
The Application of Two-level Attention Models in Deep Convolutional Neural

Network for Fine-grained Image Classification

Tianjun Xiao1 Yichong Xu2 Kuiyuan Yang2 Jiaxing Zhang2 Yuxin Peng1∗ Zheng Zhang3

1Institute of Computer Science and Technology, Peking University
2Microsoft Research, Beijing

3New York University Shanghai

xiaotianjun@pku.edu.cn, xycking@163.com, kuyang@microsoft.com

jiaxz@microsoft.com, pengyuxin@pku.edu.cn, zz@nyu.edu

Abstract

Fine-grained classification is challenging because cate-

gories can only be discriminated by subtle and local dif-

ferences. Variances in the pose, scale or rotation usually

make the problem more difficult. Most fine-grained clas-

sification systems follow the pipeline of finding foreground

object or object parts (where) to extract discriminative fea-

tures (what).

In this paper, we propose to apply visual attention to fine-

grained classification task using deep neural network. Our

pipeline integrates three types of attention: the bottom-up

attention that propose candidate patches, the object-level

top-down attention that selects relevant patches to a certain

object, and the part-level top-down attention that localizes

discriminative parts. We combine these attentions to train

domain-specific deep nets, then use it to improve both the

what and where aspects. Importantly, we avoid using ex-

pensive annotations like bounding box or part information

from end-to-end. The weak supervision constraint makes

our work easier to generalize.

We have verified the effectiveness of the method on

the subsets of ILSVRC2012 dataset and CUB200 2011

dataset. Our pipeline delivered significant improvements

and achieved the best accuracy under the weakest super-

vision condition. The performance is competitive against

other methods that rely on additional annotations.

1. Introduction

Fine-grained classification is to recognize subordinate-

level categories under some basic-level category, e.g., clas-

sifying different bird types [22], dog breeds [11], flower

species [15], aircraft models [14] etc. This is an impor-
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Figure 1. Illustration of the difficulty of fine-grained classification

: large intra-class variance and small inter-class variance.

tant problem with wide applications. Even in the ILSVR-

C2012 1K categories, there are 118 and 59 categories un-

der the dog and bird class, respectively. Counter intuitively,

intra-class variance can be larger than inter-class, as shown

in Figure 1. Consequently, fine-grained classification are

technically challenging.

Specifically, the difficulty of fine-grained classification

comes from the fact that discriminative features are local-



ized not just on foreground object, but more importantly on

object parts [5] (e.g. the head of a bird). Therefore, most

fine-grained classification systems follow the pipeline: find-

ing foreground object or object parts (where) to extract dis-

criminative features (what).

For this to work, a bottom-up process is necessary to

propose image regions (or patches) that have high object-

ness, meaning they contain parts of certain objects. Selec-

tive search [19] is an unsupervised process that can propose

such regions at the order of thousands. This starting point is

used extensively in recent studies [10, 26], which we adopt

as well.

The bottom-up process has high recall but very low pre-

cision. If the object is relatively small, most patches are

background and do not help classifying the object at all.

This poses problems to the where part of the pipeline, lead-

ing to the need of top-down attention models to filter out

noisy patches and select the relevant ones. In the context

of fine-grained classification, finding foreground object and

object parts can be regarded as a two-level attention pro-

cesses, one at object-level and another at part-level.

Most existing methods rely on strong supervision to deal

with the attention problem. They heavily rely on human

labels, using bounding box for object-level and part land-

marks for part-level. The strongest supervision settings

leverage both in training as well as testing phase, whereas

the weakest setting uses neither. Most works are in between

(see Section 4 for an in-depth treatment).

Since labeling is expensive and non-scalable, the focus

of this study is to use the weakest possible supervision. Rec-

ognizing the granularity differences, we employ two sepa-

rate pipelines to implement object-level and part-level atten-

tion, but pragmatically leverage shared components. Here

is a high level summary of our approach:

• We turn a Convolutional Neural Net (CNN) pre-trained

on ILSVRC2012 1K category into a FilterNet. Filter-

Net selects patches relevant to the basic-level category,

thus processes the object-level attention. The selected

patches drive the training of another CNN into a do-

main classifier, called DomainNet.

• Empirically, we observe clustering pattern in the in-

ternal hidden representations inside the DomainNet.

Groups of neurons exhibit high sensitivity to discrimi-

nating parts. Thus, we choose the corresponding filters

as part-detector to implement part-level attention.

