization 
HOP 1 Algorithm 

)( 

.• BF-2 :1' 
I 

-& BF-1 ~ 
I: 

~·FF-2 ~./ 
,,: . 

.~. FF-1 " » .' 
..t:I' ,.... ,c 

".: •• , Ji!!"' 
• •• ;It • "'.' .. ' ", 

~,!. .....:.,...1:.1 
~ ..lol' ....... ~ ,. Ir'" , .. "., 

, -. IL· 
,~. :~ 

~.~ .. 
~ ...... ' 

~~ 

10 20 ~o 50 
Utfllzatlon 

60 70 80 90 

79 

Figure 24. Modified HOP 1 Algorithm: This figure plots the performance of the HOP 1 
algorithm for possible choices of the Selection Policy (First Fit (FF) and Best 
Fit (BF)). and for the threshold T in the Transfer Policy. The thresholds 
depicted are T = 1. T = 2. The first two letter in the legend indicate the Selection 
Policy, and the number following represents T. 

The modified HOP I algorithm Wa.'J simulated in the same distributed system as the load balancing 

economy. Figure 24 on page 79 plots the performance of the modified HOP 1 for the following 

choice of parameters: 

1. Best Fit,T 2 1 (BF-l) 

2. Best Fit, T = 2 (BF-2) 

3. First Fit. T = 1 (FF-I) 

4. First Fit. T ;::: 2 (FF-2) 

The best choice is Best Fit with transfer threshold T = 1 . This is the choice of values that was used 

in the previous performance comparisons with the load balancing economy. The performance of 

the load balancing economy for all choices of preferences and auction models is competitive with 

• 
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(or better than) the best choice of parameters for the modified HOP 1 algorithm. Other choices 

of parameters for HO P 1 yield performance Worse than all 6 combinations of preference relations 

and auction models for the load balancing economy. 



81 

4.0 The Flow Control Economy 

This chapter presents an economy that implements flow control in a virtual circuit based computer 

network. The agents in this economy are the virtual circuits (VCs) competing for communication 

resources and the link .:ontrollers that set the prices for these resources. We present decentralized, 

synchronous behavior algorithms for the agents in our economy. The allocation of resources to 

VC agents computed by these algorithms is proven to be Pareto-optimal [40]. This is a new defi

nition of optimality for the flow control problem and we discuss the benefits of this definition. 

One of the goals of flow control is to fairly allocate communication resources to VCs [9]. 

Pareto-optimality provides a new definition for fair allocations of link capacity to virtual circuits. 

We present a formalization for fairness definitions, and we compare previous definitions to 

Pareto-optimality. We prove the existence of a Pareto-optimal allocation for arbitrary networ~. 

Finally. the results of a simulation study of the convergence behavior of the economy are presented. 

This study demonstrates that the economy rapidly converges to a Pareto-optimal allocation over a 

broad range of parameters for realistically large networks. 

This chapter is structured as follows. Section 1 presents the network model used. This section also 

describes the economy in detail. Section 2 proves that the flow control economy computes 

Pareto-optimal allocations of link capacity to VCs. Additionally. this section presents a 

fonnalization for defining fair resource allocations and compares the economy to previous work 

with respect to fairness. Section 3 uses concepts from mathematical economics to prove the exist

ence of a feasible, Pareto-optimal allocation for arbitrary flow control economies. In section 4. the 

results of an extensive simulation study measuring the economy's convergence to optimal allo

cations are pn:aented. Section 5 compares the economy to previous work on flow control. and 

section 6 is I conclwion. Several lemmas used in the proofs of this chapter's theorems are proved 

in an appendix. 

4.1 Network and Economy 

In this section. we defme the network model and the economy. Model the network as a graph 

G = < V. E> . where V = { 1, 2 ..... K} is a set of nodes and E = { 1. 2 .... , M} is the set of edges re-
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presenting the network links. We associate two numbers with each edge i e E: A capacity C1 

(measured in data units per second), and a link. supply SI such that Sj < C1 • The link supply sets an 

upper bound on the link utilization to assure that the queuing delays are bounded. This does not 

limit generality because SI arbitrarily close to C1 is allowed. The goal of the flow control economy 

is to allocate the link supplies among virtual circuits (VCs). 

Let A == (1, 2, ... , N) denote the set of VCs. For each VC a e A there is an associated path of edges 

in G, 

VCs play the roles of consumer agents in the economy and seek allocations of link capacities. An 

allocation of capacity is a vector x = < XI' Xl' ... , X M > , such that Xi ~ O. Each link i E E has a sup

plier agent (network node) that charges VCs using i. A price system is a vector 

p == < PI' Pl, ... ,PM> , where pj ~ r. > O. We restrict prices to be strictly positive in order to avoid 

pathological behaviors. The assumption that PI> 0 is used in later sections. This assumption does 

not limit generality because p, arbitrarily small is permitted. 

Each VC a has a binary preference relation [40] denoted ~. over the allocations; x ~.; denotes 

that VC a prefers allocation x at least as much as allocation y. If x ~.; and; ~. x I VC a is 

indifferent between x and y (denoted x -. y). If x ~. Y but not x -. y. then VC a strictly prefers 

x (x >-J Y)· 

We define ~. to reflect two features of an allocation x: Its throughput T(x) and its worst case 

average delay D(x). A VC a attempts to maximize T(x) until it reaches its individual throughput 

goal Y. chosen by the VC's user, and then tries to minimize D(x). The relation ~. is defined to 

capture thia aoal as follows: 

I. If T(x) ~ Y. and T(J) ~ Y. , then if T(J) ~ T(x), y ~. x . 

2. If T(x) < Y. and T(J) ~ Y. , then y >. x . 

J. If T(x) ~ Y. and T(J) ~ Y. , then if D(x) ~ D(J), y ~. x . 

This preference relation can be tailored to model the diversity of throughput-delay goals in a com

puter network supporting many types of VCs. A circuit supporting a throughput oriented applica-
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tion (e.g .• file transfer) is modeled by setting Y. = 00. The preference relation also models 

applications with low throughput demands and tight delay constraints such as a VC connecting a 

workstation to a database. In this case, the throughput goal Y. is the mean transaction 

request/response packet size divided by the user's "'think time .... A VC carrying voice can set y. to 

the value needed to carry the voice signal (64 Kbits/s) and then try to minimize the delay. 

To compute ~., we use the following definitions for T(x) and D(x). The throughput attainable 

is defmed by the link in the path with the smallest allocated capacity, and 

To defme D(x) we assume that VC a only transmits at rate y.. Any excess capacity allocated to 

VC a beyond its throughput goal is unused. Assuming an M/M/l link queuing model, the worst 

case average delay on link i is given by 

Thls assumes that all the remaining link supply S, - XI is consumed by the throughput of other 

users of the link. So, (C, - S,) + (x, - Y.) is the unused link capacity. Under the independence as· 

sumption [52], 

At a given price system p we associate with each VC a a demand set of allocations ct>.(.D). We as

sume that VC a is endowed with a budget W. > 0 . The VCs' endowments are chosen by some 

policy external to the economy. Given a price system p , the set of allocations affordable by VC 

a IS 
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This is called the budget set of VC a . The demand set is defined as the set of allocations in BaC;) 

that are optimally preferred by P= •. That is, 

4.1.1 Computing the Demand Set 

Virtual circuit a wants to send data from its source to its destination at rate Y •• Since Pi is the cost 

per unit capacity of edge i, the total cost per transmission unit on a's path is 

So, the total cost of achieving its throughput goal is y,. Q., and VC a can achieve its throughput 

goal if W. ~ Q. 0 y •• If this is not the case, VC a attempts to maximize its throughput subject to its 

monetary constraint. The following lemma states properties of <t>.(p) : 

Lemma 1.1: If W. ~ Q. • y, at prices p, then: 

1. <1>,(,0) is non-empty. 

2. <1>.(,0) has a single element ~ •. 

W 
~~ = Q:' if ; E p •. 3. 

4. 

This lemma is proved in the appendix. Stated simply, if W. SQ •• y. , a VC simply divides its wealth 

over the total cost of the path. 

If VC a can afford to meet its throughput goal, it purchases y. capacity of each edge in p. and uses 

the remaining W. - (Q. 0 Y.) to minimize the worst case average delay of its allocation. We ignore 

the edges not in p. for the remainder of this section. Define u, = X, - Y., and K, = (C, - S,). The 

delay minimization problem is to minimize 
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Ie Pa 

subject to 

1. u; ~ 0. 

2. p. u ~ W, - Qa 0 'I •. 

The set of feasible u is convex and compact, and the function F is continuous and strongly convex 

on this set. These facts are proved in the appendix. This implies that there exists a unique, feasible 

U' minimizing F(u)[l] . 

Formulating and simplifying the Kuhn-Tucker conditions for this minimization problem gives the 

following form for the optimal u' : For all i, 

I. U;' = 0, or 

2. 

1 
• 2 = 1 

(KI + ut) 0 PI 
(I) 

where 1 is the Lagrange mUltiplier. The flfst condition enforces the throughput goal 

(u,' = x, - Y. ~ 0) . For all links i with x, > 'I., the second condition states that the marginal decrease 

in delay per unit price is the same. If this were not the case, buying marginally less of one link and 

more of another would decrease delay without violating the budget constraint. 

The algorithm for minimizing D(x) computes A. and the link! j with u; > O. For u; > 0, equation 

(I) gives 

The algorithm is a binary search on the possible values of A.. A VC agent uses the following algo-

rithrn to compute u': 
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Algorithm 1 : 

1. Ab = 0 {The lower bound on A} 

2. (An upper bound on A from equation (1) and u; ~ O} 

AU = max { ~ ,iEPa } 
(KI) • PI 

3. A. = (Au - Ab)/(2.0). {Test the midpoint of the range} 

4. For i E p. {Compute the ~}: 

a. 

b. If ~ < 0, ~ = O. {Enforce throUghput goal} 

5. If P • u = Wa - Q •• Y., Stop, u is optimal. 

6. If P • u > Wa - Q •• Ya' Ab = A . {Too many ~ > 0, increase A } 

7. If P • u < W. - Q •• Y., A" = A . {Too many ~ = 0, decrease A } 

8. Go to 3 {Test new lambda} 

For P, ~ E = 0.01 and K, = Cj - Sj = 0.8, algorithm 1 computes A. with maximum error 0.001 in 25 

iterations. This algorithm WlU implemented for the simulation study described in section 3 and this 

convergence behavior WlU confinned. 

After computing u', VC a's demand set w a single element cPa with 

1. cP~:::::y.+u;,ifi.P •. 

2. <p~ = 0, if ifP •. 
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4,1,2 Competitive Equilihrium and Price Updates 

The total demand for a resource i at prices p is the sum of the individual demands, or 

d/p) = L cPfcP) , 

aeA 

where cP~{j) is VC a's demand for link i at prices p. The excess demand/unction 2(.0)[40] repres

ents the imbalance between supply and demand. Its i-th component is simply 2,(.0) = di(.O) - S,. 

The economy is in a competitive equilibrium at equilibrium prices p' if 2,{j') = 0 for all j [40]. The 

flow control economy attempts to compute a competitive equilibrium. Equilibrium has the fol-

lowing properties: 1) No resources are unused. 2) Each VC's demand can be satisfied. Furthermore, 

we prove in section 2 that the equilibrium allocation is optimal. 

For the flow control economy, this definition for competitive equilibrium is not adequate because 

S, can be strictly greater than d,{j) no matter how low P, falls. Figure 25 on page 88 depicts an 

example of this phenomenon. There are two VCs with WI = Wl = 1 and YI = Yl = 00. All links have 

S, = 1. By symmetry and lemma 1.1, the VCs evenly divide link 3, and VC I gets < +,0, + > 

and VC 2 gets < 0, + ,+ > . So, in equilibrium Z{j') = < - + ' -+ ' 0> . 

To avoid this problem, we present a new definition of competitive equilibrium. The flow control 

economy is in equilibrium at prices p' if for all j either: I) Z,{j') = 0 , or 2) 2,{j') S 0 and Pi = t. 

This means that excess supply is allowed if the minimum price is charged for the resource. 

Each data link i w a suppli~r agent that updates the P, based on supply and demand. The algo

rithm for updating prices is a tatonement process and follow! directly from the deftnition of equi

librium. The change in PI is proportional to the imbalance between SI and d,{j). The rule for 

updating PI is: 

[ 
ZicP) 1 PI = Max PI + PI • -s;- ,r. . 

The behavior of the Flow Control Economy as a whole is an iteration described by the following: 



I VC 1 

I 
I 
I 

VC 2 

.......... .... 

----............ 

