Accredited Ranking SINTA 2 Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021 Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

The Application of The Manhattan Method to Human Face Recognition

Sunardi1¹, Abdul Fadlil², Novi Tristanti³

^{1,2,3}Master Program of Informatics, Ahmad Dahlan University, Yogyakarta, Indonesia ¹Sunardi@mti.uad.ac.id, ²Fadlil@mti.uad.ac.id, ³Novi2008048027@webmail.uad.ac.

Abstract

In face recognition, the input image used will be converted into a simple image, which will then be analyzed. The analysis was carried out by calculating the distance of data similarity. In the process of measuring data similarity distances, they often experience problems implementing complex algorithm formulas. This research will solve this problem by implementing the Manhattan method as a method of measuring data similarity distances. In this study, it is hoped that the Manhattan method can be used properly in the process of matching test images and training images by calculating the proximity distance between the two variables. The distance sought is the shortest distance; the smaller the distance obtained, the higher the level of data compatibility. The image used in this study was converted into grayscale to facilitate the facial recognition process by thresholding, namely the process of converting a grayscale image used in this study is in the Joint Photographic Experts Group (JPEG) format. Testing was carried out with 20 respondents, with each having two training images and two test images. The research was conducted by conducting experiments as many as 20 times. Facial recognition research using the Manhattan method obtains an accuracy of 70%. The image lighting used as the dataset influenced the accuracy results obtained in this study. Based on the results of this study, it can be concluded that the Manhattan method is not good for use in facial recognition research with poor lighting.

Keywords: face, detection, manhattan, image

1. Introduction

The face is one of the markers of identity in humans. Face recognition is a system that can be used for individual recognition [1] because the face is a distinguishing feature of each individual In general, recognizing individuals can be done by looking at the face.

In current technological developments, facial recognition systems are widely used for identification and security [2]. Image processing is currently a widely developed application in aspects of life including archeology, astronomy, and biomedicine. Image processing can be done by changing complex input images into simple images to facilitate the analysis process. The analysis was carried out by measuring the distance of data similarity. An algorithmic formula can be used to calculate the distance of data similarity. In measuring distances, there are often problems with the formula being too complicated. In previous research [3] Face recognition is done using LBP for feature extraction without being equipped with grayscale. This research is equipped with a grayscale process to increase the accuracy of the system when performing

face recognition. Previous research stated that the Manhattan method can be used to perform face recognition [4] So in this study, the Manhattan method was used as a method for performing facial recognition. The Manhattan method is used to find the distance of data similarity [5][6]. This method is one that is often used to conduct research to determine the similarity between two objects [7]. In previous studies, the Manhattan method was better than the Euclidean method [8]. The Manhattan method is easier to implement on the system because it has simpler equations than the Euclidean method.

The first step in this research is to use images as training data and test data. The next step is to change the training image and test image to grayscale [8] [9]. The grayscale image is then converted into a binary image using a thresholding process [11]. Furthermore, the binary image values from the training and test data are entered into the Manhattan calculation.

The image in this study uses the Joint Photographic Experts Group (JPEG) format with 20 respondents as the research object. The image was generated using the

Accepted: 07-07-2022 | Received in revised: 12-11-2022 | Published: 28-12-2022

Samsung A51 smartphone camera, which has a main camera resolution of 48 MP.

The Acer processor Intel(R) Core(TM) i5-7200U laptop, 4 GB of memory, the Windows 10 operating system, and the Matlab 2015a application were used in this study [11][12] which is supported by graphical mathematics software and has programming capabilities [14][15][16].

In previous research, face recognition was carried out using the Euclidean method with a formula that looked complicated to people outside their field. The Manhattan method was used in this study, which has a simpler calculation formula than the previous method. The problem to be examined in this study is the use of the Manhattan method in face recognition for the image lighting conditions used, namely sufficient lighting and insufficient lighting.

The purpose of this research is to apply the Manhattan method to recognize facial images and determine the level of accuracy of this method in facial recognition. This research was conducted to determine the matching of test images and training images with a dataset using 20 respondents. Because the image was taken directly, only 20 people were tested in this study.