In both steps, we require only image-level labeling.

The next key step is to extract discriminative features

from the regions/patches selected by these two attention-

s. Recently, there have been convincing evidence that fea-

tures derived by CNN can deliver superior performance

over hand-crafted ones [25, 16, 7, 26]. Following the t-

wo attention pipelines outlined above, we adopt the same

general strategies. At the object-level, the DomainNet di-

rectly output multi-view predictions driven by several rele-

vant patches of an image. At the part-level, activations in

the CNN hidden layers driven by detected parts yield an-

other prediction through a part-based classifier. The final

classification merges results from both pipelines to utilize

the advantage of the two level attentions.

Our preliminary results demonstrate the effectiveness of

this design. With the weakest supervision, we improve

the fine-grained classification in the dog and bird class of

the ILSVRC2012 dataset from error rates of 40.1% and

21.1% to 28.1% and 11.0%, respectively. On the CUB200-

2011 [21] dataset, we reach accuracy of 69.7%, competitive

to other methods that use stronger supervisions. Our tech-

nique improves naturally with better networks, for example

the accuracy reaches nearly to 78% using VGGNet [18].

The rest of the paper is organized as follows. We first de-

scribe the pipeline utilizing object-level and part-level atten-

tions for fine-grained classification in Section 2. Detailed

performance study and analysis are covered in Section 3.

Related works are covered in Section 4. Finally, We discuss

what we learned, future work and conclusion in Section 5.

2. Methods

Our design is based on a very simple intuition: perform-

ing fine-grained classification requires first to “see” the ob-

ject and then the most discriminative parts of it. Finding a

Chihuahua in an image entails the process of first seeing a

dog, and then focusing on its important features that tell it

apart from other breeds of dog.

For this to work our classifier should not work on the raw

image but rather its constitute patches. Such patches should

also retain the most objectness that are relevant to the recog-

nition steps. In the example above, the objectness of the first

step is at the level of dog class, and that of the second step

is at the parts that would differentiate Chihuahua from other

breeds (e.g. ear, head, tail). Crucially, recognizing the fact

that detailed labeling are expensive to get and difficult to s-

cale, we opt to use the weakest possible labels. Specifically,

our pipeline uses only the image-level labels.

The raw candidate patches are generated in a bottom-up

process, grouping pixels into regions that highlight the like-

lihood of parts of some objects. In this process, we adopt

the same approaches as [26] and uses selective search [19]

to extract patches (or regions) from input images. This step

will provide multi-scale and multi-view of the original im-

age. However, the bottom-up method will provide patches

of high recall but low precision. Top-down attention need

to be applied to select the relative patches useful for classi-

fication.
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Figure 2. Object-level top-down attention. An object-level FilterNet is introduced to decide whether to proceed a patch proposed by the

bottom-up method to the next steps. The FilterNet only cares whether a patch is related to the basic level category, and targets filtering out

background patches.

2.1. ObjectLevel Attention Model

Patch selection using object-level attention This step

filters the bottom-up raw patches via a top-down, object-

level attention. The goal is to remove noisy patches that are

not relevant to the object, which is important to train clas-

sifier [13]. We do this by converting a CNN trained on the

1K-class ILSVR2012 dataset into an object-level FilterNet.

We summarize the activations of all the softmax neuron-

s belonging to the parent class of a fine-grained category

(e.g. for Chihuahua the parent class is the dog) as the selec-

tion confidence score, and then set a threshold on the score

to decide whether a given patch should be selected. This

is shown in Figure 2. Through this way, the advantage of

multi-scale and multi-view has been retained and also the

noise has been filtered out.

Training a DomainNet The patches selected by the Fil-

terNet are used to train a new CNN from scratch after proper

warping. We call this second CNN the DomainNet because

it extracts features relevant to the categories belonging to a

specific domain (e.g., dog, cat, bird).

We note that from a single image many such patches are

made available, and the net effect is a boost of data aug-

mentation. Unlike other data augmentation such as random

cropping, we have a higher confidence that the patches are

relevant. The amount of data also drives training of a big-

ger network, allowing it to build more features. This has

two benefits. First, the DomainNet is a good fine-grained

classifier itself. Second, its internal features now allow us

to build part detectors, as we will explain next.