Supply = < 1, 1, 1 > 

VC 1 gets < 1/2. O. 1/2> 

VC 2 gets < O. 1/2. 1/2> 

Figure 25. Supply Exceeds Demand at all Prices 

Algorithm 2 : 

I. Choose an initial price p. 

2. For all a Ii A. compute ;.<p) {As describe in the preceding subsection}. 

88 

3. If for all i. E. (Z,<P) = 0) or (Z,<P) ~ 0 and p, = t), an equilibrium has been reached and the 

iteration stops. 

4. Otherwise. for all i E E, 

[ 
Z/p) 1 

PI = Max PI + PI • -s;- ,t . 

5. Go to 2. 
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In our implementation, we chose an initial price system with Pi = c. for all i. The effects of the choice 

of an initial price system on the equilibrium computed is an open problem in our economy. In step 

2, each VC computes its demand allocation at the current price system. To perform this computa· 

tion, each VC requires information about the prices of resources on its path, and no other prices 

matter. In step 4, the supplier for link i needs to know the identifiers of the circuits using link i and 

their demands for link i in order to compute Zlp). This means that the VCs can compute their 

demand vectors and the link suppliers can update prices using a decentralized algorithm as defined 

by Jaffe [49]. In the simple algorithm above, global information is required to detect equilibrium. 

We believe that there is a decentralized algorithm for equilibrium detection, but this is left for future 

work. 

4.2 Optimality and Fairness 

The goal of this section is to establish the degree to which the flow control economy accomplish~ 

optimal and fair allocation of capacities. We proceed first with a formalized discussion of fair sol· 

utions to flow control problems. 

A flow control problem is defined by: 

I. A graph G = < V,E> with a capacity Ci for each i e E. (As in section 2) 

2. A set of virtual circuits A = { I, 2, ... , N}. ve a E A is characterized by: 

a. p.£:£ : ve a'5 path. 

b. X': Set of all po5sible allocation5 to a. 

c. An Admissibility Correspondence 

[ n bj x· ~: X ..... 2 . 

(bl*4),,(b.A) 

For a given set of allocations to the other ves, F- define5 the allocations that can be as· 

signed to ve a. 
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d. A preference P: a on X'. 

A solution to a flow control problem is a set of allocations {Xl, x~, ... ,xN} with the following 

property: For all a e A 

-a r<l -1 --2 -N -a 
x er ({x,x , ... ,x }-{x }). 

The set of allocations is admissible with respect to each VC. For the flow control economy, the 

admissibility function is simply the budget constraint (and is not directly dependent on the allo

cations to other VCs). 

The flow control problem and solution have been defined. We now present a set of norms that 

define lair solutions. The simplest condition is 

(F 1) A solution {Xl, x~, ... ,xN} to a flow control problem is fair if for all a e A, T(X4) > O. 

This condition is not always satisfied by flow control algorithms that attempt to optimize a global 

performance metric. For example, in [10] it is shown that maximizing certain global metrics based 

on power may yield solutions that are not fair by Fl. A stronger fairness condition is to allocate 

the same throughput to all VCs, but differing link capacities can make this impossible. Jaffe [48] 

proposed a fairness condition that takes differing link capacities into consideration. A link i e p. is 

a bottleneck link. for VC a if T(x.) = r.. Link i constrains the throughput of VC a. Jaffe's fairness 

condition is 

(F2) If link i is a bottleneck link of VC a, a solution {Xl, Xl, ... ,xN} is fair if xr ~ xt for all 

bE A. 

lbis means VC a should get at least as much of its bottleneck link as any other Vc. F2 is based 

on the assumption that all VCs want to maximize throughput. 

The third definition of fairness is related to a Nash Equilibrium [82]. 
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(F3) A solution (Xl, Xl, ... ,xN) 1S fair if 

Y e F({XI, Xl, ... ,xN) - (X4
}). 

for all a e A, :x. ~. y for all 

TIlls simply states that a given allocation is fair if no VC can unilaterally improve its allocation 

given the allocations to the other VCs. This approach to fairness and optimality was proposed by 

Hsiao and Lazar [42, 43]. Unlike F 1 and F2 which assume that all VCs are throughput oriented, 

F3 allows each VC to choose its individual preference relation. 

F3 states that a solution is fair if no single VC can improve on its allocation. The fourth condition 

states that a solution is fair if no group of VCs can cooperatively improve their allocations. Define 

a coalition S as a subset of A. S can improve on solution (Xl, Xl, ... ,xN) if there is another solution 

(? ,yl, ... ,yN) with 

I. y. = x4
, ar;S (The non-members are not affected). 

2. y.~. x., a e S (No one in the coalition is worse off). 

3. There exists a e S with y. >-. x· (At least one member is strictly better ofl). 

Given this definition, 

(F4) A solution {Xl, Xl, ... ,xN} is fair if no coalition can improve on their allocations. 

Condition F4 is the definition of Pareto-optimality, and it also permits individual preferences. 

The sets of fair solutions defined by these conditions are not disjoint. The following propositions 

state two obviow relations: 

Proposition : 

I. Condition F2 implies condition Fl. 

2. Condition F4 implies condition F3. 
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The fairness condition supplied by the flow control economy is based on the price system p. The 

feasibility operator F" is defined by the budget set. The following lemma shows that the flow control 

economy computes solutions that are fair by F 1 and F3: 

Lemma 2.1: Let (I) P be a price system. (2) ~"<p) be VC a '5 demand at p. (3) x * </J"<P) 

be any allocation. Then, 

2. X ~a ~a<p) implies that x • p ~ ~"<p) • p . 

3. x:> a ~"<p) implies that x • p > ~a<p) • p . 

The lemma is proved in the appendix.. 

By defInition, the link prices and W. are non-zero. The fairness of </Ja<p) by condition F 1 follows 

from part I of the lemma; Condition F3 follows from parts 2 and 3. 

Lemma 2.1 can be used to prove that the flow control economy computes solutions that are fair 

by F4. The following theorem proves this assertion: 

Theorem 2.1: Let p be an equilibrium price in the flow control economy. Then, the set of 

allocations 

-1 - -2 - -N-
</J (P), </J (P), ... , cJ> (P) 

is pamo-optimal and unique. 

Proof: 

(unique) Each ;'<P) is unique, so the aggregation of the choices in unique, 

(pareto-optimality) Assume a coalition S = { I, 2, ... , s} chooses a set of allocation with 

- -
2. cJ>')<P):» 4Y<P), for at least I j E S . 
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We know from lemma 2.1 that 

1. ~/fcP) • p? ~lcP) • p, 'Vi e S . 

2. ~/jcP) • P > ~cP) • p, for j. 

So, 

The coalition cannot afford the better set of allocations at prices p. 

This proof only relies on the properties of the preference relation established in lemma 2.1. Theo

rem 2.1 is not specific to the preference relation of section I. Any other preference relation pas-

sessing these properties could be added to the flow control economy without decreasing the fairness 

properties or Pareto-optimality of the equilibrium allocation. 

The equilibrium allocation is optimal because an allocation that improves the lot of any VCs forces 

unfair allocations on others. This depends on the assumption that the tatonement process sets 

prices that accurately reflect the relative importance of the data links. 

The examples in Figure 26 on page 94 show the relationship between conditions F2 and F4. In 

example I, assume VC I and 2 use only throughput for their preference (y. = 00), and consider the 

allocations < 3, 0> to VC 1 and < 2, I> to VC 2. VC 2 can increase VC I's throughput by giving 

it one unit of capacity on link I. This does not decrease VC 2's throughput because 51 = I. So, 

the allocation is not Pareto-optimal. It is fair by definition F2 because VC I gets more of link 1 

than VC 2. Jaffe's algorithm computes a solution that is more fair than he claims. The solution is 

in fact fair by F4. Other definitions of fairness equivalent to F2 include special rules to ensure that 

the solution is also Pareto-optimal [9]. The main advantage of the flow control economy over this 

previous work is that diverse preferences are allowed. The previous work assumes that all VCs are 

throughput oriented. 
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Example 1 

vc , : <3,0>, VC 2 : <2.1 > 

VC 1 

Example 2 

VC 3 

VC , : <2/3, 0>, VC 2 : <0,2/3>, VC 3 : <1/3, 1/3> 

Figure 26. Fairness Conditions F2 and F4 

Example 2 in Figure 26 on page 94 shows that the flow control economy computes solutions that 

are not fair by F2. [n this example, for i = 1,2,3, y, = 1. and w: = 1. At prices p = < 1.5, I.5 > , 

the economy is in equilibrium with allocations < ; ,0> to VC I, < 0, ; > to VC 2, and 

< +, + > to VC 3. VC 3 is bottle necked on links I and 2 and has less capacity than the other 

VCs. This example shows that the flow control economy can be unfair to long VCs under definition 

F2. An alternative argument can state that condition F2 is unfair to short VCs. Under F2, the total 

amount of capacity assigned to a VC increases with its length. This decreases the amount assigned 

to shorter VCs. External policies can cause the flow control economy to reach a mean between 

these conflicting goals by the amount of money assigned to long VCs compared to short VCs. 
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4.3 Existence of Equilibrium 

In this section, we show that a competitive equilibrium always exists, and that there may be infi· 

nitely many equilibrium price vectors. The traditional approach in economic theory for proving 

the existence of an equilibrium price vector is based on fixed point theorems [1, 5, 40]. A point 

pO is a fixed point of a function j if fl.PO) = po. A function j (ji) = p + Z (ji) is defined and shown to 

have a fixed point po. This implies that Z(jill) = 0 and po is an equilibrium price vector. 

We must modify these tools to prove existence of equilibrium in the flow control economy because 

- -
of the non-standard defmition of equilibrium that may have Z(ji') '* 0 in equilibrium. Economic 

theory also assumes that the demand functions of the individual agents are continuous with p. We 

cannot make this assumption, and we prove that the demand function defined in section 1 is con-

tinuous. 

We define a new function H(ji) with the property that H(ji) = 0 if, and only if, p is an equilibrium 

price system. We then show that j(ji) = p + H(ji) has a fixed point. 

We defme the function H(ji) with i-th component 

By our defmition of equilibrium, if p' is an equilibrium price vector, then for every i 

1. Z,(P') = 0, or 

2. p, = E and Z,cP') ~ o. 

If Z,cP') = 0, then H/,p') ~ O. If p, = t, then the first term in H,cP') is O. If Z,cP') S 0, then the second 

and third terms cancel and H,cP') = O. So, if p' is an equilibrium price, H,cP') = 0 for all i, which 

implies HcP1 ~ O. 

Assume that HcP) = O. We must show that p is an equilibrium price vector. We know by defmition 

that p, - I: ~ O. So, H,cP) = 0 implies that Z,cP) ~ O. Thi!, in tum, implies that 
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This term is 0 only if Z,fF) = 0 or Pi = t. So, H,fF) = 0 implies that ZlfF) = 0 or Z,(P) s; 0 and 

PI = t. The following theorem has been shown. 

Theorem 3.1: HfF) = 0 if, and only if, p is an equilibrium price vector. 

Define the function IfF) = p + HfF). We apply the following theorem to show that 1 has a flXed 

point. 

(Brouwer's fixed point) Theorem: Let X be a compact, convex subset of IRM, and let I be a 

continuous function mapping X into X. Then there exists XO E X such that l(xO) = xo. 

Brouwer's theorem is discussed in economic contexts in [I, 5, 40]. 

To apply the fixed point theorem, we must 

I. DefIne the set X. 

-
2. Prove I maps X into itself. 

-
3. Prove continuity of I on X. 

N 

Let Wr = IW,. This is the total amount of money possessed by the yes. Define the set X as 
1.;:1 

{-' 2WT} X = x ItS; XI S; -t- . 

X is simply a cube in (Rolt and contains its boundary. So, it is is compact and convex. 

We must show that JtD) • X for all p e X. To do so, we make two assumptions that do not limit 

generality. Fint, we assume that 0 :s; S, :s; I for all i. If this is not the case, an equivalent economy 

can be created by dividing all S, by Max {S, 11 :s; is; M}. Secondly, we assume that t S; SI for all i. 

TIlls is possible because the only constraint is t > O. 

Since p, ~ (, > 0, !. takes its minimal value at jfJ when Z,(jJ)O is minimal. Our assumptions that 

S, S; I implies that Z,(P) ~ - I, and we have 

~ 0 ~ I I [,(p ) ~ PI + (PI - t) • ( -I) + ( -I) + -I = t. 
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- 2Wr fin fun' To prove thatf~)::s; -e- we de e a ctlon 

Wr 2Wr 
g(PiJ = PI + (PI - e) PI + 1'/' 

.. - Wr 
The budget constraint unplies that Z,(pO):s;; -0 - Sr. We know that S/ > 0 and we have 

PI 

g(p~) ?!X]Ii). The second derivative of geP) is 

_ 2(2 - e)Wr 
g"(P) = 3 ' 

PI 

which is strictly positive on [e, 2~r ] provided that e < 2. So, g(p,) takes its maximal value at ei-

2Wr 
ther P, = I: or PI = -1:-' At P, = e, 

2Wr - . 
At ~ = -e - , Z,(pO) :s;; 0 because of the budget constramt and 

-0 2Wr 
fi(P):S;; -1:-' 

- - 2Wr - - -
'This shows that for all P e X, t ::S;!.(P) ::s; -I: - for all i which means that f(P) e X. So,f maps X 

into itself. 

