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Summary. In this article, we show how to applythe Poincarr-transform to the 
general Lotka-Volterra model and investigate the question of the global 
asymptotic stability of the locally stable equilibrium point. An attempt is made 
to estimate the domain of attraction when the critical point is not globally 
stable. Results for the two dimensional case, due to Goh [3], are improved. 

1. Introduction 

It is a well known fact that the local stability of an equilibrium point in a system of 
ordinary differential equations doesnot necessarily imply its global stability. How- 
ever, the usual methods used in the analysis of stability of equilibrium points in 
population models establishes only local stability. The restriction to sufficiently 
small perturbations of the initial conditions frequently rules out all perturbations 
of interest to the ecologist. The Lotka-Volterra model of n-species interaction is 
such an example. A Lotka-Volterra model can have a locally stable equilibrium 
without being globally stable; in fact, may not even be Lagrange-stable, i.e. there 
may exist an unbounded trajectory. 

In this paper, we first apply the Poincarr-transform for the path at infinity to the 
general Lotka-Volterra model to investigate the possibility of global stability of a 
locally stable equilibrium. The complement of the domain of attraction of a stable, 
but not globally stable, equilibrium is estimated. The application of the Poincarr- 
transform to the Lotka-Volterra model and a criterion of Gob [2, 3] give good 
results in resolving the question of global stability of a two-species interaction. 
For a discussion of the Poincarr-transform, we refer to [1]. In the last section we 
discuss this result in terms of the needs of the biologist for whom local stability 
and a large domain of attraction may be effectively global stability. 

2. The Poinearr-Transform 

Consider the Lotka-Volterra model 

N, = N,[b, + ~ auNj], i= l . . . . .  n, 
1=1 

(1) 
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for  an n-species system in which the species may be competitors,  predators  and 
prey, or otherwise related. 

F o r  each i, 1 ~< i ~< n, we introduce new variables 

uj = j = 1, . . . .  n, (2) 

:=i 

o r  

1 and N ~ =  ~ j ~ i  (2') ~v, = -~ u,' 

Under  the Poincar6-transform (2) or (2'), Eq. (1) becomes 

~, = ( - a , )  + ~ (--a,k)Uk + ( - b , ) u ,  + (--a,k)u~, 
k=l k=i+l 

ftj = u2 (aj, - a , )  + (ajk - a,~)uk + (bj - bt)u~ + (aj~ - a~)uk . 
l / t  ~ / r  

(3) 

Let  c + = max (c, 0) for  any real number c and 

~,  = {(N~ . . . . .  N . ) :  N~ . . . .  , N .  > 0, 

k ~ ( - - a , k ) §  + ( - b t )  + < a .Nt  and 

k~. (ajk -- at~)+Nk + (bj - bt) + < (a .  - ajt)Nt for  e a c h j  # i} 

Theorem 1. l f  a ,  > O fo r  some i, 1 <<. i <~ n and f o r  such i. ajt - a ,  < O f o r  a l l j  ~ i, 
then the solutions (Nk(t))~= 1 o f  (1) with initial values (N~o)~= x in f2~ satisfy 
l i m t . ~  N~(t) = oo. 

Proof .  From (2), (3) and the assumptions, the initial values (uk0)~x o f  (3) satisfy 

( - ar t )  + ~ .  ( - a t 0 + U ~ o  + ( -b , )§  < 0 
t # k  

and 

(a,, - a ,)  + ~.. (aj~ - at~)+Uko + (b, - b,)+Uto < O. 
t # k  

Since uk > 0 for  k = l . . . . .  n, then the solution ut(t) of  (3) decreases to zero or 
Nt( t )  approaches infinity as t ---> oo. 

F r o m  this theorem, we note that if  there is a species i which is not  self-regulating 
and for  each interaction coefficient aj~,j ~ i, ajt is less than art, then it is impossible 
to achieve global stability for any equilibrium in the first octant. 
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Let f2 = I,.J~'= 1 f21. Every trajectory originating from f2 tends to infinity. The region 
f2 is contained in the complement of the domain of attraction of any locally stable 
equilibrium in the first octant. 

3. LaSalle's Extension Theorem 

We note the following definition and the theorem of LaSalle [5, 6], which will be 
used in Section IV. Let (I):x '  = f ( x )  be a system of differential equations. The 
vector-valued function f ( x )  is continuous in x for x e G where G is an open set in 
R ~. Let V be a C x function on R ~ to R. 