Classification using object-level attention The patch se-

lection using object-level attention can be naturally applied

to the testing phase. To get the predicted label of an im-

age, we provide the DomainNet with the patches selected

by the FilterNet to feed forward. Then compute the average

classification distribution of the softmax output for all the

patches. Finally we can get the prediction on the averaged

softmax distribution.

The method contains a hyper-parameter confidence

threshold, it will affect the quality and quantity of select-

ed patches. In the experiment, we set it to be 0.9 for this

value provides best validation accuracy and tolerable train-

ing time.

2.2. PartLevel Attention Model

Building the part detector The work of DPD [27] and

Part-RCNN [26] strongly suggest that certain discrimina-

tive local features (e.g. head and body) are critical to fine-

grained classification. Instead of using the strong labels

on parts and key points, as is done in many related work-

s [27, 26, 4], we are inspired by the fact that hidden layers

of the DomainNet have shown clustering patterns. For ex-

ample, there are groups of neurons respond to bird head, and

others to bird body, despite the fact they may correspond to

different poses. In hindsight, this is not at all surprising,

given that these features indeed “stand out” and “speak for”

a category.

Figure 3 shows conceptually what this step performs.

Essentially, we perform spectral clustering on the similar-

ity matrix S to partition the filters in a middle layer into k

groups, where S(i, j) denotes the cosine similarity of the

weights of two mid-layer filters Fi and Fj in the Domain-

Net. In our experiments, our network is essentially the same

as the AlexNet [12], and we pick neurons from the 4th con-

volution layer with k set to 3. Each cluster acts as a part

detector.

When using the clustered filters to detect parts from re-

gion proposals, the steps are: 1) Warping patch proposal to

the receptive field size on input image of conv4 filter. 2)

Feed-forwarding the patch to conv4 to produce an activa-

tion score for each filter. 3) Summing up the scores of the

filters in one cluster to get cluster score. 4) Choosing the

patch with the highest cluster score for each cluster as a

part patch.
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Figure 3. Part-level top-down Attention: The filters in the DomainNet shows special interests on specific object parts and clustering pattern

can be found among filters according to their interested parts. We use spectral clustering to find the groups, then use the filters in a group

to serve as part detector. In this figure, mid-level CNN filters can be served as head detector, body detector and leg detector for birds.

Dog 

Part 1

Dog 

Part 2

Bird 

Part 1

Bird 

Part 2

Figure 4. Part-level top-down attention detection results. One

group of filters in bird DomainNet pay specially attention to bird

head, and the other group to bird body. Similarly, for the dog Do-

mainNet, one group of filters pay attention to dog head, and one to

dog legs

Some detection results of the dog and bird class are

shown on Figure 4. It’s clear that one group of filters in

bird DomainNet pay specially attention to bird head, and

the other group to bird body. Similarly, for the dog Do-

mainNet, one group of filters pay attention to dog head, and

one to dog legs.

Building the part-based classifier The patches selected

by part detector are then wrapped back to the input size of

DomainNet to generate activations. We concatenate the ac-

tivations of different parts and the original image and then

train a SVM as the part-based classifier.

The approach contains several hyper-parameters, e.g.

detection filter layer: conv4, cluster number: 3. We fol-

low standard practice and withhold a validation set of 10%

training data for grid search to determine those numbers.

We found conv4 works better than conv3 or conv5 and set-

ting k > 3 didn’t bring better accuracy. To verify the effect

of each part, we pruned the features from each cluster one

at a time. We noticed one cluster inevitably introduces neg-

ative effect, thus we don’t use the feature of that part when

training classifier; Visual inspection reveals that the cluster

is where the filters with noisy patterns gather. Those choices

could be changed according to the dataset.

2.3. The Complete Pipeline

The DomainNet classifier and the part-based classifier

are both fine-grained classifiers. However, their functional-

ity and strength differ, primarily because they admit patches

of different nature. The bottom-up process using selective

search are raw patches. From them, the FilterNet select-

s multiple views that (hopefully) focus on the object as a

whole; these patches drive the DomainNet. On the other

hand, the part-based classifier selects and works exclusively

on patches containing discriminate and local features. Even

though some patches are admitted by both classifiers, their

features have different representation in each and can po-

tentially enrich each other. Finally, we merge the prediction

results of the two level attention methods to utilize the ad-
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Figure 5. The complete classification pipeline of our method. The darker the arrow is, the later this operation will be executed. Two levels

of top-down attentions are applied on the bottom-up proposals. One conducts object-level filtering to select patches relevant to bird to feed

into the classifier. The other conducts part-level detection to detect parts for classification. DomainNet can provide the part detectors for

part-level method and also the feature extractor for both of the two level classifiers. The prediction results of the two classifiers are merged

in later phase to combine the advantages of the two level attentions.