The function iieP) is continuous if the excess demand function i.eP) is continuous. The excess de

mand function is simply 

where ~.<p) is VC a's demand at p and S is the vector of link supplies. We will show that ~.<p) is 

-
continuous, which implies continuity of Z. 

Lemma 1.1 shows that for VC a, if 
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the agent's demand is a continuous function of p. If the agent can afford its throughput goal, and 

attempts to minimize delay, we have to show that the u' solving the minimization problem in the 

previous section is a continuous function of p. 

Let U(fl) be defined as follows: u E IRM is in U(]J) if, 

2. 

L (PI· ut) $ Wa - (Ya) LPI' 
je p. je p. 

Defme the function F: U<P) - iii as 

as in section 2. 

The following le~ are needed to prove continuity and are proved in this chapter's appendix. 

1..enuu13 : 

1. For any p, F is conlinuous and strongly convex on U(fl). 

2. For any p, U<P) is compact and convex. 

J. A sequence of points {x"'} in (RN converges to ? if, and only if, every sub sequence 

(.~ .. ~) contains a subsequence (x-.} that converges to ? 
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We prove the following theorem: 

Theorem 3.2: For all P, let x = M(fl) denote a vector in U(p) minimizing F(x). Then M(P) 

is a continuous function of p. 

Proof: 

1. M(fl) is a Junction: 

a. U(P) is compact, and F is continuous on U(fl), so there exists an X E U(ft) mini

mizing F [I]. 

b. So M(fl) is defined for all p. 

c. Furthermore, convexity of U(fl) and strong convexity of F on U(P) imply that x is 

unique for any p. 

d. So, M is not multivalued and is a function. 

2. M(fl) is continuous: 

a. Pick a point po. Let P'" be a sequence converging to po. 

b. Denote x'" = M(P"') and .? = Mr,po) . 

c. We must show that as i>'" - po, x'" _ xO. 

J. Define two sequences .z.. and u... with the following properties: 

I) w-: 

a) w- e U(P"'). 

b) For all Z E U(P"'), 

I I w'" - ~ I I ~ I I z - ~ I I. 

w'" is the point in U(/r") closest to XO. 

2) tr: 

a) u... E u{jfl). 
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b) For all; e Ucpo), 

I 1i7"-X""1 I ~ II; -X""II. 

u'" is the point in U(PO) closest to x"'. 

u'" and W" exist because U(p"') and U(PO) are compact. Figure 27 on page to 1 shows 

an example of the sequences x"'. w"', U'" and their relationship to pO and XO in the two 

dimensional case. 

e. As pm _ pO, 

1) Ilw"'-xoll-O 

2) 1 I U'" - x"'l I - O. 

This is intuitively clear. It is fonnally proved in an appendix to this chapter. 

f. Let z;... be a subsequence of z;... Since Ucpo) is compact, u"'t has a convergent sub

sequence u"". - UO e U(JJO). 

g. Assume that UO "* xo. 

h. By construction liz;.. - x'" II - O. By f., u .... - UO. SO, x .. ·• - UO. 

I. W'" - XO which implies that w .. ·• _ xo. 

J. By definition, F(w .... ) ~ F(x .... ). 

k. By the assumption that UO "* XO and uniqueness of the optimal. F(UO) > F(XO). 

1. By continuity of F, F(x""lt) - F(UO) , and F(w""lt) - F(xO) < F(UO). However, 

F(.z....) ~ F(x .. ·.) implies that F(xO) ~ F(UO) which contradicts F(xO) < F(UO) 

m. So, UO = XO and every subsequence of {u--} contains a subsequence that converges 

to to XO. which by the lemma above means U-- - xo. 

n. II z;.. - x"'ll - 0, and by m., x'" - XO. 

3. This proves the theorem. 
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U(P~ 
X 1 

Figure 27. The two dimensional example: u... is the point in U(PD) closest to x". W'" is the 
point in Ucr) to ;0. 

Lemma l.l shows that q,G(p) is continuous at any p with y r. Pi> Wo' Theorem 3.2 shows that 
__ I( Pfl 

q,o(ft) is continuous at p when y L Pi ~ Wo' When y r. == W., the feasible vector m.in.imizing F is 
__ _ fl' P" If Pfl 

O. This implies that cP·(i) is continuous when y L = W •. So, the VCs demand is continuous at all 

pnces. 

'The demand functions of the individual VCs are continuous, which means that H is continuous. 

Brouwer's 6md point theorem can be applied to prove that.fljj) = p + H(P) has a fixed point. This 

proves the main result of this section stated by the following theorem. 

Theorem 3.3: There is an equilibrium price vector p' for the flow control economy. 
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VC 1 W = $2 

~ P1 P2 

U;::=======~+O-"\---- -----2===·~O 

s = 1 s = 1 

Figure 28. Infinite Equilibria: If PI + P2 = 2. the economy is in equilibrium. 

The theorem states that there is at least I equilibrium price vector. The following example dem

onstrates that there may be infinitely many equilibrium price vectOr3. Figure 28 on page 103 depicts 

the example. There are two lin.lu with SI = S] = 1 and one VC using the links. The VC has 

W = $2 and y - 00. At any price vector with PI + P2 = 2. the V C demands < 1, I > by lemma 1.1. 

In this cue. supply equab demand for both links and the economy is in equilibrium. So. there are 

infinitely many equilibrium prices. 

This example illustrates that there are infinitely many equilibrium prices. However. in this example 

there is only 1 equilibrium allocation. We have not yet determined if all equilibria prices yield the 

same allocations. or if there are multiple allocations as well. This is left for future work. 
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4.4 Convergence to Equilibrium 

This section presents the results of experiments to determine the convergence behavior of the 

economy (Algorithm 2). In general, the tatonement process in an economy does not always con

verge to an equilibrium [80]. Economists have developed algorithms for computing equilibrium 

price vectors, but these algorithms are extremely complicated. have high computational overhead 

and are inherently centralized [80J. We conducted several hundred simulation experiments on al

gorithm 2. and the flow control economy always converged. Proof of convergence or fmding a 

non-converging example is left for future work. 

We implemented the flow control economy and simulated its behavior on randomly generated 

networks. In each simulation, the network had 50 virtual circuits and 25 data links. The capacity 

of link i, C" was a random variable with uniform distribution on the interval [1,5]. S, was 

0.8 x C, for all links. 

Figure 29 on page 104 and Figure 30 on page 105 plot the convergence to equilibrium ofthe flow 

control economy for various network definition parameters. The X-axis represents the number of 

iterations of the economy (the number of price updates in step 4 of algorithm 2). The V-axis re

presents the relative distance from the eventual equilibrium allocation of resources. Denote d@') 

as the total demand vector for all agents at price j,k of iteration k; d(P') is the total demand in 

equilibrium. In this notation, the V-axis represents 

IldcP) - d~)11 - ..... 
II d(p ) II 

- -
The V-axia reprexnts the nonualized error between d(j,k) and d(P'). 

In Figure 29 on page 104, the average convergence for three sets of random economies is presented. 

These economies differ by the probability of link i being in agent a's path. If this probability is 

denoted Pr{ i E P,}, the three curves plot average convergence for random economies with 

Pr{ i E Po} = D. I, 0.2. and 0.3 for all i and a. These values defme random economies in which the 

mean length of a virtual circuit is 2.5, S.D. 7.5, respectively. The first conclusion drawn from this 

graph is that the economy converges very rapidly. After 15 iterations, all t11r= economies are within 
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Figure 29. Convergence to Equilibriwn Demand: This figure plots the economy's 
convergence to equilibriwn. The three curves represent random economies in 
which the probability of link i being in VC a's path is 0.1. 0.2, and 0.3. These 
yield mean VC lengths of 2.5, 5 and 7.5 links respectively. The mean VC 
throughput demand was 1.0. 

2% of the eqUilibrium allocation. The second conclusion is that the mean VC length has little ef· 

fect on the rate of convergence. The explanation for this fact is given below. 

Figure 30 on page \05 plots the convergence behavior of the economy for various VC throughput 

goals. [n this experiment, each virtual circuit's throughput demand Ya was a random variable urn· 

formly distributed on the interval [0,71 . The three curves represent the cases of T ::: 0.5, 2.0, and 

3.0. In t.heae economies, the mean VC length was 5 linlu. The same conclwion can be drawn from 

these experiments as from the previow. The economy converges rapidly and after 20 iterations all 

three economies are within 2% of the equilibrium allocation. Varying the mean throughput goal 

has little effect on the convergence behavior of the economy. 

The flow control economy converges very rapidly to the equilibrium allocation of capacity to 

agents. The economy takes many more iterations to identify that an equilibrium has been com· 
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Figure 30. Convergence to Equilibrium Demand: This figure plots the economy's 
convergence to equilibrium. The three curves represent random economies in 
which the mean VC throughput demand Wall uniformly distributed in the 
interval [0. 71 . where T = 0.5. 2.0. and 3.0. The mean VC length was 5 links. 

puted, however. In the simple economy of Figure 31 on page 106, there are two VCs (VC 1 and 

VC 2). PI = 1,3 and Pl = 2,3. and both VCs have W = 1 and )I = 1. The supply vector is 

-s = < 1, I, 1.98 > . By symmetry and lemma 1.1. the equilibrium allocation for this economy is: 

\. VC I gets < 0.99, O. 0.99>. 

2. VC 2 gets < 0,0.99,0.99>. 

In the simulation of thU simple economy, the minimum price w~ t = 0.001. The economy required 

over 1000 iterations to detect that it had computed an equilibrium. The economy did converge very 

rapidly to the equilibrium, but did not realize that it had. After only four iteratiOn!. 
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I VC 1 

VC 2 

3 

Supply = < 1, 1, 1.98 > 

VC 1 gets < 0.99, 0, 0.99 > 
VC 2 gets < 0, 0.99, 0.99 > 

z = < 0.01. 0.0', 0 > 

Figure J I. Convergence detection problem. 
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The detection problem is caused by the fact that in equilibrium some resource may have demand 

slightly less than supply. In this case, the price of the resource is slowly driven down to & • Let i 

be the most utilized link whose equilibrium demand is less than supply. That is, the i that mini-

rruzes: 

and has P; = t. Suppose that the equilibrium allocation for this link is computed in iteration L. The 

economy must drive the price of edge i to t. The price PiC in iteration K > L is simply 



For P,X :s; &, we have 

L log E: -logpt 

K = L + log( 1 _ L1) 
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(2) 

As L1-- 0, the value of K in equation (2) goes to infinity. Factors such as mean VC throughput 

goal and mean VC length only indirectly effect the detection of equilibrium. The detection of 

equilibrium is solely determined by the most utilized, non-saturated link. 

There are heuristic solutions to the equilibrium detection problem. One approach is to arbitrarily 

stop the economy after some threshold K iterations. Our experiments suggest that K = 25 yields 

allocations within 2% of optimal for realistically large networks. Another approach is to monitor 

the change in demand in successive iterations. In this case, the economy stops iterating if 

where J is a parameter. We implemented and tested this second heuristic for the economies of 

Figure 29 on page 104, Figure 30 on page 105 and Figure 31 on page 106, setting b = 0.01 . The 

heuristic detects equilibrium in the pathological economy of Figure 31 on page 106 after 2 iter-

ations. The relative error in the demand vector when the heuristic guesses that equilibrium was 

found was 0.002. For the six seU of random economies of Figure 29 on page 104 and Figure 30 

on page IDS, on the average the heuristic guesses that eqUilibrium has been found after 10.1 iter

ations. The average relative error if the economy stopped when eqUilibrium was guessed was 0.021. 

4.4.1 Network Updates 

The simulation experiments in the preceding discussion demonstrated that the flow control econ

omy can rapidly compute an equilibrium allocation of resources when starting from an initial state 

in which no resources have been allocated. In this section, we study the convergence of the econ-

omy to a new equilibrium when a VC leaves the economy, or when a new VC is started up. 
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Figure 32. Network Updates: This figure plots the average convergence of the economy 
to the new equilibrium after a new VC is activated or a VC terminates. The 
three curves represent adding 50 VCs 1 at a time, deleting 50 ves and a riUldom 
ordering of 50 adds and deletes. 