Definition. We say V is a Lyapunov function in G for (/) if I;" = grad V . f  <<, 0 on G. 
Let E = {x e t~: I;'(x) = 0}. 

Theorem. I f  V is a Lyapunov function in G fo r  (I), then each bounded solution x( t )  c_ G 
o f  (I), approaches M where M is the largest invariant set in E. 

4. Two-Species Interaction 

In this section we shall apply the Poincar~-transform to improve the results of Goh 
in [3]. 

Consider the two species-interaction Lotka-Volterra model 

291 = Nx(bx + axlN1 + ax2N2) (4) 

292 = N~(b2 + a21N~ + a22N~) 

Gob gave sufficient conditions for the global stability of an equilibrium, which are" 

i) the equilibrium (2Vx,/V2) is feasible, i.e. N1 > 0,/V2 > 0, 
ii) the equilibrium is asymptotically stable, and, 

iii) both species sustain density-dependent mortalities due to the intra-specific 
interactions. 

Conditions (i) and (ii) hold if 

A = allaz~ -- ax2a2x > 0, (5) 

IV a = b2ax2 - blab2 > 0, (6) 
A 

IV2 bla21 - b2a11 > O, 
= A 

ai12Vx + a22/V2 < 0, (7) 

while the condition (iii) means that 

al~ < 0, a22 < 0. (8) 

In fact, under (5), (6), (7), applying the arguments in [3] and LaSalle's extension 
theorem, the condition (8) can be weakened to 

all -<< 0, a22 ~< 0 with at least one being non-zero. (8') 
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The interesting case remaining then is when a~xa22 < 0. For  convenience in this 
section, we assume 

a n  < 0, a22 > 0. (9) 

The argument  for  the case a~l > 0, a22 < 0 is symmetrical. 

Applying the Poincar6-transform N1 = v/z, N2 = 1/z or z = 1/N2, v = N1/N2 to 
(4) yields 

b = v [(all - a20v + (bl - b2)z + (a12 - a22)], (10) 
Z 

= [(-a~l)v + ( - b ~ ) z  + ( - a ~ ) ] ,  

while applying the Poincar6-transform N1 = 1/w, N2 = u]w or w = l/N1, u = 
N2/N1 yields 

a = u [(a22 - a12)u + (b2 - b o w  + (a2x - axx)], (11) 
W 

= [ ( - a l ~ ) u  + ( - b x ) w  + ( - a l a ) ] .  

Theorem 2. Let  (271, ~2) be the feasible, asymptotically stable equilibrium o f  system 
(4), i.e. let (5), (6), (7) hold. Assume also that (9) holds 

i) I f  a12 < a22 then there exists an unbounded trajectory, 
ii) I f  

ax2 = a22 or (12) 

a12 > a22 and bx >1 O, or (13) 

ax2 > a22, bx < 0 and b2 = 0 or (14) 

al2 > a22, bl < O, b2 > 0 and a2x >t axl (15) 

then (iV~, -~2) is globally stable. 

Proof. Since a22 > 0 and a12 - a29. < 0. F r o m  (I0) and the arguments in Theorem 
1, (i) follows. 

Let  ;~ = l/IV2, • = -N:/-N2 and ~ = ll2Vx, ~ = 2V~I2VI. 

We may rewrite (lO) and (11) as follows: 

1 
= - v [ ( a ~  - a ~ O ( v  - o )  + (b~  - b ~ ) ( z  - ~)1, 

Z 

= 1_ z [ ( - a ~ O ( v  - ~) + ( - b ~ ) ( z  - e)] 
Z 

and 

1 
ft = --u[(a22 -- a12)(u -- fi) + (62 -- bl)(w - w)], 

W 

1 
= - w [ ( - a ~ ) ( u  - ~ )  + ( - b O ( w  - ~)]. 

W 

0 0 3  

(11') 
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We take as a Lyapunov function V for (11), 

for some c~ > 0, i = 1, 2. It follows that 

- - U ' T  T I f f - - u  

where 

L --a12 - b l  J 

71 

If (12) holds, then from (5) and (7) we have 0 > all > a21, a z 2 b l ( a 2 1  - all) < 0, 
and hence bl > 0. 