vantage of the two using the following equation:

final score = object score+ α ∗ part score (1)

where object score is the softmax value averaged by

patches selected by object attention, part score is the deci-

sion value produced by SVM using concatenated parts fea-

ture and α is selected using the validation method. In the

experiment, we set α as 0.5. The class with the highest

final score is chosen as the prediction result.

Figure 5 shows the complete pipeline and when we

merge the results of the two level attention classifiers.

3. Experiment

This section presents performance evaluations and anal-

ysis of our proposed method on three fine-grained classifi-

cation tasks:

• Classification of two subsets in ILSVRC2012, the

dog dataset (ILSVRC2012 Dog) and the bird dataset

(ILSVRC2012 Bird). The first contains 153,773 im-

ages of 118 breeds of dog, and the second contains

79,491 images of 59 types of bird. The train/test s-

plit follows standard protocol of ILSVRC2012. Both

datasets are weakly annotated, where only class labels

are available.

• The widely-used fine-grained classification benchmark

Caltech-UCSD Birds dataset [21] (CUB200-2011),

with 11,788 images of 200 types of bird. Each Image

in CUB200-2011 has detailed annotations, including

image level label, bounding box and part landmarks.

3.1. Implementation Details

Our CNN architecture is essentially the same as the pop-

ular AlexNet et al. [12], with 5 convolutional layers and 3

fully connected layers. It is used in all experiments, except

the number of neurons of the output layer is set as number of

categories when required. For a fair comparison, we try to

reproduce results of other approaches on the same network

architecture. When using CNN as feature extractor, the ac-

tivations of the first fully-connected layer are outputted as

features. Finally, to demonstrate that our method is agnos-

tic to network architecture and can improve with it, we also

try to use the more recent VGGNet [18] in the feature ex-

traction phase. Due to time limit, we have not replicated all

results using the VGGNet.

Bird and Dog subsets of ILSVRC 1K are used to train

DomainNet and CUB200 2011 is used to finetune Domain-

Net Bird. All the images for training are augmented using

the object-level attention method.

3.2. Results on ILSVRC2012 Dog/Bird

In this task, only image-level class labels are available.

Therefore, fine-grained methods requiring detailed annota-

tions are not applicable. For brevity, we will only report

results on dog; results of bird are qualitatively similar.

The baselines are performance of CNN but trained with

two different strategies, including:



Table 1. Top-1 error rate on ILSVRC2012 Dog/Bird validation set.

Method ILSVRC2012 Dog ILSVRC2012 Bird

CNN domain 40.1 21.1

CNN 1K 39.5 19.2

Object-level attention 30.3 11.9

Part-level attenion 35.2 14.6

Two-level attention 28.1 11.0

• CNN domain: The network is trained only on images

from dog categories. In the training phase, random-

ly cropped 227 × 227 patches from the whole image

are used to avoid overfitting. In testing phase, softmax

outputs of 10 fixed views (the center patch, the four

corner patches, and their horizonal reflections) are av-

eraged as the final prediction. In this method, no spe-

cific attention is used and patches are equally selected.

• CNN 1K: The network is trained on all images of

ILSVRC2012 1K categories, then the softmax neurons

not belong to dog are removed. Other settings are the

same as above. This is a multi-task learning method

that simultaneously learns all models, including dog

and bird. This strategy utilizes more data to train a

single CNN, and resist overfitting better, but has the

tradeoff of wasting capacity on unwanted categories.

These baseline numbers are compared with three strategies

of our approach: using object-level and part-level attention

only, and the combination of both. Selective search propos-

es several hundred number of patches, and we let FilterNet

to select roughly 40 of them, using a confidence score of

0.9.

Table 1 summarizes the top-1 error rates of all five strate-

gies. It turns out the two baselines perform about the same.

However, our attention based methods achieves much lower

error rates. Using object-level attention only drops the error

rate by 9.3%, comparing against CNN trained with random-

ly cropped patches. This clearly demonstrates the effective-

ness of object-level attention: the DomainNet now focuses

on learning domain specific features from foreground ob-

jects. Combining part-level attention, the error rate drops

to 28.1%, which is significantly better than the baselines.