2. Research Methods

The flow of the system in this study begins with the preprocessing stage, which is the stage used to prepare input images in order to increase precision and accuracy in carrying out the classification process that will be carried out. The primary goal of performing the preprocessing stage is to process the data to produce data that meets the requirements. Next is the processing stage, which includes the grayscale, thresholding, and introduction stages of the Manhattan algorithm. The dataset used in this study is a set of facial images taken directly from a total of 20 respondents. Respondents were chosen randomly. The image was taken using the Samsung A51 smartphone camera, which has a 48-megapixel main camera resolution. The system flow can be seen in Figure 1.

The steps used in this research method are as follows:

- 1) Input photos into the application as training data.
- 2) Input photos into the application as test data.
- 3) Convert the photo to grayscale using a grayscale scaling process.
- 4) Converting grayscale photos to binary images.
- 5) Calculate the distance between the test image, which has become a binary image, and the training data image.
- 2.1. Graycale

A grayscale image only requires an intensity value for each pixel used as a single value, while a color image requires three intensity values for each pixel. Conversion from RGB image to grayscale in equation (1):

$$Iy = 0.333Fr + 0.5Fg + 0.1666Fb$$
(1)

Fr is the intensity of red (red), Fg is the intensity of green (green), Fb is the intensity of blue (blue), and Iy is the intensity of gray (gray), which is equivalent to the RGB level.

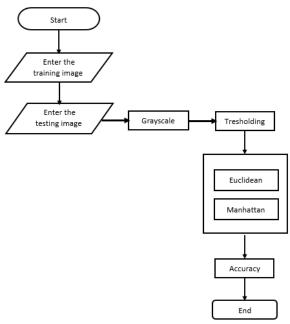


Figure 1. System Flow

2.2. Tresholding

In the transcoding stage, the grayscale image is converted to a binary image. Binary images only have two possible values for each pixel, namely black and white. Each pixel in the image will be marked as a pixel object with a value of 1, while a background pixel has a value of 0. Image segmentation based on object and background pixels can be expressed mathematically as (2):

$$g(x,y) = \begin{cases} 1 \ if \ f(x,y) \ge T \\ 0 \ if \ f(x,y) < T \end{cases}$$
(2)

Based on equation (2), g(x, y) is a grayscale image, f(x, y) is converted to a binary image, and T is the threshold value.

2.3. Manhattan

At this stage, a distance measurement will be carried out; the distance sought is the closest distance. If the value obtained is large, the level of similarity between the two objects will be smaller. Sebaliknya, jika nilai yang didapatkan kecil maka tingkat kemiripan antara kedua objek akan semakin besar. Conversely, if the value obtained is small, the level of similarity between

the two objects will be even greater. Equation be used to calculate Manhattan distance:

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$
(3)

Based on equation (3), d is the distance betwee y, x is the input data, y is the weight, n is the an data, x_i is the i-th data, and y_i is the i-weight.

2.4. Accuracy

The accuracy of the facial recognition system study can be calculated using equation (4):

Accuracy =
$$\frac{TP+TN}{TP+FP+TN+FP} x100\%$$
 (4)

True Positive (TP) is a face image that is in a c and can be recognized by the system accordin dataset. False Positive (FP) is a facial image database that the system cannot identify based dataset. True Negative (TN) is a face image th in the database and has been identified as un False negative (FN) is a face image that is no database but can be identified with other dat dataset.

3. Results and Discussions

Training Image

No

This study uses 20 respondents as a dataset, w respondent having two images for training data images for test data. The test images used were with sufficient lighting and images with less The image was taken with the Samsun smartphone camera, which has a 48-megapix camera resolution. The image used has a 719x719 pixels. At this stage, facial recognition was carried out using the Manhattan metho Matlab 2015a application was used to run th which used an Intel(R) Core(TM) i5-7200U 2.50 GHz and 4 GB of memory. The test result seen in Table 1.