Figure 32 on page 109 contains the results of simulation experiments testing the convergence. In 

this figure, a network with 25 links and 50 random VCs is generated and the equilibrium is com

puted. Then a VC addition or deletion is simulated. After each change, the new equilibrium is 

computed. The curves represent the average number of iterations required to reach the new equi-

librium. The three cases are: I) Adding 50 VCs. 2) Deleting 50 VCs, and 3) a random ordering of 

50 additioDi and deletions. 

Three main conclusions can be drawn from these experiments. First, the economy rapidly computes 

the new equilibrium after an update. The economy is within 5% of the new equilibrium after 15 

iterations in all cases. The second conclusion is that moving from one equilibrium to the new 

equilibrium after an update requires approximately a" many iterations a" the computation of the 
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Routing Pathology: If the VC agent can choose a new path after each price 
update, the economy does not converge. 

initial equilibrium. This is due to the same phenomenon described above. The third conclusions 

is that the flow control economy can effectively deal with dynamic network environments. 

In the simulations in this section, the path chosen for a new VC is detennined before the economy 

starts iterating to a new equilibrium. The price infonnation can help the VC agent choose the 

"best' path. However, the VC cannot change its routing decision after the tatonement process be· 

gins. 1bat ii, dynamic routing after each price update cannot be allowed. If this is allowed, there 

are Ca!ICS in which an equilibrium will never be computed. 

Figure 33 on page 110 depicts an example of this problem. In this figure, there are three links 

e" e l and el' Each link has S, = I and initial price P, = e, and we assume t < 0.5. There is a single 

VC agent that wants to route traffic from node I to node 3. 'Ibis agent has throughput goal 

y = 00 and wealth W = $1. The agent can choose either path (e" ell or simply {el }. The agent 

choose the cheaper path (e)} and demands capacity + which is greater than S). So, Pl increases. 
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As soon as PJ > 2· e, the agent switches to the cheaper path {e l , eJ} and demands capacity _1_ 
2·& 

of each link. This causes the price of 1'3 to fall because demand is now 0, and causes and the prices 

of PI and Pl to rise. As soon as PI + Pl > 1'3, the ve switches back to path {el }. So, the VC oscillates 

between paths {el } and {e l , eJ}. The economy never reaches an equilibrium. 

4.5 Comparison with Related Work 

The flow control problem for virtual circuit networks has been extensively studied. Comprehensive 

surveys of this work can be found in [9, 37, 81]. In this section, we compare previous work to the 

flow control economy. Flow control has two goals. The ftrst is obtaining an optimal trade-off be

tween throughput and delay [9]. The second is fairly allocating the communication resources to 

the set of VCs. The economy is compared to previous work with respect to meeting these goals. 

Window flow control is the most common flow control algorithm used in practice [9, 81]. Each 

ve has a source A that sends data units and a destination B that accepts the data units and send! 

acknowledgements back to A. Flow control is implemented by assigning a window size W to A. 

Source A is allowed to have at most W unacknowledged data units sent to B. When the window 

is full, A must wait until receiving an acknowledgement before sending any additional data. 

The idea behind window flow control is that when the network is becoming congested, the delays 

of routing a data unit from A to B and routing the acknowledgement back increase. This decreases 

the rate at which A can transmit. This occurs over all ves, and the system wide average delay is 

improved by decreasing the throUghputs of the senders. 

The main advantage of window flow control relative to the flow control economy is that window 

flow control is dynamic. At most W data units can be transmitted before throughput is decreased 

to compenate for a tramient period of congestion [9]. The flow control economy computes static 

transmission ~ and does not react to transient conditions. A second advantage is that the win-

dow sizes can be chosen to guarantee that buffer overflows do not occur at any routing nodes. 

One problem with window flow control is choosing the window sizes. The throughput of a VC can 

partially be determined by the choice of its window size, e.g. - large windows increase throughput. 

However, the throughput and delay of the ve are also determined by the window sizes of other 

VCs. This makes the choice of window sizes complicated. The flow control economy has a similar 
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problem with the initial endowment of wealth to VCs. Exploring how the choice of the W:s effects 

the relative throughputs and delays of the VCs is left for future work. 

Another problem with window flow control is that it implements a system wide throughput-delay 

trade-off. For example, the set of VCs experiencing delays due to congestion may be throughput 

oriented, and should not have their window sizes decreased. The flow control economy does not 

have this problem. 

Window flow control can be unfair to short VCs [9]. The window size of a VC must be an in

creasing function of the number of links in its path to meet its throughput goals during periods with 

light contention. During periods of congestion, this makes it likely that a long VC gets more ca-

pacity of a heavily loaded link than a shorter VC sharing the same link [9]. The fairness of the flow 

control economy with respect to long VCs versus short VCs was described in section 2. 

The flow control problem can be combined with circuit routing to form a single optimization 

problem [9]. The problem is to choose a path p. and a transmission rate r. for each VC a that 

mmuruzes: 

D. is VC a's delay given the routing and transmission rates. e.(r.) is a penalty function for the VC. 

As r. decreases, this function increases and defines the penalty for flow controlling this circuit. 

The main disadvantage to this approach is the it requires computationally intensive, centralized 

computing to determine the routing and transmission rates. The flow control economy also per

forms a minimization problem when the VCs try to minimize delay. We have a efficient algorithm 

that is specific to our optimization problem. It is not clear how the computational overheads of 

the two approaches compare. 

A second disadvantage of the combined routing-flow control problem is that the optimization must 

be recomputed each time a new VC is activated or an existing VC tenninates. This incurs overhead. 

Furthermore, the new paths may be different from the existing paths. So, additional overhead is 

incurred terminating the existing paths and starting the new ones. 
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The definition ofthe penalty functions adds complexity to the flow control problem. e. must reflect 

VC a's need for throughput. The rate actually assigned to VC a also depends on the penalty func

tions of other VCs. So, the interactions between the penalty functions increase problem complexity. 

The assignment of wealth to a VC in the flow control economy also should consider the values 

assigned to other VCs. This is straight forward, however, and does not require comparisons of 

throughput-delay goals. 

Finally, combining routing and flow control in a single optimization problem may assign 0 

throughput to some VCs. So, it is not fair be condition Fl. 

The main advantage of the combined flow control-routing approach is that it can improve on the 

allocations given to the VCs compared to the flow control economy. We have proven that the 

economy computes pareto-optimal resource allocations given a ftxed set of VC paths. However. 

choosing an alternate set of paths may result in an allocation the improves the lot of all VCs. We 

demonstrated that the economy cannot implement dynamic routing in addition to flow control. 

This is a major shortcoming of the economy. Quantifying the performance degradation due to not 

dynamically assigning routes is an area for future work. 

A third class of flow control algorithms are Bottleneck or max-min algorithms [9]. These algo

rithms are based input rate adjustment. The algorithms' primary goals is to compute allocations 

which are fair by condition F2. An efficient decentralized algorithm for computing rate assignments 

that are fair by condition F2 hcu been proposed by Jaffe [48]. Other algorithms are presented in 

[9]. 

The main disadvantage of bottleneck flow control is the assumption that all VCs are throughput 

oriented. Thia approach is less general than the flow control economy. We compared the fairness 

properties of the economy with bottleneck flow control in section I. 

A major benefit of the flow control economy is that it supports decentralized choice of individual 

throughput-delay trade-offs. Some previous work on the flow control problem has allowed a VC 

to define its throughput-delay goals independently of other VCs. Sanden [78. 79] presented an 

algorithm for computing optimal transmission rate allocations under a model in which each VC 

has an individual utility function that defines its throughput-delay trade-off. Possible utility functions 
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were not defined. Sanders algorithm is decentralized and asynchronous. and maximizes the sum 

of the individual utilities. The algorithm can assign transmission rate 0 to a circuit and is unfair by 

condition Fl. The algorithm also requires some coordination between choice of utility functions. 

Bharath-Kumar and Jaffe [10] proposed a generalized form of power for for representing 

throughput-delay trade-offs. This work focused on maximizing a global objective function based 

on the power obtained by individual yes. e.g. - the sum of the individual powers. The individual 

YCs did not choose their own definition of power and were assumed to be homogeneous. however. 

In some examples. their algorithm computes rate allocations that are a Nash Equilibrium. It was 

shown in section 2 that a Nash Equilibrium is not Pareto-optimal. In their work. Bharath-Kumar 

and Jaffe observed that their algorithm computed an allocation that could be improved upon by 

all YCs. 

The related flow control work described in chapter 2 and that of Bharath-Kumar and Jaffe use 

power to model throughput-delay trade offs. Let Y. be VC k's throUghput. and D. is its delay. VC 

k chooses a constant {J. and attempts to maximize its power 

Power is an awkward representation for a individual VC throughput-delay goals. It would be very 

difficult for the user of VC k to choose the constant p. that achieves its throughput-delay goals. 

The model used in the flow control economy makes specifying throughput-delay goals simpler. 

4.6 CO.-clusiODS 

In this chapter we have applied concepts from mathematical economics to develop an effective flow 

control mechaniJ1D.. The immediate advantages of our algorithm compared to previous flow control 

mechanisms. are that: 1) it captures in a precise manner both diversity of priorities among virtual 

circuits in a network as well as diversity of their performance objectives (throughput vs. delay). 2) 

it accomplishes resource allocations that are optimally fair (in a formal sense). 

Our algorithm is decentralized and is simple to implement. Additionally, simulation studies dem-

onstrated that the economy efficiently computes optimal resource allocations for realistically large 
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networks. We showed that the economy rapidly computes the new optimal allocation when a new 

virtual circuit is activated or an existing circuit terminates. Finally, we demonstrated the limitations 

of the economy as a dynamic, virtual circuit routing algorithm through a simple example. 

In this chapter, we demonstrated the benefits of applying economic theory to resource management 

problems in distributed systems. Pareto-optimality was shown to provide a powerful new definition 

for optimal, fair resource allocations in heterogeneous network environments. Economic techniques 

were used to prove optimality of the competitive equilibrium computed by the economy, and that 

an equilibrium does exist for all networks under our model. This chapter illustrated that two main 

challenges must be overcome when applying economic theory to resource management in distrib

uted computer systems. First, the underlying economic models must be modified to accurately re

flect the problem being studied. Secondly, and most importantly, it must proven that the system 

possesses fundamental properties assumed by economic theory, and it cannot be assumed that the 

economy possesses these properties. For example, continuity of demand with respect to prices is 

assumed in economic theory. In this chapter we had to prove that the agents' diverse demand 

functions were continuous. 

Several areas for future work remain. First, two theoretical questions were raised. One is uniqueness 

of the equilibrium allocation. The second is a proof of convergence or a counter example. Another 

area is expanding the economy to incorporate other models of VC goals. This would increase the 

generality of the results. Finally, the use of link prices to determine long term routing decisions, 

to guide capacity planning and to set demand based rate setting in public access networks are po

tentially fruitful area.'J for funher work. 

4.7 Proof of Lemmas 

This section proves lemmas on which results in this chapter depend. Let G = < V, E> be the 

graph of the underlying network, and let the current price vector be p = < PI' Pl .... , p", > with 

0< E ~ p, < cwo for all i. A VC agent a in this economy ha.'J a non-empty path 

p. = (1,.1' I.,)., ... , I... .. (.)} , wealth W. > 0 with which it purchases allocations and a throughput goal 

Y •. To make the notation simpler, the p will be dropped from the allocation vectors when the 

context is clear, i.e. - ~<P) is written simply ~. 
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-
For the proof of lemma 1.1, define a special allocation p. for VC a with: 

1. Pr = 0, if ifP •. 

W 
2. Pi = Q:' if i ePa. 

where Q. = L Pi-
t. Pa 

Lemma 1.1: If W, ~ Q • • Y. at prices p, then: 

1. <t>.(ii) is non-empty. 

2. <t> ,(ii) has a single element ~. 

W 
3. cP: = Q:' if i E p •. 

4. cPi = 0, if ifP •. 

Proof: 

-
All four propositions will be proven if we can show p. is VC a's unique optimal choice at prices 

-p. 

First. 

So po is affordable and B.r;) is not empty. The preference relation ~. is a partial order, and has a 

maximal element. TIlls means that <t>.(ii) is not empty. 

Suppose there exists another allocation a" ~ P·. Then we have the following: 

I. ol~ ~ 0 implies that a.~ ~ P~ for ifP •. 

2. 
- W 

T(aa) ~ T(P') , which in tum implies ol~ ~ Q: . i EPa' 
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If (i. -.IF, then T«(i·) = T«(ia) = ~. and (ia = p" If a; >a p;, then T(a") > T«(io) = ~ •. This 
W. _ _ _. 

means at> Q. ' and a" • p > W" . So, a" is not affordable. 

