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The application of the perfectly matched layer in numerical
modeling of wave propagation in poroelastic media

Y. Q. Zeng, J. Q. He, and Q. H. Liu∗

ABSTRACT

The perfectly matched layer (PML) was first intro-
duced by Berenger as a material absorbing boundary
condition (ABC) for electromagnetic waves. In this pa-
per, a method is developed to extend the perfectly
matched layer to simulating seismic wave propagation in
poroelastic media. This nonphysical material is used at
the computational edge of a finite-difference algorithm
as an ABC to truncate unbounded media. The incorpo-
ration of PML in Biot’s equations is different from other
PML applications in that an additional term involving
convolution between displacement and a loss coefficient
in the PML region is required. Numerical results show
that the PML ABC attenuates the outgoing waves effec-
tively.

INTRODUCTION

Elastic wave propagation in a poroelastic medium is gov-
erned by Biot’s theory (Biot, 1956a, b, 1962a, b). In a homoge-
neous medium, analytical solutions for Biot’s equations can be
obtained easily, but such solutions are in general impossible for
an arbitrary heterogeneous medium. Elastic wave propagation
in complex poroelastic media is of great interest in geophysics
and other branches of applied sciences, such as petroleum engi-
neering, structure mechanics, and seismology. Numerical meth-
ods are usually employed to solve these problems. Examples of
numerical methods include the finite-difference, finite element,
and pseudospectral methods. In this paper, a finite-difference
method will be used.

In numerical simulation of wave propagation in an un-
bounded medium, the imposition of artificial boundaries in-
troduces spurious reflections which will affect the accuracy of
numerical solutions. Although the problem can be overcome
by increasing the size of the model, it is not always feasible
because of the large amount of computer memory required for
long-time solutions. It is thus highly desirable to eliminate these
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reflections by using absorbing boundary conditions (ABCs)
when simulating an unbounded medium. Developing an effec-
tive and stable ABC is always one of the most important tasks
in numerical modeling of wave propagation. Smith (1974) pro-
posed an ABC for finite-difference and finite element meth-
ods. In his method, the Dirichlet and Neumann conditions are
used alternatively, and the solutions from these two conditions
are superimposed. Although easy to implement, this method
greatly increases the computation time. A widely used ABC in
seismic modeling proposed by Clayton and Engquist (1977) is
the one-way wave equation based on the paraxial approxima-
tions of the acoustic or elastic equations. Similar approaches
were proposed by several authors, including Reynolds (1978).
Although effective for small incidence angles, these absorbing
boundary conditions degrade for large angles of incidence. Fur-
thermore, they are known to have instability problem when the
Poisson’s ratio is greater than 2.0 (Mahrer, 1986; Stacey, 1988).
Another approach is to add a spatial filter or damping taper to
the boundaries (Cerjan et al., 1985; Kosloff and Kosloff, 1986).
In this so-called sponge absorber method, the transition zone
from the inner region to the outer boundary should be thick
and smooth. Liao et al. (1984) developed an ABC based on the
principle of plane wave and interpolation. Although effective
even for perpendicular inhomogeneous boundary intersecting
the absorbing boundary, Liao’s ABC requires double precision
for stability.

In 1994, Berenger proposed a highly effective perfectly
matched layer (PML) as an absorbing boundary condition for
electromagnetic waves. It has since been widely used for finite-
difference and finite element methods (e.g., Chew and Weedon,
1994; Liu, 1997). Chew and Liu (1996) first proved that such
a perfectly matched layer also exists for elastic waves in spite
of the coupling of S- and P-waves at an elastic interface. In
the continuous limit, the PML has zero reflection to the regu-
lar elastic medium, although a small reflection can result from
discretization in the PML scheme. Hastings et al. (1996) inde-
pendently implemented the PML ABC for two-dimensional
problems using potentials. The PML ABC has also been ex-
tended to model acoustic waves and electromagnetic waves in
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lossy media (Liu, 1997; Liu and Tao, 1997) as well as electro-
magnetic and elastic waves in cylindrical and spherical coordi-
nates (Liu, 1999; He and Liu, 1999).