Table 1.Test Table

Testing Image

(3) tan (3) can (3) (3) between x and	2	\checkmark	-
s the amount of ight. system in this 4):		\checkmark	-
(4) s in a database coording to the image in the	3	V	-
y based on the hage that is not d as unknown. at is not in the her data in the		-	V
aset, with each ag data and two ad were images h less lighting.	4	V	-
Samsung A51 legapixel main has a size of ognition testing method. The		-	V
run the tests, 7200U CPU at t results can be Face Detected	5	V	-
Yes No √ -		\checkmark	-
- √	6	V	-

- N	11
7	√
- v	12
8	✓ -
- v	13
9	N
- v	14 ₩ -
10	✓ -
V	15

Training

Image

1a

1b

Based on Table 1, the test was carried out using two training datasets and two test datasets. In the test data, two images are used, namely the image in sufficient lighting conditions and the image in poor lighting conditions. The first test image is an image taken in sufficient lighting conditions, and the second test image is an image taken in insufficient lighting conditions. From the tests that have been carried out, it can be seen that the facial recognition system using the Manhattan method is not good when used in face recognition when the image lighting conditions are not good. Of the 40 experiments that have been carried out, there are 12 times when the faces are not the same, which is caused by a lack of lighting when taking the image. The value of the Manhattan calculation results can be seen in Table 2 and Table 3. The calculation results are obtained from equation (3). In Table 2, as an example, five test data points are presented, where the image used is the first image for each respondent, which is an image with sufficient lighting. Table 3, as an example, is presented with five test data points where the image used is the second image for each respondent, which is an image with low lighting.

Table 2 Table of Test Result Values for the Enough Lighting

Table 2. Table of Test Result Values for the Enough Lighting					2a	131320	133220	140898	<mark>156397</mark>	3042	
Image				2b	130502	133468	138360	157557	3049		
Training			esting Imag			3a	149170	157220	150754	230971	3715
Image	1a 62097	2a 254927	3a 287214	4a 258624	5a 192406	3b	139434	151384	139260	220387	3654
1a 1b	82097 29333	254927 250119	287214 276030	258624 253276	192406 190566	4a	219562	226758	230428	270923	3424
2a	242332	71888	161125	198713	271555	4b	212398	210626	217134	252381	3403
2b	245452	<mark>63468</mark>	156583	196319	272123	5a	344498	351226	361588	270733	120
3a	277532	154990	<mark>90471</mark>	162583	327853	5b	345255	351817	361973	271490	113
3b	289378	164140	103133	158841	342869	ба	361921	371077	385139	286680	155
4a	244664	202126	160863	141089	315111	6b	352626	358712	372932	270137	176
4b	249186	189814	148811	162833	313157	7a	319695	327141	329391	336334	226
5a	193984	276130	338889	303363	59095	7b	341791	340597	343935	327536	233
5b	197631	277175	340358	304480	<mark>50726</mark>	8a	227074	238764	242814	319825	304
6a	156447	273403	322894	290652	118434	8b	240465	251387	254599	306230	292
6b	143850	280842	324747	265035	147551	9a	270811	289327	302373	297794	269
7a	255545	287667	280988	258418	232212	9b	266861	281789	293103	295190	265
7b	244901	292893	287908	271940	226276	10a	327127	344147	351187	301996	221
8a	260830	246010	225193	219619	266555	10b	344805	352387	366405	301106	196
8b	262881	247391	230288	232186	261178	11a	334137	349743	354191	309792	153
9a	157371	251049	252022	219360	230982	11b	308834	337674	336962	310445	198
9b	139945	250033	265120	240320	220488	12a	328671	328455	328587	284874	133
10a	184423	263715	278648	259380	164622	12b	287886	301664	294620	298177	165
10b	176109	284115	313902	258108	167276	13a	267977	277839	279761	321944	263
11a	170727	286509	337020	270948	136984	13b	256704	261838	263324	309887	274
11b	201290	270898	301067	265887	162563	14a	204145	219271	216197	303854	294
12a	201681	303603	330688	285934	135716	14b	218872	224608	225564	304841	307
12b	214428	278968	299017	273495	164921	15a	240519	233639	235341	261010	281
13a	251051	277419	243176	214278	256832	15b	241091	235357	237555	264192	287
13b	268690	274896	237939	203763	277471	16a	361921	371077	385139	286680	155
-						16b	276936	290424	301302	263911	260