Lemma 2.1: Let (I) P be a price system. (2) ~.<p) be agent a's demand at p. (3) x:l= ~°cP) be any 

allocation. Then, 

2. x~. ~.<p) implies that x . p ~ ~J<p) • P . 

3. x >-" ;"cP) implies x • p > ~.<p) • p . 

Proof: 

If T(;'<P)) s)/. the results are obvious. So, assume that T(~°<P)) ~ )/ •. 

--- --- b 
( I) If 4J.(p) • p < W., then VC a has a surplus of b = W. - 4J.(p) • p , with b > O. Buying p; of any 

link i E p. improves the delay because delay decreases monotonically as a function of X, when 

X, ~ )/J' SO, cP"<P) was not optimal, and this is a contradiction. 

(2,3) Assume the opposite: x ~. ~o<P), and x. p < ~.<p) • p. Perform the following transf-

onnations 

I. U, = cP~<P) - )/., for i e p •. 

2. W, = X, - )/.' for i e p •. 

Thi! meam that p • wSW. - Q. x )/.' and w i! fe~ible (affordable). x -. ~"<P) means that in the 

minimization problem of !«tion 2, F(u) = F(w). This contradicts the strong convexity of F. If 

x >- a ;.<p) , then F(w) < F(u). This contradicts the optimality of u and the definition of ~.<p) . 

lemma 3.1 : F(u) is continuous and strongly convex. 

Proof: : 
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each of which is strongly convex and continuou! (K, > 0, "" ~ 0). Figure 34 on page 118 shows the 

form of F,. It is clear that the segment connecting F,(w) and F,(v) always lie! above the curve. 

Strong convexity of the F,'s mean! that for all u. w E U, 

This in tum implie!. 
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This means a • F(u) + (I - a)F(w) > F(a • U + (1 - a) • w) and F is strongly convex. 

Lemma 3.2: U is convex and compact. 

Proof: 

We re-write W. - c .. Y. as K. to simplify the notations. 

(Compact) : U is compact if it is bounded and closed. By definition, U is bounded below by 

0::: < 0,0, ... , ... ,0>. We know that p • u ~ K •. This requires that p, • U, ~ K. which in turn means 

that U, ~ .IS.. . We know that p, > 0 which means that ~ < 00. So, U is bounded from above by 
A A 

the vector 

Ka Ka Ka 
<- - -> PI ' P7. , ... , PM 

For U to be closed, any sequence of vectors un E U that converges must converge to an element u' 

of U. Assume the sequence ii-, n = 1, 2, ... converges to u'. This means that for all i::: 1,2, ... , M, 

~ converpa to U;. Assume that u,' < O. This means that u; ::: 0 - 15, 15 > O. By definition, ~ ~ 0, for 

all n. ThiI meam that lim I u;' - u; I ~ b. This contradicts the assumption of convergence, and 

u; ~ 0, i::z 1,2, ... ,M. 

M 

'"'" . ~ I Uj - Uj I • Pt· 
j=\ 
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We know that a3 n -+ 00, I ~ - u,'1 -+ 0 that in tum implies 1.0· u-. - .0 • u'l -+ O. We know that 

.0 • u-. ~ K.f so .0 • u' ~ K •. 

We have shown that u,' ~ 0 and p. u' ~ K •. So, u' e U and U is closed. U is closed and bounded 

which means that it is compact. 

(Convex) : For U to be convex, for any two vectors u, v E U and any a, 0 ~ a ~ 1 , the vector 

W = cr. • U + (1 - a); 

must be in U. By definition, U, ~ 0, v, ~ 0 , a ~o and 1 - a ~ 0 , so Wj = a • U, + (1 - cr.) • W, ~ O. 

p • w = .0 • (a • u) + p • « 1 - a) • v) . This in turn means, .0 • W = cr. • <P • u) + (1 - ex) • <P • v) . By 

defmition, .0 • u ~ K. and .0 • v ~ K • . So, p • W ~ a • K. + (1 - a). K. = K •. 

Lemma 3.3: : A sequence of points {X"} in iRH converges to XO if, and only if, every sub sequence 

{x"t} contains a subsequence {x"'t} that converges to XC. 

Proof: 

The if part follows directly from the defmition of convergence 

For the only if part, a3sume that x"+xo. Also assume that every subsequence contains a subse

quence converging to XC. 

X+XO implies that there exists at> 0 such that for any k. ~ I, there is an mt such that 

I I x"t - .? II > t. For k = 1, 2, ... take the sequence of points x"t. By defmition, this sequence 

cannot contain a subsequence converging to .? because for all k., I I X". - XC II > t. 

This contradicts the assumptions, and the lemma is shown. 

We now prove one of the assertions made in the proof of continuity of a YC's demand function 

with respect to prices. This was theorem 4.2. Let xo, po, P" be defmed a3 for theorem 4.2. For the 

sequence of points ir" - po, define a sequence of points W" e U(jy-) where 

~ -'" ~ '""" Ilx -w II ~ Ilx -z II 
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for all z e U(jlft). We prove the following lemma: 

Lemma 3.4: As P'" -+ pO, II XO 
- w'" II -0 o. 

Proof: 

We construct a sequence Y'" that converges to xo. This will prove convergence of w",. 

If XO = 6 theny'" = O. 

Assume that XO is a vector in U(j°). Let S£;{ 1,2, ... , ,W} be the links for which if> O. Define e .. 

as 

We have e .. -0 O. 

We know that 

'" 0 PI + e," S PI' ( 1) 

The budget constraint tells us that 

Plugging the inequality (1) into the budget constraint gives 

N 

L (P; + e,")x~ S W - y(2.:>I'") - yemM. 

as i2) 

Rearranging terms gives 
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We multiply and divide the second tenn in this inequality by the cardinality of S, denoted lSI, and 

get 

For simplicity of notation, let 

lSI 

By defmition of the cardinality of a set we have 

ISleMA = LeMA, 
s.s 

and multiplying and dividing each j·th term P':' give! 

This means we can rewrite inequality (2) as 

M 

~ W-yLp/m. 

1=1 

(2) 
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(3) 

We know that e", -- 0, and P':' -+ p~. By definition, p~ > 0, and by the defmition of the set S, we 

know x? > 0. This implies that we can find K e 1l. such that for all s e S, if m > K, 

o em A 
x >--0--

s - p';' lSI 
(4) 

The sequence {Ym} is defined by components as follows: 

I. Y;'" = 0, if m ~ K 

2. 

m 0 em A 
YI = xI + --m 0 --, if m > K and i E S 

Ps lSI 

3. Y;'" = 0, if m > K and i,S 

From inequality (4), we know that Yi" ~ 0, and inequality (3) shows that Y" is affordable. SO, 

Y'" E U(jro). 

We know that: 

I. e", - 0. 

3. lSI >0. 

nus means that Y,'" -- x;". This proves the lemma 
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5.0 The Data Management Economy 

This chapter presents an economy that manages data objects in a distributed system. The econo

my's goal is to improve perfonnance by regulating the number of copies of each object, and the 

assignment of copies to processors. The effectiveness of the economy is evaluated by a simulation 

based performance study. 

The main results of this section is a set of simulation based perfonnance experiments that demon

strates that the data management economy substantially improves perfonnance compared to static 

global policies. The improvement is achieved in two ways. First, the number of copies of each data 

object is controlled to reflect the ratio of read access vs. write access. When an object is written, all 

copies must be updated. If the write access rate is high, there should be few copies to avoid update 

overhead. If read access is predominant, there should be many copies. This increases the probability 

that a read can be processed locally or at a nearby processor. The second way in which performance 

is improved is by assigning the copies to processors based on localities in transaction reference 

patterns. This increases the probability of a data access be satisfied locally or at a nearby processor. 

Both of these improvements are achieved by decentralized, competitive decision making. 

This chapter is structured as follows. Section I describes the distributed system and defines the data 

management problem. Section 2 presents the data management economy and a running example. 

The main results of this chapter are contained in perfonnance experiments described in section 3. 

The data management economy solves a general version of the File Allocation Problem. Previous 

work on this problem is compared with the economy in section 4. Section 5 contains conclusions 

and directioru for future work. 

5.1 Problem Statement and System Model 

The distributed system consists of N processing nodes PI' Pl , ... , PH' Each P, has a processing pa

rameter r, that defmes the rate at which it can process operations on local data. The nodes are 

connected by a set of communication links E = {e~}, and link e'l has delay d.
J
• 

There are .'.1 data objects in the system denoted D l , Dl , ... , DM • S(D,) defmes the size of D, in bytes. 

The problem defmition treats the data objects as abstract resources. In a real system, they could 
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correspond to Relations [20, 21], tuples, mes, records or any other data structure. There may be 

multiple copies of each data object at distinct processor nodes. 

Transactions enter the system at all processors. A transaction is a sequence of Read and Write op

erations on the data objects. We assume that a transaction's operations must be serviced sequen

tially. Operation Read(D.) can be performed on any copy of Di • If a transaction submits 

Write(D i , value), all copies are updated. 

The data management problem is to minimize mean transaction response time. The parameters that 

can be controlled are: I) The number of copies of each data object. 2) The assignment of copies 

to processing nodes. 

Our model does not explicitly study the effects of concurrency control [8]. The data management 

economy is compatible with concurrency control protocols that do block transactions, e.g. -

Timestamp, Optimistic [7, 8]. Expanding the model to include lock based concurrency control is 

an area for future work. 

5.2 The Economy 

There are four types of agents ill the data management economy. These are transactions, 

processors, data object managers and local data agents. A transaction T that enters the system at 

node P, pays P, to perform its data access operations. T is endowed with an initial allocation of 

money Afr. 

Processor node P, sells data access to local transactions. To do so, P, leases copies of data objects 

from the data object manager!. If transaction T submits a Read(D
J

) or a Write(D" value) and P, 

does not leue a copy of object D" the work is subcontracted to some processor with a copy. A 

processor's sole goal is to maximize profit. 

Each data object is controlled by a data object manager that leases copies of the object to 

processors. The data object manager for D, is also responsible for updating all copies when a 

Write(D" value) occurs. A data object manager's goal is to maximize profit. 

There is one local data agent at each node in the system. The local data agent at P, acts as an in

termediary between P, and the object managers, which may reside at other nodes. Figure 35 on 
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page 127 mows a simple data management economy that is used as an example in this chapter. 

There are three processors in this economy (PI' Pl , P1) and three objects (A, B, C). There may be 

multiple read copies of an object, but only one write copy exists. In the example, PI has a read 

(triangle) and write (square) copy of A, and PI and P1 have a read copy. The meaning of the prices 

is described below. 

5.2.1 Processor Agent 

A processor node P, sells data access to local transactions. In Figure 35 on page 127, processor 

p] has a read and write copy of object C and can sell Read(C) and Write(C, value) to transactions. 

For a Read(C) , p] collects its fee and returns the value of C to the transaction. For a 

Write(C, value), p] collects the fee and updates the local copy of C. p] also informs Cs data object 

manager of the update. The manager updates all read copies of C at other processors (described 

below), and returns a result to Pl' At this point, the Write(C,value) is complete and the transaction 

can submit the next operation. 

The processors also sell data access to each other through a contract protocol. In Figure 35 on 

page 127, processor p) sends an advertisement to processor PI informing PI that p] can sell 

read/write access to object C and the prices it charges. PI can then supply these services to local 

transactions. PI can also supply Read(C) and Write(C, value) to other nodes, and sends an adver

tisement to Pl' 

If a transaction Tat Pl purchases Write(C, value), Pl subcontracts the work to PI' The subcontract 

includes payment to PI for the write and the data written. PI in turn subcontracts the access to Pl' 

PJ proceMCS the Wrilt(C, value) exactly ~ a local transaction's write. The fee is collected, the local 

and remote copies arc updated, and a response is sent to PI' PI then responds to Pl , and T can 

submit its next operation. 

Processor P, independently sets the prices for the services it supplies. The price P, sets for a service 

is based on any costs to P, of supplying the service, and the demand for the service. In the example, 

PJ charges $2 for Write(C, value). This price is based on the Write(C, value) demand from local 

transactions and PI' and on the lea3e price of the write copy. Pl charges $0.20 per message for link 

ell' So, the total cost p] charges PI for Write(C, value) is $2.20. PI sets its fee for Write(C, value) 
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4 9 Data Object Catalog 

a ~ A R Nc. 
A R $.]0 $.]0 1 
8 R $110 $10 2 
C R $220 $20 3 
A W $40 $40 4 

8 W 1150 m 5 
~ CW 245 456 

P3: Data Catalog 

ID t.4ode Cost Quolity No. 