The result of using part-level attention alone is not as good

as object-level attention, as there are still more ambiguities

in part level. However, it achieves pose normalization to

resist large pose variations, which is complementary to the

object-level attention.

3.3. Results on CUB2002011

For this task, we begin with a demonstration of the per-

formance advantage of learning deep feature based on ob-

ject level attention. We then present full results against other

state-of-the-art methods.

Advantage on Learning Deep Feature We have shown

that the bird DomainNet trained with object-level atten-

tion delivers superior classification performance on ILSVR-

C2012 Bird. It is reasonable to assume that part of the gain

comes from the better learned features. In this experimen-

t, we use the DomainNet as feature extractor on CUB200-

2011 to verify the advantage of those features. We compare

against two baseline feature extractors, one is hand-crafted

kernel descriptors [3] (KDES) which was widely used in

fine-grained classification before using CNN feature, the

other is the CNN feature extractor pre-trained from all the

data in ILSVRC2012 [16]. We compared the feature ex-

tractors under two classification pipelines. The first one us-

es bounding boxes, the second one is proposed in Zhang el

al. [27] (DPD) which relies on deformable part based detec-

tor [8] to find object and its parts. In both of the pipelines,

features are fed in a SVM classifier. In this experiment, no

CNN is finetuned on CUB200-2011. As shown in Figure 6,

DomainNet based feature extractor achieves the best result-

s on both pipelines. This further demonstrates that using

object-level attention to filter relevant patches is an impor-

tant condition for CNN to learn good features.
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Figure 6. Comparision of different feature extractors by attentions

provided by bounding box and DPD.

Advantage of the Classification Pipeline In this exper-

iment, the DomainNet is fine-tuned using CUB200-2011

with patches generated by object-level attention. The ac-



Table 2. Accuracy and Annotation used between methods

Training phase Testing phase

Method BBox Info Part Info BBox Info Part Info Accuracy (%)

Object-level attention 67.6

Part-level attention 64.9

Two-level attention 69.7

DomainNet without attention 58.8

BBox + DomainNet X X 68.4

DPD [27] + DomainNet X X 70.5

Part Discovery [17] 53.8

Symbiotic [5] X X 61.0

Alignment [9] X X 62.7

DeCAF6 [7] X X 58.8

CNNaug-SVM [16] X X 61.8

Part RCNN [26] X X 73.5

Pose Normalized CNN [4] X X 75.7

POOF [2] X X X 56.8

Part RCNN [26] X X X 76.7

POOF [2] X X X X 73.3

curacies are reported in Table 2, along with how much an-

notations are used. These methods are grouped into three

sets. The first set is our attention-based methods, the sec-

ond uses the same DomainNet feature extractor as the first

set but with different pipeline and annotations, and the third

set includes the state-of-the-art results from recent litera-

tures. Due to the limited numbers of training data, most of

the compared methods in the second and third sets use SVM

as the classifier, e.g. BBox + DomainNet, DPD, Part RCN-

N. The difference of those methods lies in where to extract

feature.

We first compare the results of the first two set where the

used feature extractor is the same, and the performance d-

ifference is attributed to different attention models. Using

original image only achieves the lowest accuracy (58.8%).

which demonstrates the importance of object and part level

attention in fine-graind image classification. In compari-

son, our attention-based methods achieved significant im-

provement, and the two-level attention delivers even bet-

ter results than using human labelled bounding box (69.7%

vs. 68.4%), and is comparable to DPD (70.5%). The D-

PD result is based on implementation using our feature ex-

tractor, it used deformable part-based detector trained with

object bounding box. The standard DPD pipeline also need

bounding box at testing time to produce relatively good per-

formance. To the best of our knowledge, 69.7% is the best

result under the weakest supervision.

The third set summarizes the state-of-the-art methods.

Our results is much better than the ones using only bound-

ing boxes in training and testing, but still has gap to the

methods using part-level annotation.

Our results can be improved by using more powerful fea-

ture extractors. If we use the VGGNet [18] to extract fea-

ture, the baseline method without attention by only using

original image can be improved to 72.1%. Adding object-

level attention, part-level attention, and the combined atten-

tions boost the performance to 76.9%, 76.4% and 77.9%,

respectively.