Creative Commons Attribution 4.0 International License (CC BY 4.0)

14a	291439	244055	210022	198126	289080
14b	308670	244898	194277	209051	298873
15a	290075	213201	232858	234034	287746
15b	300689	219013	229642	244856	293666
16a	156447	273403	322894	290652	118434
16b	244958	252222	279293	256683	242627
17a	198955	287223	310380	268892	185404
17b	199686	272836	309501	252325	195197
18a	308601	223657	230684	225646	251940
18b	328103	229089	209216	209526	265384
19a	163801	235389	261798	235442	192362
19b	158023	240237	263892	243562	193898
20a	202437	289015	318940	249076	158336
20b	205705	289341	319880	243552	159440

Tabel 3. Table of Test Result	Values for Low Lighting Image
-------------------------------	-------------------------------

2b

284745

286019

1b

276335

272379

Testing Image

3b

297551

299051

4b

282520

280614

5b

228189

234853

17a	308455	316849	318205	329656	189685
17b	287658	306042	306062	315135	193182
18a	212387	234051	226563	252352	252085
18b	221873	229525	219435	255824	252115
19a	255821	277941	278765	251316	228221
19b	272551	290909	290669	255890	234509
20a	317293	339095	338271	317746	167245
20b	319445	338483	338287	309900	162403

Based on Table 2 and Table 3, to determine the match of faces, look at the smallest results from the columns in Table 2 and Table 3. The green cells indicate that the experiment obtained the same test-face results as the training faces, while the red cells indicate that the experiment obtained facial results. The test is not the same as the training scenario. Thresholding is a criterion used to obtain the values in Table 2 and Table 3, where the grayscale image will be converted to a binary image before Manhattan calculations are performed. Based on the tests that have been carried out, the values of the test variables with TP = 28, FP = 12, TN = 0, and FN = 0 obtained accuracy based on equation (4) as follows:

$$Accuracy = \frac{28+0}{28+12+0+0} \times 100\% = 70\%$$

Based on the tests that have been carried out 40 times using 20 respondents, the accuracy of the system in performing face recognition is 70%. Based on the accuracy that has been obtained, it can be concluded that the Manhattan method is not suitable for recognizing faces in low-light images.

4. Conclusion

Face recognition research using the Manhattan method has been carried out using a dataset of 20 respondents, with each respondent having two training images and two test images. The test images used were images with sufficient lighting and images with less lighting. The criteria used in this study is thresholding, which is the stage of changing a grayscale image into a binary image to facilitate the extraction process. This research produces an accuracy rate of 70%. Based on these results, it can be concluded that this method is not suitable for performing face recognition with images that are poorly lit.

As recommendations for furthering this research, it is suggested that in future studies, methods that improve system performance in recognizing images with low lighting be included. The addition of methods to reduce noise in the image can also be used to improve the results of the Manhattan method. Increasing the percentage of facial recognition can be done by applying normalization or preprocessing steps.

Acknowledgment

I would like to thank the Ahmad Dahlan University Master of Informatics study program for facilitating the Research Laboratory as a forum for researchers to develop journal research and complete this research.