A R $2 0 1 
A R $0.57 -1 2 
8 R $1.40 -2 3 
C R $2 0 4 
C R $0.90 -2 5 
A W $1.25 -1 B 
8 W $1.40 -2 7 
C W $2 0 B 

P3: Ship Catalog 
, 

$0.20 -1 

2 SO.~ -2 2 

Figure 35. The Data \.1anagement Economy: 11lls figure depicts an example of the data 
management economy. There are three processors PI' Pl and p) represented by 
circles. There are three data objects A, B and C. A triangle represents a read copy 
of a data object and a square the write copy. The ellipses represent the 
assignment of data to processor!. For example, Pl has read copies of A, B and 
C and the write copy of B. This figure also contains the Data Object Catalog at 
PI and the Data Access Catalog and Shipping Catalog at Pl' 

based on this cost and the price it charges for ell' We use very simple price setting algorithms for 

our experiments in section 3. They are described below. 

A processor wes a data acce.r.r catalog to inform local transactions of the accesses it supplies. The 

catalog contains the price and quality for each service provided by the processor. Figure 35 on page 

127 shows the catalog maintained by p). An entry in this catalog contains: I) An order number, 

2) The object 10, 3) Mode (read/write). 4) Price and 5) Quality. In the example, the quality is de

fmed as -1.0 tunes the distance to the copy accessed. The quality of entry 7 (Write(B) is - 2.0. This 

catalog also shows that there can be multiple entries with different prices and qualities for a given 

access. 
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Processor P
l 

also maintains a shipping catalog that lists the prices charged to ship data to other 

nodes. Figure 3S on page 127 shows the shipping catalog at Pl' The price per message to ship data 

to Pl is $0.25. This includes Pl's price for link ell and PI'S price for ell' The processors set their link 

prices based on demand. The pricing algorithm for our simulation study is presented in section 3. 

The same subcontract protocol exists for shipping data as for remotely processing data access op-

eratioos. 

A processor leases a copy of a data object only if it is profitable to do so. To make leasing business 

decisions, a processor records all data accesses it sells and all subcontracts it processes. In the ex-

ample. PI records all of its sales of read and write access on object A . It also records all of the 

Read(C) and Write(C, value) subcontracts it sends to Pl , and all of the Read(B) and 

Write(B, value) subcontracts it sends to Pl' Processor PI measures its average revenue for read and 

write access to A and maintains its leases on these objects only if they are good investments. There 

is a system wide interest rate I that formalizes the definition of a good investment. If L: is the read 

lease price of A, and R,4 is the average Read(A) revenue per lease period, PI retains its read lease 

on A only if 

RA - L: is PI'S profit on Read(A) per lease period. I. L: is the return on an investment of L: dollars 

if the money were deposited in a ·savings· account. 

A processor acquires a new lease if it estimates doing so will be a good investment. Assume that 

PI pays P1 and average of R, dollan per le~ period for subcontracting Read(B). Two lease prices 

are associated with a read copy of B : I) The acquisition price L~, and 2) The renewal price LC. If 

PI acquires a read lease, it pays L~ for the f1%'st lease period, and LC for subsequent renewals. (How 

these prices are set and distributed is described below). 

PI acquires a read copy of B if 

L R A 
R8 - 8 2: I· R8 . 

Rs - L: is the expected profit per lease period, and R~ is the initial investment needed to make this 

profit. 
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5.2.2 Data Object Agents 

There are two types of agents associated with data objects. Each object A is controlled by a man

ager MA , which resides with the write copy. The second type of agents are local agents. There is a 

local agent at each processor P, and this agent acts as a representative to P, for the data object 

managers located at other processors. In the example, Me is located at P1 and it uses the local agents 

at PI and Pl to interact with these processors. 

The data object manager is responsible for updating the read copies of the object. Assume that Pj 

services a Write(C, value). P1 passes the update to Me· The agent Me sends the update to the local 

agent at Pl' Me uses the shipping catalog and must pay P1 $0.25 to send the data to Pl' When the 

update arrives at Pl , the local agent submits the update operation at Pl' Since this update does not 

effect any other copies, the price charged by Pl is the local read price for C. This is $0.50 in the 

example. After the update completes, the local agent at Pl sends a response and a bill to Me. When 

this message arrives, Me informs P1 that the update is complete and then sends a ch.eck for $0.50 

to the local agent at Pl' 

The data object manager sets the lease renewal and acquisition prices for the object. The goal is to 

set the prices that maximize the object's profit. The renewal price for the read copy is set based 

on the demand for read copies. Many price functions are possible. and we propose a simple algo

rithm in section 3. The read acquisition price is simply the renewal price plus the cost of shipping 

a copy to the processor. In the example, the read renewal price of C is $20 and all objects require 

1000 messages to ship a copy. So. the read acquisition price at PI is $220. 

Since there is only one write copy. the data object manager uses an auction to set the write renewal 

price. The write renewal price has a lower bound which must cover the cost of updating the read 

copies. Thia lower bound i:s determined by averaging the update cost per copy over time. Any bid 

below this value is rejected. 

The data object manager broadcasts all changes in renewal and acquisition prices to the local agents. 

Each local agent posts these prices in a data object catalog. Figure 35 on page 127 contains the data 

object catalog at PI' An entry in this catalog has the following fields: 1) The object 10, 2) The mode 

(R/W). 3) The acquisition price, 4) The renewal price and 5) An order number. 
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A processor PI uses the local data object catalog to detennine renewal and acquisition prices. To 

order an object, PI sends a request to the local agent and pays the fee listed in the catalog. This re

quest and the fee are forwarded to the data object manager. When receiving a lease request, the 

manager pays the local processor Pj to ship a copy of itself to the processor ordering the copy. 

When the copy arrives, P, can start using it to supply service to transactions and other processors. 

The local agent at P, also collects and forwards renewal fees when P, renews a lease, and informs 

the manager when a lease is not renewed. 

5.2.3 Transactions 

A transaction T enters the system with an initial endowment of money Mr and sequentially submits 

read and write operations. T uses the data access catalog to order these services from the local 

processor. In the example, if T arrives at P1 and wants to issue Read(A) , T can either order catalog 

entry 1 or entry 2. The decision is based on the amount of money the transaction possesses. In our 

model, the transaction purchases the best service that it can afford. If T cannot afford any service, 

for example it has only $0.50 remaining, it aborts. Other policies such as queueing are possible and 

are left for future work. 

5.3 Performance Evaluation 

We implemented and simulated the data management economy to measure its performance. The 

data management problem studied in this chapter is not mathematically tractable without relying 

on simplistic analytical modeb of the underlying distributed system. 

The economy wa" simulated on the 5 processor distributed system depicted in Figure 36 on page 

131. There were 10 data objects, and each object contained I 000 records. Individual records were 

the granularity of trarulaction access. The processor service time for an access on local data was I 

time unit. The processon serviced the local data accesses sequentially. The transmission delay per 

message was 2 time units for all links. Each access request required 1 message, and shipping an 

entire data object required 1000 messages. 

The processors' pricing policy for local resources wa" static with the following prices: 

1. Read access : $0.50 
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Figure 36. Data :vtanagement Distributed System 

2. Write access: SO.50 

3. Lmk use : $0.0 I per message 

Each processor PI marked up all of its costs by 10%. In the example, p) charges PI $2.20 for 

Wrile(C, v.). PI would charge local transactions $2.47 = (1.1)($2.20) + $0.05 for Wrile(C, value). 

In the simulations, a transaction T entered the system with Mr = $10 and randomly submitted be

tween I and 10 access operations. No transactions aborted due to insufficient funds. Applying 

simple algebra to to Figure 36 on page 131 shows that the maximum cost for 10 data accesses is 

less than $10. 
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Each data object manager used an English Auction to sell the write copy. The managers' algorithm 

for setting read renewal prices was to charge $2 times the number of leases held. 

We compared the Data Management Economy to two other solutions to the data management 

problem. The fIrst is the single copy (SC) approach. In this scheme, there is a single read/write copy 

of each object Dj • All read and write access operations are sent to the processor P, that contains the 

copy. The copies are uniformly distributed over all processors, and in the simulation each processor 

had two local data objects. The second policy is the read everywhere (RE) approach. Every 

processor P, has a read copy of every data object Dr This means that all read accesses can be ser

viced locally. There is a single write copy of each data object D, and the write copies are uniformly 

assigned to the processors (each processor has two write copies). All write accesses on object D
J 

are 

sent to the P, that has the write copy. This processor updates all read copies and sends a response 

to the requesting processor. 

5.3.1 Ratio of Reads to Writes 

To solve the data management problem, the economy must determine how many read copies of 

each object should exist. The optimal choice for the number of copies of object D
J

, denoted c(;), 

depends on the system wide ratio of read access to write access on this object. If read access is 

dominant, many copies should be available. This ensures that most transactions have their 

Read(D) serviced locally or at a near by processor. Each Write(D" value) requires that all c(;) copies 

be updated, and the time required to process a write increases with the number of copies. So, if 

Wfl{e(D" value) is dominant there should be few read copies. 

Figure 37 on page 133 shows the performance of the data management economy, the single copy 

policy and the read everywhere policy. The Y -cuis in this fIgure represents mean transaction re

spon5e time. The X-axi5 represenu the write probability Pw ' At Pw = X, a transaction T that enters 

the system and accesses data object D
J 

performs a write with probability Pw(Dj } = x. In these ex

periments, Pw<D) was the same for all objects. 

The performance of the single copy policy is uniform for all values of x. If there is only a single copy 

of D" Write(D
J

, value) does not generate any read copy updates. A Write(DJI value) requires exactly 
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Figure 37. Adapting to Read/Write Ratio: This figure shows the mean response times of 
the data management economy (OM), the single copy system (SC) and the read 
everywhere system (RE). 

as much processing as a Read(D) and the system is not effected by the read/write mix. The single 

copy policy achieves the best performance for P w 2= 0.40. 

The read everywhere policy exhibits the best response time for Pw ~ 0.30. In these experiments, the 

mean response time of the read everywhere policy increases linearly with the write probability. 

under this policy, each Wrile(DJ' value) requires significantly more work than a Read(DJ Assume 

that the system ~ the read everywhere policy. Let {w be the average response time for a write 

access (including updating all copies) and let (R be the average read response time. Also, assume that 

these times are constant for all p.. At write probability Pw = x, the expected response time R of 

a data access is 

E(RI(Pw= x)] = X· tw+ (1 - x)tR 
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which simplifies to 

This means that the average access response time is a linearly increasing function of x. The same 

holds for the mean transaction response time, which agrees with Figure 37. 

The data management economy exhibits near optimal response times for all values of Pw' Its worst 

perfonnance is at Pw = O. At this value, the response time is approximately double the read every 

policy. The reason for this is described below. At all other values of Pw, the data management 

economy is no more than 13% worse than minimum response time of the single copy and read 

everywhere policies. 

For simple models, it is possible to show that for any value of Pw = x, the optimal policy is either 

read everywhere or single copy. TlW means that for 0.1 ~ P w ~ 1.0, the data management economy 

is within 13% of the minimum response time over all algorithms. As an example, assume that for 

a given Pw = x, the average read and write access response times are linear functions of the number 

of copies of each data object, denoted C. That is, 

\. (R(C) = aRC + bR' 

2. (w(C) = awC + bw· 

The average response time at Pw = x is 

R(C) = (1 - X)IR(C) + xtw(C). 

To fmd the optimal C, take the derivative of R(C). This is 

R'(C) = (I - x)QR + XQw. 

The derivative is a constant, which means that R(C) takes its minimum value at either C = 0 or 

C = ,V, where N is the number of processors. This analysis holds for all x, and under these simple 

assumptions either the read everywhere or single copy policy is optimal for all x. 

Two economic factors cause the data management economy to adapt the number of read copies 

of each object D, to the read/write ratio. These are: 
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1. The total revenue that all processors earn by selling Read(Dj) decreases as Pw increases. 

2. The read lease price for Dj increases linearly with the number of copies c(j). 

For a given system wide arrival rate, this means that as Pw increase~, the processors as a whole can 

afford fewer read copies. 

Figure 38 on page 136 shows how the data management economy adapts the number of copies of 

each object DJ to read/write ratio for it. In this example, there is a single data object A. The read 

lease price is defined to be 5/3 times the number of leases held. Assume that on average, ten 

transaction accessing A arrive at each processor during a lease period. Also assume that the 

processors charge $0.50 for a Read(A). If Pw = 0, each processor can earn $5 selling Read(A). The 

system wide revenue is $15. The lease renewal price if three copies are leased is $; x 3 = $5, and 

3 copies can be afforded by the system as a whole. (To avoid complicating the example, the interest 

rate 1=0). At Pw = 0.50, half of the accesses are writes and only $7.50 worth of Read(A) businesa 

enters the system per lease period. The total lease price for 3 leases is $15, and the total for two 

leases is $6.67. This means that the system as a whole can only afford two copies. In the example 

of Figure 38 on page 136, PI subcontracts its Read(A) to Pl and Pl. Finally, at Pw= 0.80, the total 

Read(A) revenue in the economy is $3 and only one copy is affordable. How the copies are as-

signed to the processors is described in a subsequent subsection. 