4. Related Work

Fine-grained classification has been extensively studied

recently [21, 22, 11, 3, 5, 24, 27, 2, 4]. Previous works have

aimed at boosting the recognition accuracy from three main

aspects: 1. object and part localization, which can also be

treated as object/part level attention; 2. feature representa-

tion for detected objects or parts; 3. human in the loop [20].

Since our goal is automatic fine-grained classification, we

focus on the related work of the first two.

4.1. Object/Part Level Attention

In fine-grained classification tasks, discriminative fea-

tures are mainly localized on foreground object and even

on object parts, which makes object and part level atten-

tion be the first important step. As fine-grained classifica-

tion datasets are often using detailed annotations of bound-

ing box and part landmarks, most methods rely on some of

these annotations to achieve object or part level attention.

The strongest supervised setting is using bounding box

and part landmarks in both training and testing phase, which

is often used to test performance upbound [2]. To verify

CNN features on fine-grained task, bounding boxes are as-

sumed given in both training and testing phase [7, 16]. Us-

ing provided bounding box, several methods proposed to



learn part detectors in unsupervised or latent manner [23, 5].

To further improve the performance, part level annotation is

also used in training phase to learn strongly-supervised de-

formable part-based model [1, 27] or directly used to fine-

tune pre-trained CNN [4].

Our work is also closely related to recently proposed

object detection method (R-CNN) based on CNN fea-

ture [10]. R-CNN works by first proposing thousands can-

didate bounding boxes for each image via some bottom-up

attention model [19, 6], then selecting the bounding boxes

with high classification scores as detection results. Based on

R-CNN, Zhang et al. has proposed Part-based R-CNN [26]

to utilize deep convolutional network for part detection.

4.2. Feature Representation

The other aspect to directly boost up the accuracy is

to introduce more discriminative feature to represent im-

age regions. Ren et al. has proposed Kernel Descrip-

tors [3] and were widely used in fine-grained classification

pipelines [27, 23]. Some recent works try to learn feature

descriptions from the data, Berg et al. has proposed the

part-based one-vs-all features library POOF [2] as the mid-

level features. CNN feature extractors pre-trained from Im-

ageNet data also showed significant performance improve-

ment on fine-grained datasets [16, 7]. Zhang et al. further

improved the performance of CNN feature extractor by fine-

tuning on fine-grained dataset [26].

Our approach adopts the same general principle. We al-

so share the same strategy of taking region proposals in a

bottom-up process to drive the classification pipeline, as is

done in R-CNN and Part R-CNN. One difference is that we

enrich the object-level pipeline with relevant patches that

offer multiple views and scales. More importantly, we opt

for the weakest supervision throughout the model, relying

solely on CNN features to implement attention, detect parts

and extract features.

5. Conclusions

In this paper, we propose a fine-grained classification

pipeline combining bottom-up and two top-down attention-

s. The object-level attention feeds the network with patch-

es relevant to the task domain with different views and s-

cales. This leads to better CNN feature for fine-grained

classification, as the network is driven by domain-relevant

patches that are also rich with shift/scale variances. The

part-level attention focuses on local discriminate patterns

and also achieves pose normalization. Both levels of atten-

tion can bring significant gains, and they compensate each

other nicely with late fusion. One important advantage of

our method is that, the attention is derived from the CN-

N trained with classification task, thus it can be conducted

under the weakest supervision setting where only class la-

bel is provided. This is in sharp contrast with other state-

of-the-art methods that require object bounding box or part

landmark to train or test. To the best of our knowledge, we

get the best accuracy on CUB200-2011 dataset under the

weakest supervision setting.

These results are promising. At the same time, the expe-

rience points out a few lessons and future directions, which

we summarize as the followings:

• Dealing with ambiguities in part level attention. Our

current method does not fully utilize what has been

learned in CNN. Filters of different layers should be

considered as a whole to facilitate robust part detec-

tion, since part feature may appear in different layers

due to the scale issue.

• A closer integration of the object-level and part-level

attention. One advantage of object-level attention is

that it can provide large amount of relevant patch-

es to help resist variance to some extent. However,

this is not leveraged by the current part-level attention

pipeline. We may borrow the idea of multi-patch test-

ing to part-level attention method to derive more effec-

tive pose normalization.

We are actively pursuing the above directions.
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