Following the arguments in [3] and using LaSalle;s extension theorem, (if, ~) is 
globally stable with respect to the system (11) provided either (12) or (13) holds. 

Consider the Lyapunov function V for (10) 

for some c* > 0, i = 1, 2. It follows that 

1 - - ~ T  --  " 

where 

0] fO l-a.. 
C =  c* and A 2 =  t --a21 -b2 J 

If  (14) holds, then from (7) we have a2x > a11. Using the same arguments as above 
yields the global stability of (~, ,~) with respect to (10) provided either (14) or (15) 
holds. 

Hence (N1, -N2) is globally stable provided either of (12), (13), (14), (15) holds. 

Remark. We note that bl < 0 and bz < 0 implies that (0, 0) is asymptotically stable. 

5. D i s c u s s i o n  

Theorem 1 and part (i) of Theorem 2 give sufficient conditions for the existence of 
an unbounded trajectory of (1) and (4) respectively. If the domain of attraction of 
the locally stable equilibrium is large, then for any practical situation the system is 
still 'globally stable' in the biological sense. It is difficult to estimate the domain of 
attraction since the Lyapunov's function we used yielded either global stability of 
nothing. However, Theorem ! does provide us an estimation of the complement 
of the domain of attraction. Consider the following numerical example in [3]: 

371 = N1(5 - 2N1 - 3N2), (16) 

N2 = N2( -2  + N1 + N2). 
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This system has a unique locally stable equilibrium (1, 1) in the first quadrant. 
Since a~2 = - 3  and am = 1, by part (i) of Theorem 2 there exists an unbounded 
trajectory. Applying Theorem I to (16) yields that f / =  {(N1, N2):N2 > 2). Since 
f / i s  a large region and is contained in the complement of the domain of attraction 
of the equilibrium (1, 1), we cannot treat (16) to be a 'globally stable' system. 

From (5) and (9), each of (12), (13), (14) and (15) implies a21 > 0 and am > 0. 
Part (ii) of Theorem 2 can be stated as follows: The species 1, which is a self- 
regulating predator, can provide robust regulation of species 2, which is a non-self- 
regulating prey. In condition (13), b~ = 0 is irrelevant in ecological contexts and 
b~ > 0 would mean that the predator has a positive intraspecific growth coefficient. 
Since b2 = 0 implies no intrinsic growth for the prey, t~he condition (14) seems 
artificial and is considered only for the sake of mathematical completeness. Un- 
fortunately, we still cannot solve the case azl < a~ < 0, a~2 > a22 > 0, bt < 0 
and b2 > 0. We note that from [1] p. 213, (4) has no limit cycle. To establish the 
global stability of the equilibrium is equivalent to show boundedness of the 
solutions. 

In [4], Hasting considered the system 

1~1 = Nlf(N1, N2), 

l~u = Nug(N,, N2) 

where the non-linear growth r a t e f and  g satisfy ~f/~N1 < 0 and Og/ON2 < 0 in the 
first quadrant, i.e. both species Sustain density dependent mortalities at all densities. 
His approach which is different from ours also improves the results in [3]. 

For the case n/> 3, see for example [7] and [8], the qualitative behavior of solutions 
of (1) is very complicated. Theorem l gives sufficient conditions for the existence of 
an unbounded trajectory. Consider the following example in [3], 

Nx = NI[10 - 5N, - 3N2 - 2Na], 

N2 = N219 - 4N1 - 4N2 - No], (17) 

~ 3  = N312.9 - N1 - 2N2  + 0 .1N~] .  

The equilibrium (1, 1, I) is locally stable, but the computing result shows the 
trajectory from the initial value (1.0, 1.0, 1.5) tends to (0, oo, oo). Applying Theorem 
1 with a33 = 0.1, a2a = - 1 ,  a~a = - 2  yields that (1, 1, 1) is not globally stable. 
Under our estimation, 

f / =  {(N~, N2, Na):Na > 5.5454, Nx > 0,N2 > 0 and N~ + 2N2 ~< 0.1Na}, 

which is contained in the complement of the domain of attraction of the equilibrium 
(1, 1, 1), is fairly large. We may say that the system (17) is not 'globally stable' in 
the biological sense. 

It is noted that for n /> 3 we may apply the same technique used in part (ii) of 
Theorem 2 to obtain results concerning the global stability of the unique locally 
stable equilibrium in the feasible region. 
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