The data management economy uses decentralized decision making to compute the number of read 

copies of each object. The business strategies of the processors are decoupled, and P, uses onJy local 

information to estimate its revenue. The system as a whole is not completely decentralized, how-

ever. The lease prices for each object are computed at a central headquarters and are globally 

available to all processors. The lease requests, renewals and cancellations are also processed at a 

central headquarters. Cancellatiom, requests and renewals, and the lease price changes they cause 

do not occur frequently. In the simulation study, the lease period was 1000 time units. The over

head of the centralized decision making and global price distribution can be controlled by setting 

the length of the lease period. 

In the experiments of this section, the data management economy adapts itself to any read/write 

ratio without external intervention. The economy is not completely self tuning, however. There is 

a subtle interaction between the following factors: 
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Pw= 0.0 Pw = 0.50 $2.50 

$3.75 

Read leale - $5 Read lease - $3.3J 

Read leaH - $, .67 

Figure 38. Adapting to Read/Write Ratio: This figure shows how the data management 
economy adapts to the read/write ratio. There are three processors represented 
by circles, and one data object A. On the average 10 transactions accessing A 
arrive at each processor during a lease interval. The read access price is $0.50 at 
all processor!. The read lease price is set at 5/3 times the number of copies. 

l. The lease price function 

2. The transaction arrival rates 

3. The wealth of the traruactioru 

4. The price charged by the proceSSOr! for read/write access 

As an example, cusume that in Figure 38 on page 136 the processor! charge $3.00 for each read 

access. At Pw = 0.8, each processor can earn 10 x 0.20 x $3 = $6 selling Read(A), provided that the 

transactions can afford this price. This means that each processor can afford a read lease and there 

will be three copies of A as opposed to the I copy in the previous example. This phenomenon also 

explains why the data management economy is worse than the read everywhere policy at P w = 0 
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in the experiments of Figure 37 on page 133. In this system, even at Pw = 0, the total revenue 

earned selling Read(DJ) is less than the total cost cost of 5 read leases. So, the system cannot afford 

to place a read copy at each processor. 

Automating the subtle interplay between the transaction arrival rates, object access probability, 

Pw, transaction endowment, processor price algorithms, and lease price algorithms is an important 

area for future research. For the ideas presented in this dissertation to achieve their full potential, 

these issues must be addressed. 

5.3.2 Adapting to Entropy 

In the experiments in the previous section, the write probability Pw(D
J

) was the same for all data 

objects. If Pw(D) is considered as write "heat" or energy, the system was in a state of total entropy. 

A policy or algorithm that examines the individual characteristics of the data objects has nothing 

to exploit for improving performance compared to policies that look at P w for the entire system. 

Figure 39 on page 138 demonstrates the data management economy's ability to improve perform

ance by adapting to the read/write characteristics of individual objects. In this figure, the Y-axis 

represents mean transaction response time. Two sets of experiments are depicted in this figure. 

They represent systems with average write probability P w = 0.5 (data management economy 

DM:P = 5, read everywhere RE:P = 5) and Pw = 0.2 (OM:P = 2, RE:P = 2). The single copy policy 

has the same performance in both systems. In the experiments of the previous section, the read 

everywhere policy is the best when Pw = 0.2 and the single copy policy is best when Pw = 0.5. 

The X-axis in Figure 39 on page 138 represents the read/write entropy in the system. At point x, 

half of the objects have Pw(D,) = Pw + x and half have Pw(D,) = Pw - x. 

The performance of the single copy policy is not effected by Pw or x. This is because when there 

is a single copy, the performance cosu of reads and writes are the same. The performance of the 

read everywhere policy is substantially better at Pw = 0.2 than at Pw = 0.5, as in the previous sec

tion. The read everywhere policy's performance is not effected by the value of x. The decreased 

update overhead of an object with Pw(DJ = Pw - x is offset by the increased cost of a copy with 

P"vf...D.) = Pw + x. The total update cost remains the same. 
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Figure 39. Performance vs Entropy: This figure plots the performance of the system for 
write probabilities Pw = 0.5 and Pw = 0.2. The X-axis represents the variance in 
the individual write probabilities. At point x, half of the objects have 
PW<D,} = Pw + x and half have PW<D) = Pw - x. The five curves represent the 
data management economy and the read everywhere policy with P w = 0.2 
(OM:P = 2, RE:P = 2) and Pw = 0.5 (OM:P = 5, RE:P = 5). The single copy 
policy (SC) has the same performance in both systems, 

The data management economy can use the individual characteristics of the data objects to improve 

performance. In the case of Pw = 0.5, the economy's performance is 10% worse than the single 

copy policy's when x S 0.1. For x ~ 0.2, there is enough diversity (energy) to allow the economy 

to improve performance and be as effective as the single copy policy. For x > 0.3, the economy is 

the best po~. The respon!e time decreases by 40% percent at the extreme case of x = 0.5, and the 

economy is 30% better than the single copy policy. At Pw = 0.2. the read everywhere policy is the 

best at x = O. For x> 0.1, the data management economy is the best policy. 

The experiments in this section demonstrate that the data management economy can exploit di-

versity in the read/write probabilities of the objects to improve performance relative to policies that 
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are based on global averages. No manual intervention is required for the economy to adapt to the 

the diversity in the write probabilities. 

5.3.3 Adapting to Locality 

A second source of diversity that can be exploited is locality in the transactions' reference patterns. 

In the previous experiments. a transaction T arriving a node P, accessed all of the data objects with 

equal probability. Let PU,l) denote the probability of a transaction at P, accessing object D .. There , 

are localities in the reference patterns if P(i,l) is not constant for all i and j. For example, if 

P(i,l) > p(k,l) for all other processors P", a copy of D, should be assigned to P" 

Figure 40 on page 140 depicts the results of experiments to evaluate the economy's ability to adapt 

to localities in the reference patterns. The Y-axis in this figure represents mean transaction response 

time. The X-axis represents the locality in the transactions' reference patterns. At point x, the 

transactions at a processor P, exclusively access x% of the data objects. The subsets of data objects 

accessed at each processor were chosen randomly. For all values of x, the mean transaction length 

was 5 accesses. In this experiment. the write probability was Pw = 0.4 for all objects. 

The performance of the read everywhere and single copy policies do not change as a function of 

locality of reference. Under the read ~verywhere policy, the response time of K reads on K distinct 

object is the same as reading one object K times. The same is true for writes. A similar argument 

holds for the single copy policy. 

The data management economy's performance improves as locality increases. For the range 

100 ~ x ~ 60 , the response time changes by less than 10%. In the range 60 ~ x ~ 20 , the mean 

transaction response time decreases linearly with increasing locality. At x = 20, the economy is 

30% better than the single copy policy. 

Figure 41 on page 141 demonstrates how the data management economy adapts the assignment 

of copies to processors based on referential locality. In this example, transactions at PI and P2 only 

update object C. Transactions at P l only read B. Read and write access prices are $10 and the ship 

price per link is $2. 

Initially, P2 is the only processor with a read copy of B. Pl subcontracu Read(D) to PI' which in tum 

subcontracts to Pl' Assume that 10 transactions per lease period arrive at Pl' P2 earns $100 per lease 
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Figure 40. Performance vs Locality of Reference: lbis figure plots the performance of the 
single copy policy (sq, the read everywhere policy (RE) and the data 
management economy (DM) as a function of the locality of reference. The 
Y -axis represents average transaction response time. The X-axis represents the 
percent of the total number of data objects accessed by transactions at a given 
processor. 

period selling Read(B) , and PI loses SilO and Pl loses $130. PI and P1 will each order a read lease 

for B (provided that the cost is less than SI 00). When this happens, P1 no longer subcontracts its 

Read(B) business, and PI and P1 have their Read(B) revenue fall to 0 and will not renew the read 

leases on B. 

In the example, the only write copy of C is at node Pl' P1 subcontracts its Write(G) to PI which in 

tum subcontracts to Pl' AMume that the arrival rate at processors PI and P1 is 10 transactions per 

lease period. Pl earns S200 per lease period, and PI and P1 lose revenue of $220 and $160 respec

tively. If the interest rate 1= 0, the processors are willing to bid the following for the write copy 

of C: I) 220, 2) 160, 3) 200. So, PI wins the next auction for the write lease of C. At this point, PI 

eams $200 per lease period on Write(G) while P1 loses only $120 by not holding the lease. The write 
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Figure 41. Adapting to Locality of Reference: This figure shows how the data 
management economy adapts to locality in the reference patterns. Transactions 
at PI and P1 exclusively update object C. Transactions at p) only read 8. 

copy will not migrate to P l and the system stabilizes. The new configuration is depicted in part b 

of Figure 41 on page 141. 

5.3.4 Lease Prices 

In the data management economy. the price for a resource should reflect the underlying demand 

for the resource. Agent! make their decisions based on resource prices. and having the prices ac-

curately reflect resource demands can increase the economy's effectiveness. Resource prices can 

also help system management and capacity planning by identifying bottleneck and surplus re-

sources. 

In the experiments of this section. the read. write and ship prices charged by the processors are 

constant. Even with this simple price policy. the economy dramatically improves performance. To 
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Figure 42. Lease Prices vs Write Probability: This figure plots the average lease price 
versus the probability Pili of an object access being a write. The two curves 
represent the average read lease price and the average write lease price over all 
objects. 

evaluate the relationship between resource demands and prices. we ran experiments to measure the 

effect of the system wide write probability on read and write lease prices. 

Figure 42 on page 142 depicts the results of these: experiments. The X·axis represents the system 

wide write probability Pili' At point x. a data object D
J 

that is accessed by transaction T is updated 

with probability Pili' In this experiment. the mean number of objects accessed by a transaction is 

5. The Y·axiJ in this figure represents average lease price. Each time a processor renews. cancels 

or requests a lease on a data object. the price is recorded. The two curves in this figure represent 

the average read lease price and write lease price over all objects. 

The average write lease price is a linearly increasing function of Pili' This accurately reflects the 

transactions' demand for write access to objects. which increases linearly with Pili' Each data object 

manager uses a distributed English auction to allocate (lease) the write copy to a processor. In the 
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data management economy. the auction model sets resource prices that accurately reflect the 

underlying demand for the resources. This contrasts with the load balancing economy in which 

examples showed that the auction model did not set prices that accurately reflect demand. In the 

load balancing economy's auctions. the resource price is set by the wealthiest job and the maximal 

wealth is not directly related to the number of jobs bidding. In the data management economy, the 

number of potential bidders for a write lease is fixed. As Pw increases, the wealth of each bidder 

increases linearly. In the examples of Figure 22 on page 69 in the load balancing economy. if the 

number of jobs remains the same and the wealth of each job increases. the sale price will also in

creases. This explains the success of auctions in the data management economy. 

Figure 42 shows that the read lease prices do not accurately ret1ect the demand for read access to 

data. The read demand decreases linearly with Pw but the read lease price is nearly constant in the 

interval 0 ~ Pw ~ 0.4, and decreases nearly linearly in the interval [0.4,0.9]. 

The algorithm for setting the read lease price was to charge $2 times the number of copies leased. 

The write copy is also a read copy, which means that the minimum price for a pure read copy was 

$2. Since the price is a function of the number of copies held, this figure shows that too few read 

copies are demand when Pw ~ 0.2 and too many are held when 0.5 ~ Pw ~ 0.9. This explains why 

the economy's performance is not as good as the read everywhere policy when 0 ~ p w S. 0.2 and 

is not as good as single copy with 0.5 ~ Pw ~ 0.9. It may be possible to improve the economy's 

performance by choosing another constant for the read lease price algorithm. 

The demand for read copies is not only a function of Pw. The interest rate, shipping costs and 

topology also effect the demand for read leases. The same is true for write lease prices. However. 

there is a single write copy and the write demand aggregates over all nodes. There can be mUltiple 

read copies and the demand is per processor a! opposed to system wide. So, the read lease demand 

is more subject to local considerations. Modifying the read lease price policy to account for these 

problems is an area for future work that may improve the economy's' perfonnance. 

5.4 Comparison with Related Work 

In the performance experiments discussed in this chapter, the data management economy solves the 

File Allocation Problem. We compare the data management economy with previous work on the 
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file allocation problem lD this section. More general and extensive surveys can be found in 

[33, 88J. 