These previous ABCs, however, have been developed for
electromagnetic, acoustic, and elastic waves in solids. Little
attention has been paid to elastic waves in porous media. In
this work, we extend the PML to truncate unbounded poroe-
lastic media for numerical solutions using a finite-difference
method. We adopt the method of complex coordinates (Chew
and Weedon, 1994; Liu, 1997; Liu and Tao, 1997) to formu-
late the PML for poroelastic media. Two-dimensional finite-
difference results show the efficiency of the PML ABC.

PROBLEM FORMULATION

Biot’s theory for elastic waves in porous media was estab-
lished on a macroscopic level (Biot, 1956a, b, 1962a, b). The
anelastic effects arise from viscous interactions between the
fluid and the solid matrix. The following assumptions are used
in the theory: (1) seismic wavelength is large in comparison
to the pore size, (2) the deformations are small, (3) the liquid
phase is continuous, such that pores are connected and the dis-
connected pores are part of the matrix, (4) the solid matrix is
elastic, (5) the medium is statistically isotropic, and (6) grav-
ity forces are neglected. At low frequency, wave propagation
in a heterogeneous, porous medium is described by following
equations:

2
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∂

∂xi

(λce − αMξ) =
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In these equations, the parameters describing the physical
properties of the medium are as follows: µ = shear modu-
lus of dry porous matrix, λc = Lame constant of saturated
matrix, φ = porosity, η = viscosity, κ = permeability, ρ = the
overall density of the saturated medium determined by
ρ f φ + (1 − φ)ρs , ρs = density of solid material, ρ f = density of
fluid, a = tortuosity of the matrix, Ks = bulk modulus of the
solid, K f = bulk modulus of the fluid, and Kb = bulk modulus
of the dry porous frame.

In equations (1) and (2), i, j = 1, 2, 3; ui is the ith component
of the displacement vector of the solid material and wi = φ(Ui −
ui ) is the ith component of the displacement vector of the pore
fluid relative to that of the solid, Ui is the displacement vector
of the pore fluid, e = ∇ · u is the dilatation for the solid motion,
ξ = −∇ · w is the dilatation for the relative motion between
the fluid and the solid, and ei j = [(∂u j/∂xi + ∂ui/∂x j )/2], is the
strain tensor in the porous medium. In Cartesian coordinates,
x1, x2 and x3 are equivalent to x, y and z.

In a two-dimensional X Z plane, equations (1) and (2) can
be reorganized as
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We aim to solve these equations numerically for the dis-
placement fields in an unbounded medium. To this end, we
first formulate the PML as the absorbing boundary condition.

Complex coordinates for absorptive media

In order to introduce the PML for seismic waves in absorp-
tive media, equations (1) and (2) will be modified using the
complex stretched coordinates. In the frequency domain, the
complex coordinate-stretching variable is chosen as

x̃ j =
∫ x j

0

ex j
(x j ) dx j , ex j

= ax j
+ i

ωx j

ω
(j = 1, 2, 3),

(7)

where i =
√

−1, ax j
≥ 1 and ωx j

≥ 0.
In the PML formulation, the regular coordinate variable x j is

replaced by the complex coordinate variable x̃ j . The derivative
∂/∂ x̃ j can be expressed in terms of the complex coordinate-
stretching variables

∂

∂ x̃ j

=
1

ex j

∂

∂x j

(j = 1, 2, 3), (8)

where a time dependence of e−iωt is implied. In equation (7),
for a PML region, the real part ax j

is a scaling factor, and the
imaginary part ωx j

represents a loss in the PML. In a regu-
lar non-PML region, ax j

= 1 and ωx j
= 0. Replacing the spatial

derivatives in equations (3)–(6) with those in terms of complex
coordinates, we arrive at the frequency domain wave equations
for porous medium. In particular, equations (1) and (2) become
in complex coordinates
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The zero reflection of the PML has been proved by Chew
and Liu (1996) for elastic media. Their proof was based on the
reflection and transmission coefficients at a planar interface
between the PML medium and a regular medium. It was later
found that this lengthy proof is actually unnecessary (Teixeira
and Chew, 1997; Liu, 1999). This is also true for poroelastic
media. Indeed, the fact that the PML has zero reflection to
the regular poroelastic medium follows the simple observation
that equations (9) and (10) have exactly the same form as the
original equations (1) and (2). Thus, the same solutions ob-
tained for the regular media can be mapped to the PML media
through a simple analytic continuation of the spatial variables
to a complex space. This simple method for the construction of
PML equations is especially useful for non-Cartesian coordi-
nates (Teixeira and Chew, 1997; He and Liu, 1999; Liu, 1999).