Reference

- A. Eleyan and M. S. Anwar, "Multiresolution Edge Detection Using Particle Swarm Optimization," *Int. J. Eng. Sci. Appl.*, vol. 1, no. 1, pp. 11–17, 2017.
- [2] M. A. Siddiq, I. Santoso, and A. A. Zahra, "Identifikasi Wajah Manusia Dengan Analisis Komponen Bebas," J. Ilm. Tek. Elektro, vol. 6, no. 2, pp. 254–259, 2017.
- [3] Abdul Azis, Danar Putra Pamungkas, and Ahmad Bagus Setiawan, "Analisa Perbandingan Algoritma Euclidean Dan Manhattan Distance Dalam Identifikasi Wajah," *Semin. Nas. Inov. Teknol.*, pp. 219–224, 2021.
- [4] A. Azis, D. P. Pamungkas, and A. B. Setiawan, "Analisa Perbandingan Algoritma Euclidean Dan Manhattan Distance," *Semin. Nas. Inov. Teknol.*, pp. 219–224, 2021.
- [5] A. Saleh, A. F K Sibero, and I. H G Manurung, "Pengenalan Tanaman Herbal Menggunakan Algoritma Learning Vector Quantization Dan Manhattan Distance," *J. TEKESNOS*, vol. 3, no. 2, pp. 271–276, 2021.
- [6] Y. Miftahuddin, S. Umaroh, and F. R. Karim, "Perbandingan Metode Perhitungan Jarak Euclidean, Haversine, (Studi Kasus: Institut Teknologi Nasional Bandung)," vol. 14, no. 2, pp. 69–77, 2020.
- [7] K. N. Using and P. Swarm, "Optimalisasi Pengenalan Wajah Berbasis Linear Discriminant Analysis Dan K-Nearest Neighbor Menggunakan Particle Swarm Optimization (Optimization Of Face Recognition Based On Linear Discriminant Analysis And," vol. 4, no. 1, pp. 40–51, 2022.
- [8] M. Faisal, E. M. Zamzami, and Sutarman, "Comparative Analysis of Inter-Centroid K-Means Performance using Euclidean Distance, Canberra Distance and Manhattan Distance," J. Phys. Conf. Ser., vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012112.
- [9] F. Yue *et al.*, "High-resolution grayscale image hidden in a laser beam," no. August 2017, pp. 1–6, 2018, doi: 10.1038/lsa.2017.129.
- [10] I. Žeger, S. Grgic, and J. Vuković, "Grayscale Image Colorization Methods: Overview and Evaluation," vol. 9, 2021, doi: 10.1109/ACCESS.2021.3104515.
- [11] M. Thresholding, D. Otsu, and S. Bhahri, "Transformasi Citra Biner Menggunakan," vol. 7, no. 2, pp. 195–203, 2018.
- [12] M. Hendriani, Rais, and L. Handayani, "Penerapan Artificial Neural Network Terhadap Identifikasi Wajah Menggunakan Metode Backpropagation," *Nat. Sci. J. Sci. Technol.*, vol. 8, no. 3, pp. 203–208, 2019, doi: 10.22487/25411969.2019.v8.i3.14599.
- [13] D. I. S. Saputra, R. A. Pamungkas, K. A. N. Ramadhan, and W. S. Anjar, "Pelacakan Dan Deteksi Wajah Menggunakan Video Langsung Pada Webcam," *Telematika*, vol. 10, no. 1, pp. 50–59, 2017.
- [14] N. W. Pratiwi, F. Fauziah, S. Andryana, and A. Gunaryati, "Deteksi Wajah Menggunakan Hidden Markov Model (HMM) Berbasis Matlab," *STRING (Satuan Tulisan Ris. dan Inov. Teknol.*, vol. 3, no. 1, p. 44, 2018, doi: 10.30998/string.v3i1.2538.
- [15] A. D. M. Africa, A. J. A. Abello, Z. G. Gacuya, I. K. A. Naco, and V. A. R. Valdes, "Face recognition using MATLAB," *Int. J. Adv. Trends Comput. Sci. Eng.*, vol. 8, no. 4, pp. 1110–1116, 2019, doi: 10.30534/ijatcse/2019/17842019.
- [16] A. A. Abdulrahman and F. S. Tahir, "Face recognition using enhancement discrete wavelet transform based on MATLAB," *Indones. J. Electr. Eng. Comput. Sci.*, vol. 23, no. 2, pp. 1128– 1136, 2021, doi: 10.11591/ijeecs.v23.i2.pp1128-1136.