Most previous solutions to the file allocation problem have been based on minimizing a cost 

function. This approach was first used by Chu [18J, and the most comprehensive cost function and 

constraints are also due to Chu [19]. Under these models, there are M files (data objects) and N 

processor nodes. The algorithm computes N • M binary decision variables X,)" X,) == 1 if a copy of 

D, is assigned to processor P" and is 0 otherwise. The goal is to compute the X'I that minimize a 

cost function. As an example, the cost function could be total communication cost. Let ).if be the 

rate at which read accesses for D, are generated at P" and let ).:( be the same for write accesses. If 

~k is the "cost" (e.g. - delay) of sending a message between Pj and Pk , the cost function to minimize 

IS 

The first term presents the total write cost, and the second term is the total read cost (Every read 

is routed to the Mcheapest' copy). 

In general, the cost minimization problem is subject to several constraints. One constraint is that 

N 

there be at least I copy of each object, i.e. ~X~ ~ I for all i. Other constraints can include disk, 
,-I 

CPU or communication capacity. The most general formulation of the cost function and con-

straints is due to Chu [19]. 

A main dialdvantage of the cost minimization problem is that it is a 0- I integer programming 

problem and is NP·Hard [28, 77]. Heuristic algorithms have been proposed and work well in 

simple configurations [14, 77]. An alternate approach has been to allocate the mes singly. That is, 

solve Jf independent problems each with one rue [14, 15, 28, 62, 73]. Even in this simple case, 

the problem can be NP·Hard. Furthermore, there is obviowly interactions between the assignments 

of the individual fUes, which is ignored by this model. 
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The cost minimization problem suffers from other disadvantages. First, the models are too sim

plistic. For example, ~k is assumed to be constant and not a function of the traffic between P
j 

and 

p •. Secondly, no methodology for defining the costs is given. It is not obvious how the cost for disk 

space relates to the communication cost. This previous work also requires complete, centralized 

infonnation and uses a centralized algorithm to compute the assignment. To minimize the function 

above, ).: and A,;" most be known for all processors. The algorithms also compute static assign

ments, and must be re-executed if the inputs change. 

There are two advantages to this set of algorithms. If the cost functions can be accurately defmed, 

it is possible to solve the constrained optimization for some realistically large systems. In this case, 

the assignment is provably optimal [88]. There is also evidence that heuristic algorithms do provide 

near optimal assignments [33, 88]. 

The main advantage of the data management economy relative to the cost minimizations algo

rithms is that the economy uses decentralized computation, and simple statistical measurement of 

the parameters. Each processor independently measures A: and A.r The only necessary global in

fonnation are the lease prices. This infonnation is relatively small and changes slowly. An additional 

advantage of our work is that our simulation studies were based on realistic system models as op

posed to the work above, which uses simple analytic cost functions. Finally, the data management 

economy is adaptive and does not compute static solutions. 

The main disadvantage of the data management economy is that currently there is no methodology 

for choosing pricing functions. This is especially true for read/write access, link costs and read lease 

prices. Our simulation studies indicate that very simple policies work well, however. A more thor

ough study of pricing algorithms is an area for future work. A second disadvantage of the results 

of this chapter is that the economy does not compute provably optimal assignments. Attempting 

to use mathematical economics to prove optimality of the economy is also an area for further work. 

The second category of solutions to the rue allocation problem is based on analysis of queueing 

networks [33, 88]. A global perfonnance metric, which is usually throughput or response time, is 

defined and an assignment of flies to processors that optimizes the metric is computed. This work 

is similar to the material above in the sense that a global metric is defined and optimized. The main 
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difference u that the queueing delays at CPU and communication resources are explicitly computed 

instead of relying on statically defined costs. 

Under this model. the file allocation problem is solved in two stages. In the first stage, a perform· 

ance function F,(x) is defmed for each processor P" For example, F,(x) could be the mean response 

time of a fIle access at P, when the arrival rate at P, is x. The first stage algorithm computes a 

branching probability p, for each node P" If A is the system wide arrival rate of me accesses (both 

read and write), P, • A of the requests are routed to P" The first stage algorithm computes the 

branching probabilities A"";, ... ,p~ that minimize 

N 

LF1(Pjo A), 

1=1 

subject to 

2. 0 ~ P, 5. 1. 

The stage I optimization computes the processor loads that optimize the performance metric. 

The second stage is to compute an assignment of mes to processors that yields the desired branching 

probabilities. It is typically assumed that the mes are infinitely divisible [33], and D 5. X,l 5. I instead 

of x,. e {D, I}. Given the branching probabilities and the distribution of access over the mes com· 

puting the x,. is trivial. 

For constrained topologies and under simplifying assumptions (exponential service time, poisson 

arrival proc:eu, etc.), several algorithms have been studied that compute the optimal p;, Pi, ... ,p~ 

[4, 13, 17]. 'Th.i5 work assumes that the distribution of accesses over all mes is known, and that the 

tiles are infinitely divisible. lltis means that the second stage computation is trivial. 

If ,r,. e {D, I} is required, computing the assignment in the second stage is NP·Hard [33]. Heuristic 

search, Linear programming and bin packing algorithms have been used to compute the x,. in this 

instance [31. 32]. 
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The work above is only applicable in restricted topologies, and some assume that all references are 

generated at a single node. Dowdy has extended throughput maximization to general topologies, 

but optimality is no longer guaranteed [33]. This algorithm also requires solving an integer pro

gramming problem to compute the assignments. In their survey, Dowdy and Foster demonstrate 

that computing a file allocation that minimizes communication delay can be modeled as a traffic 

flow assignment problem [52]. 

There are several disadvantages to the to the queueing based approaches to me allocation. First, 

most work assumes that the data objects are infmitely divisible. If this is not the case, computing 

the file assignment that yields optimal branching probabilities is NP-Hard. Secondly, most algo

rithms can only be applied in restricted topologies (e.g. - single source of file references [76], star 

networks [13, 17, 32, 45]). Third, complete information on the parameters is required and the 

algorithm is centralized. Finally, the solutions are optimal only for static, steady state. The main 

advantage to these algorithms is that optimality can be proven given the assumptions. 

As with cost based algorithms, the data management economy has the following benefits compared 

to the work above: 1) Decentralized computation, 2) More realistic system model, 3) Adaptive, 

non-static assignments. The main disadvantages are the same as before. I) No methodology for 

pricing algorithms and 2) Not provably optimal assignments. 

5.5 Conclusions 

This chapter presented an economy that manages replicated data objects in a distributed transaction 

processing system. Simulation based performance experiments demonstrate that the economy sub

stantially improves performance. The economy was compared to the policies of I) Maintaining a 

smgle copy of each object, and 2) Maintaining a copy of each object at every processor. The 

economy substantially improves performance relative to these policies. 

The economy improves performance in two ways. First, the number of copies of each object is set 

based on the ratio of read access to write access for the object. If writes are most common, few 

copies are maintained to avoid update overhead. If, however, read access is predominant multiple 

copies are maintained to ensure that reads are serviced locally or at nearby processors. The second 

improvement is derived through exploiting localities in transaction access patterns. Copies of ob-
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jects are assigned to the processors at which they are most frequently accessed. We provided several 

examples that illustrate how the economy uses supply and demand to achieve the performance 

improvements. 

The data management economy solves the File Allocation Problem. We presented a brief survey 

of previous work on this problem, and compared it with the economy. The main advantages of the 

data management economy relative to previous work are: I) Decentralized decision making, 2) 

Realistic system models, 3) Computational tractability. The main disadvantage is that the econo

my's assignments are not provably optimal. 

We studied the relationship between resource prices and demand. In this economy, an English 

auction model was shown to set lease prices for write copies that accurately reflect the demand for 

write access. Our algorithm for setting read lease prices was shown to be less successful. We are 

currently exploring alternative policies. 

Several avenues for further work were presented. The interactions between the processors' and data 

object manager~' pricing algorithms and the transaction endowments that should be addressed. We 

used simple pricing algorithms in our experiments. More sophisticated policies may be able to fur

ther improve performance. Finally, our economy is not currently compatible with concurrency 

control based on locking. Incorporating concurrency control is necessary to more realistically model 

transaction processing systems. 
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6.0 Summary and Directions for Future Work 

This thesis studied resource sharing problems in distributed computer systems. We proposed that 

a distributed system should be structured as a society of competing microeconomic agents. We 

demonstrated the effectiveness and generality of this approach by applying our ideas to the diverse 

problems of load balancing, flaw control in virtual circuit networks, and data management. 

Our load balancing economy improved mean job waiting time compared to a representative, non

economic load balancing algorithm. We showed that our economy implements a broad spectrum 

of load balancing strategies. At one extreme, the economy has a high migration rate and migrates 

short jobs. At the other extreme, the economy migrates long jobs and has a low migration rate. 

We demonstrated that the economy's load balancing strategy can be tuned to relative speeds of 

CPU vs communication and that this gives better performance. The economy was shown to im

plement flow control by decreasing throughput to improve response time. We also evaluated the 

effectiveness of job wealth as a priority mechanism. Our experiments revealed that a simple learning 

mechanism for the jobs substantially improved performance and counter acted the effectiveness of 

wealth as a priority mechanism. Finally, we showed how the economy limits complexity by being 

inherently decentralized and modular. 

The flow control economy demonstrated how economies effectively deal with diversity. Each user 

of a virtual circuit can independently set its individual throughput-delay goals. This improves on 

previous work which has either: I) Defined a system wide throughput-delay goal, or 2) Has as

sumed all circuits have the same throughput-delay goals (e.g. - Maximize throughput). We pro

posed Ponto-optimality as a new definition for optimal resource allocations for the flow control 

problem. We presented a formalization of fairness criteria and compared Pareto-optimality with 

previow definitions of optimality and fairness. We extended tools provided by mathematical eco

nomics and proved that the resource allocations computed by our economy are Pareto-optimal. 

We also proved that a Pareto-optimal allocation exists for arbitrary network. Proving convergence 

in an economy is an extremely difficult problem, and we did not prove convergence for the flow 

control economy. An exteJUive simulation study demonstrated that the economy rapidly converged 

to an optimal allocation over a broad set of network parameters. We also discussed the integration 
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of circuit routing with flow control. The flow control economy demonstrated the power of math

ematical economics as a tool for modelling resource sharing problems in distributed computer sys

tems. It also demonstrated that the models must be altered to realistically model the computer 

systems. 

The data management economy solved a general version of the file allocation problem. This econ

omy improved mean transaction response time compared to simple system wide policies. The im

provements were achieved in two ways. First, the number of copies of a data object was chosen 

based on the ratio of write access to read access. Secondly, localities in transaction reference patterns 

were detected and exploited. The economy was tested on a more realistic system model that pre

vious work. This economy demonstrated how economic competition resolves conflicting goals. 

There is a trade-off for the number of copies of an object in the system. Many copies decreases read 

access time, but increases write access time. A single copy eliminates update overhead, but increases 

read access time. The economy resolved these conflicts over a broad range of read/write ratios. The 

data management economy and the examples from this chapter highlighted the importance of the 

algorithms that set resource prices. Our experiments demonstrate the simple policies work well. 

Finally, the data management economy demonstrated that economic models can efficiently allocate 

logical resources (access to data). 

This thesis opens up several opportunities for further work. Thi5 work falls into two categories. 

The first are extensions to the economies presented in this thesis. The load balancing economy ex

periments showed that the economy can have its load balancing strategy tuned for a specific ratio 

of CPU to communication power. This tuning requires manual intervention, however. Automating 

the tuning is a possible area for further work. We also discussed that the economy implements flow 

control. Currently there is no mechanism for setting the desired throughput-response goal. Provid

ing such a facility is an area for future research. Two avenues for work are left open by the flow 

control economy. The first is proof of convergence of the tatonement process or a counter exam

ple. The second is integration of alternate models of VC throughput-delay goals. Our model is very 

general, but does not exhaust the set of possible goals. Finally, the data management economy has 

three opportunities for more research. One is detennining if more complex price setting algorithms 

improve performance. Secondly, it was shown that there are interactions between the transactions' 
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endowments, the processors' pricing algorithms and the data managers' pricing algorithms. Auto

matically resolving these interactions would enhance the usefulness of the economy. The final 

possible extension of the data management economy is including concurrency control in the econ

omy. 

The second avenue for further work is applying the microeconomic paradigm to other problems in 

distributed systems. Doing so will further demonstrate the generality of this approach. In this thesis 

we focused on the performance achieved by resource sharing algorithms. It may be possible to apply 

this approach to problems of reliability and error recovery. Finally, an extremely promising area for 

research is further relaxing the assumptions made by mathematical economics. This will allow 

modelling a broader set of distributed system problems. The two most important assumptions are: 

I) Agents possess complete, apriori knowledge of their resource requirements. 2) The set of agents 

is fixed. Overcoming these assumptions is an interesting theoretical challenge, and would provide 

computer science with a powerful new set of tools. 
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