Splitting of equations in time domain

Before incorporating the stretching variables, each of equa-
tions (3)–(6) is split into three equations, corresponding to
three displacement variables. For example, for the horizontal
displacement u1 of solid, we have
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Here g represents a function of space. We then transform all
equations to the frequency domain with complex coordinates.

Applying these schemes to equations (3)–(6), we obtain a
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where e′
x1

= i(dωx1
/dx1)/ω. Then we transform all these

12 equations back to the time domain. For example, in the
time domain, equation (11) becomes
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where R is the inverse transformation of the right side of equa-
tion (11) times e2

x1
. The multiplication of e′

x1
/ex1

and µ(∂u1/∂x1)
in the frequency domain leads to the convolution of these two
terms in time domain. Since e′

x1
/ex1

is an exponential function
in the time domain, this convolution can be obtained efficiently
as follows. Let f (t) represent the inverse Fourier transform of
(e′

x1
/ex1

) µ(∂u1/∂x1). It can be computed via

f (t) = e
−ωx1

(x1)△t

[

f (t − △t) + µω′
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(x1)

∫ t

t−△t

e
−ωx1

(x)(t−τ ) ∂u1(τ )

∂x1
dτ

]

.

This requires the storage of u1 at (n − 1)th and nth time steps
only. Similar equations can be obtained for ub

1, uc
1, and other

field components.
It is worthwhile to note that these splittings are only neces-

sary inside the PML region. The number of cells in the PML
region is about 2m(Nx + Nz), where m is the thickness of the
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PML region, and Nx and Nz are the total number of nodes in
the x and z directions, respectively. For a large-scale problem,
the ratio between this number and the total number of nodes
2m(Nx + Nz)/Nx Nz is negligible.

Finite-difference implementation

In the last section, we obtained 12 time-domain equations
for 12 split field variables ua

1 , ub
1, uc

1, ua
2 , ub

2, uc
2, wa

1 , wb
1 , wc

1,
wa

2 , wb
2 , and wc

2, which already incorporate the PML boundary
condition.In numerical implementation, the time and space are
discretized by time step △t and node spacing △x and △z. The
unbounded medium is truncated into a finite computational
domain with a total of Nx × Nz grid nodes. Then, the central
finite-difference method is applied to each equation to obtain
the updated displacement at next time step. In this FD scheme,
both spatial and temporal derivatives are obtained by central
differencing. Thus, it is an explicit scheme with second-order
accuracy both in spatial and temporal domains.

With the PML boundary condition, the computational do-
main is partitioned into a regular interior region and the bound-
ary PML region. Unfortunately, the stability condition of the
finite-difference method for the PML material does not seem to
have a closed-form solution. However, numerical experiments
suggest that the stability condition is the same as the regular
medium when the damping coefficient b = η/κ is negligible.

The absorption of outgoing wave is achieved by the PML
region, which consists of several cells of PML materials with a
quadratically or linearly tapered profile to increase the attenu-
ation toward the outer boundary. In this paper, 20 cells of PML
with a quadratic profile for ωx j

are used. So the ωx and ωz have
the following forms

ωxi
=

{

2πa0 f0(ℓxi
/L P M L)2, inside PML,

0, outside PML,

where f0 is the dominant frequency of the source described
in the next section, LPML is the thickness of the PML cells,
and ℓxi

is the distance from the interface between the interior
region and PML region. After testing several values for a0,
we found 1.79 has the best absorption of outgoing waves. The
outer boundary conditions for the PML are those for a hard
boundary (or alternatively, a soft boundary).

Discussions

The above formulation for the perfectly matched layer is
based on the complex coordinates and is a natural extension of
our earlier work on PML for acoustic and elastic waves (Chew
and Liu, 1996; Liu and Tao, 1997, Liu, 1998, 1999). The nov-
elty of the PML formulation using the complex coordinates is
that the governing equations and the solution forms remain
identical to those in the regular coordinates. Therefore, in the
continuum, the boundary between a PML material and a reg-
ular material is reflection free. (The small reflections in the
numerical results are solely due to the discretization and the
truncation.)

The fact that the PML is reflection free is fundamen-
tally different from the classical sponge absorbing-boundary
method (e.g., Kosloff and Kosloff, 1986). Although the sponge
absorbing-boundary method has been used widely and success-
fully in many applications, the boundary between a regular ma-
terial and a sponge absorber is not reflection free even in the

continuum limit. Indeed, consider a simple 1-D acoustic case
with a constant density ρ and constant acoustic velocity c. At
the boundary between such a medium and a sponge absorber
half-space with the same density and acoustic velocity, and a
constant absorbing parameter γ defined by Kosloff and Kosloff
(1986), it is straightforward to derive the reflection coefficient

R =
1 −

√

1 + i
2γ

ω
−

γ 2

ω2

1 +

√

1 + i
2γ

ω
−

γ 2

ω2

,

which is nonzero for any nonzero real values of γ . This re-
flection coefficient decreases as γ decreases, which is the ba-
sis for the tapered sponge absorber in most applications. It
is worthwhile to note that this particular formulation of the
sponge method can be improved for the 1-D case. Indeed, as
the perfectly matched condition for the 1-D case requires only
the match in impedance, it is quite straightforward to design a
sponge layer so that there is no reflection for the 1-D case. This
improved sponge method formulation uses partial differential
equations:

∂p

∂t
+ γ p = −ρc2 ∂v

∂x
,

∂v

∂t
+ γ v = −ρ−1 ∂p

∂x
,

where p is the pressure field, and v is the particle velocity field.
An example of velocity-stress formulation for poroviscoelas-
tic media is given in Carcione (1998). It is straightforward to
show that the reflection coefficient of this sponge layer is zero
because of the match in impedance between regular medium
and the sponge. However, such reflection-free sponge method
formulations are not possible in the multidimensional case, as
is well known in seismic modeling. This the major difference
between the sponge method and the PML method can also be
explained by the difference in the partial differential equations
they solve. In particular in the frequency domain, for the spe-
cial 2-D acoustic case, the sponge method solves (Kosloff and
Kosloff, 1986)

ρc2

[

∂

∂x

1

ρ

∂p

∂x
+

∂

∂y

1

ρ

∂p

∂y

]

= (−ω2 + γ 2 − i2ωγ )p,

whereas the PML method solves

ρc2

[

1

ex

∂

∂x

1

ρex

∂p

∂x
+

1

ey

∂

∂y

1

ρey

∂p

∂y

]

= −ω2 p,

where ex and ey are given by equation (7). Obviously, the
anisotropic nature of the attenuation factors (i.e., different ωx

and ωy) is present in the PML method, but not in the sponge
method. For the sponge method, the reader is also refered to
Carcione et al. (1988).

We argue that the zero reflection coefficient of the PML in-
terface allows a larger attenuation factor in the PML absorber,
and thus a more effective absorbing boundary than the clas-
sical sponge absorber. Along with this advantage comes the
additional cost in terms of the computer memory requirement
in the PML formulation. Specifically, within this PML formu-
lation there are 12 split field variables instead of the original
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four field variables. Fortunately, this increase in the memory is
necessary only within the PML cells surrounding the interested
domain and is quite negligible for large-scale problems.

NUMERICAL EXAMPLES

We have implemented the finite-difference algorithm with
the perfectly matched layers as an absorbing boundary con-
dition for Biot’s equations in two-dimensional porous media.
Unlike the continuous case, a small reflection will occur at the
PML interface due to the discretization and truncation. This
reflection is proportional to the contrast in the coordinate-
stretching variables. Therefore, to minimize the reflection from
the PML region, we use a quadratic profile with 20 cells of per-
fectly matched layers at the computational edge.

In the following examples, a line, pure compressional source
is used to excite the seismic wave field. The source time function
is the first derivative of the Gaussian function:

S(t) = (t − t0)e−[π f0(t−t0)]2 ,

where f0 is the dominant frequency, and t0 is the central time
of the wavelet.

A bulk source is used in this paper. The source energy is
partitioned linearly between the solid and the fluid phases:

W f = φ,

Ws = (1 − φ),

where W f is the weighting factor for the fluid motion, and Ws

is for the solid motion.

A homogeneous model

A homogeneous model is used to test the effectiveness of
the PML ABC. The material properties of the model are listed
in Table 1. The size of the model is Nx × Nz = 200 × 200 nodes
with 20 cells of PML on each side of the computational domain.

Table 1. Material and Biot’s parameters for a homogeneous
porous medium (from Özdenvar and McMechan, 1997).

Solid
Bulk modulus Ks (Pa) 3.5 × 1010

Density ρs (kg/m3) 2650.0
Matrix

Bulk modulus Kb (Pa) 4.17 × 109

Shear modulus µ (Pa) 1.855 × 109

Density (with fluid) ρ (kg/m3) 2167.0
Porosity φ 0.3
Permeability κ (m2) 1.0 × 10−12

Tortuosity a 2.0
Fluid

Bulk modulus K f (Pa) 2.4 × 109

Density ρ f (kg/m3) 1040.0
Viscosity η (Pa s) 1.0 × 10−3

Biot’s parameters
P (N/m2) 9.02 × 109

Q (N/m2) 1.23 × 109

R (N/m2) 6.35 × 108

Seismic characteristics
Velocity of fast P-wave (m/s) 2365
Velocity of slow P-wave (m/s) 775
Velocity of S-wave (m/s) 960

The spatial and temporal steps are △x = △z = 1.5 m and △t =
0.0001 s. A line monopole source with a dominant frequency
of 40 Hz is located at the center of the model. To inspect the
reflection from the PML interface, we put one array of receivers
along a vertical line running through the source.

The waveforms of vertical displacement in solid at nine lo-
cations are shown in Figure 1. In this figure, a reference result
without reflection is also shown. This reference result is ob-
tained from a much larger model with Dirichlet boundary in
which reflections have not arrived within the time window of
interest. Note that the results are normalized with respect to the
peak value of the field at the first receiver. Because the fluid is
viscous, the slow P-wave is rapidly attenuated as it propagates.
We observe no obvious reflections in these waveforms.

Figure 2 shows snapshots of the vertical components of the
displacement of the solid at 0.04, 0.06, 0.1, and 0.13 s when the
damping coefficient b has the realistic value of 108N s/m4. In
this case the slow wave is diffusive and appears as a static mode
at the source location (Zhang, 1999).

From the above results, it is seen that the PML method pro-
vides an effective attenuation to outgoing waves. Numerical
experiments also demonstrate that this method is stable as long
as △t ≤ min(△x, △z)/

√
2Vmax when the damping coefficient b

is small. It is also noted that in this example the ratio of V f /Vs

is 2.46, which is much greater than 2 allowed in other con-
ventional absorbing boundary conditions. We calculated the
wave field with Clayton-Engquist (CE) absorbing boundary
condition on the same model, and found the method becomes
unstable after about 2000 time steps.

A two-layer model

In order to demonstrate the behavior of this algorithm for
inhomogeneous media, we test the PML absorbing boundary
condition on a two-layer model. In contrast to the homoge-
neous model, multiwave phases (such as reflected, transmit-
ted, and converted phases) will be present. Some of them are
relatively weak compared to the direct wave phases and are
very vulnerable to the artificial reflections from the boundaries.
Thus, whether these weak wave arrivals can be distinguished

FIG. 1. Waveforms of vertical component of the solid displace-
ment at nine vertical locations. Solid line: results from the
model with PML. Dots: results with reflection.
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determines the effectiveness of the absorbing boundary condi-
tion. In this example, we compare the numerical results using
PML ABC with those of CE ABC. The geometry of the model
is shown in Figure 3. A line monopole source is located at the
center of the model which is in the upper layer. The model
parameters are shown in Table 2.

The snapshot in Figure 4a at t = 0.055 s shows that the solid
and fluid particle displacements are in phase for fast P-wave
and out of phase for slow P-wave, and the fast P-wave begins
to hit the interface. At t = 0.085 s (Figure 4b), transmitted and

Table 2. Material parameters for a two-layer model of porous
media.

Material properties Layer 1 Layer 2

Solid
Bulk modulus Ks (Pa) 3.9 × 1010 5.2 × 109

Shear modulus µ (Pa) 5.25 × 109 2.4 × 109

Density ρs (kg/m3) 2588.0 2250.0
Matrix

Bulk modulus Kb (Pa) 4.12 × 109 2.2 × 109

Density (with fluid) ρ (kg/m3) 2167.0 2167.0
Porosity φ 0.25 0.1
Tortuosity a 2.49 2.42

Fluid
Bulk modulus K f (Pa) 2.21 × 109 2.25 × 109

Density ρ f (kg/m3) 952.4 1040.0
η/κ

Damping coefficient b (N s/m4) 3.38 × 105 3.33 × 106

FIG. 2. Snapshots of the vertical components of the solid displacement at 0.04 s (a), 0.06 s (b), 0.1 s (c), and 0.13 s (d). The model
parameters are shown in Table 1 except b = 108N s/m. A line monopole source is used.

reflected wave phases are produced from the fast P-wave. At
t = 0.12 s (Figure 4c), the slow P-wave reaches the interface
and produces reflected and transmitted wave phases. Figure 4d
shows the wave field at t = 0.18 s. In this figure, a very small
reflection occurs from the edge.

FIG. 3. Configuration of the two-layer model. R: receiver,
S: source.
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In Figures 5 and 6, we present the synthetic seismograms for
this model. The receivers are located along the line running
through the source and parallel to the interface. The results
from the algorithm with PML ABC are shown in Figure 5, those
with CE ABC are shown in Figure 6. In order to compare the
PML ABC with CE ABC, two snapshots from the method with
CE ABC and two from the method with PML ABC are shown
together in Figure 7. Clearly, the PML ABC has a far better
performance.

CONCLUSIONS

A finite-difference method combined with the perfectly
matched layer (PML) absorbing boundary condition is devel-
oped for modeling seismic wave propagation in poroelastic me-
dia. Within the boundary region of the computational domain,
perfectly matched layers are used to attenuate outgoing seismic
waves. The numerical results show that the outgoing waves are
effectively absorbed and the reflection is very small. In contrast
to some other existing absorbing boundary conditions, this new
absorbing boundary condition is stable even when the ratio of
the P-wave velocity to S-wave velocity is much greater than
2. Furthermore, since the PML boundary condition is directly
incorporated into the wave equations, it can be used in the
pseudospectral method.

FIG. 4. Snapshots of the vertical component of the solid displacement at four different times 0.055 s (a), 0.085 s (b), 0.12 s (c), and
0.18 s (d) from the finite-difference solutions with PML. The model parameters are shown in Table 2. A monopole line source is
used.
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Özdenvar, T., and McMechan, G. A., 1997, Algorithm for staggered-
grid computations for poroelastic, elastic, acoustic, and scalar wave
equations: Geophys. Prosp., 45, 403–420.

Reynolds, A. C., 1978, Boundary conditions for the numerical solution
of wave propagation problems: Geophysics, 43, 1099–1110.

Smith, W. D., 1974, A nonreflecting plane boundary for wave propa-
gation problems: J. Comp. Phys., 15, 492–503.

Stacey, R., 1988, Improved transparent boundary formulations for the
elastic-wave equation: Bull. Seism. Soc. Am., 78, 2089–2097.

Teixeira, F. L., and Chew, W. C., 1997, PML-FDTD in cylindrical and
spherical coordinates: IEEE Microwave Guided Wave Lett., 7, 285–
287.

Zhang, J., 1999, Quadrangle-grid velocity-stress finite-difference
method for poroelastic wave equations: Geophys. J. Internat., 139,
171–182.


