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In this article we describe a software system for 

developing interactive scientific visualization applica- 

tions quickly, with a minimum of programming effort. 

This Application Visualization System (AVS) is an appli- 

cation framework targeted at scientists and engineers. 

The goal of the system is to make applications that 

combine interactive graphics and high computational 

requirements easier to develop for both programmers 

and nonprogrammers. AVS is designed around the con- 

cept of software building blocks, or modules, that can 

be interconnected to form visualization applications. 

AVS allows flow networks of existing modules to be 

constructed using a direct-manipulation user interface, 

and it automatically generates a simple user interface 

to each module. 

I- 
I hfJ inc:reasing p3ve1 of sLl~~c!~c:orn~,ut~~~s and 

graphics systems has made it possible for the scientific: 

and engineering communities to gain ne\v insight into 

their disciplines. In areas as diverse as fluid dynamics, 

coml)uter-aidecl engineerin g. molec:ular modeling, and 

geophvsics, researchers are attempting to apply these 

powerful systems to analyze and view their data. Kecent 

works in the literature have described both problems and 
techniques in this area of scientific: \.isualization.’ ’ 

Background 

Both the size of’ scientific: and engineering ~)wbtems 

and the quantity of data generated present a large chal- 

lenge to researchers: namely, how to understand the 
results of their computations. Solving these problems 

interactively is essential’ and requires significant cum- 

putation and graphics power. While graphics and corn 

puting hardware have made rapid strides in the last f’elz 

years. the software available to researchers has not kept 



pace. This lack of software is underscored by the recent 

emergence of the graphics supercomputer, which com- 

bines minisupercomputer-class computational power 
with 3D graphics capabilities that support real-time, 

interactive display of scientific and engineering data. 

Although the hardware of these systems is quite power- 

ful, the existing software tools require programming 

expertise and great expense in both time and money to 

exploit the hardware’s capabilities. For example, creation 

of relatively simple interactive programs that transform 

and display geometric data can take weeks using tradi- 

tional low-level graphics libraries. 

We want to address these problems by augmenting 

hardware advances while applying the commensurate 

advances made in software engineering technology, par- 

ticularly in the areas of object-oriented programming 

and graphical user interfaces. This combination of hard- 

ware and software will give us the foundation to solve 

scientific problems by letting researchers apply the hard- 

ware power to their problems without requiring pro- 

gramming expertise or a great investment of time. It will 

thus allow them to shift their efforts and resources to the 

scientific problems under study. This article describes 

the software we are developing to facilitate creation of 

applications that combine 3D interactive graphics and 

high-performance computation. We call this system the 
Application Visualization System (AVS). 

AVS is a framework that can be used to develop scien- 

tific visualization applications based on a model that 

integrates interactive visualization into the research and 

engineering process. It is targeted at scientists and 

engineers, rather than at software developers. The design 
goals of the system include the following: 

Ease of use. By employing direct-manipulation user 

interfaces (like those found in Apple Macintosh soft- 

ware) and simplifying the programmer’s task, we will 

make the system more accessible to scientists and 

engineers. By exploiting the commonality among 

visualization applications, we expect application 

development that takes weeks of tedious program- 

ming with current software may often be reducible 

to only a few hours of direct manipulation with AVS. 

Low cost. In contrast to large, monolithic third-party 

application software systems-which are expensive 

to develop and port to different hardware 

platforms-our goal is a framework that can integrate 

smaller-scale software components, which are less 
costly to develop. 

Completeness. Other visualization software focuses 

primarily on graphics rendering and viewing manip- 

ulation. AVS is designed to include the entire visuali- 

zation process encompassing data input and 

transformation, as well as rendering. 

Extensibility. The approach we are taking assumes 

that scientists and engineers will need to extend and 
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customize the software for their individual needs by 

adding their own algorithms and tailoring those 

provided in existing modules within the context of 

the visualization application framework. 

Portability. To be truly useful, the system must be 

available on the many platforms in heterogeneous 

computing environments. To foster portability, AVS 

is based on standards in areas like graphics libraries, 

windowing systems, operating systems, and lan- 

guages. 

Prior work 

To date visualization software tools readily available 

to the computational scientist and engineer have fallen 

into two categories: graphics subroutine libraries and 

animation applications. Graphics libraries such as 

PHIGS+ ,3 GL, GKS,4 and SIGGRAPH CORE’ are exam- 

ples of low-level collections of graphics operations. These 

libraries represent the traditional, structured language 

approach to programming. However, they fail to hide the 

basic complexity of the visualization problem, since 

their effective use requires programmers to understand 

the graphics primitives and data structures inherent in 

the library, the set of attributes that affect the appearance 

of primitives, the rendering pipeline that the library 

implements, the administrative or housekeeping calls 

that are part of the library, and the system-level calls that 

are necessary to complete the nongraphics portion of an 

application. While these systems give users access to a 

large set of functionality, they also place a huge software 

development burden on them-users must assemble a 

graphics application from low-level software. Tradition- 

ally, scientists and engineers have exhibited little interest 

in developing these tools by themselves, because they 
require too large an investment to learn how to use or 

because they are outside the scientists’ areas of interest. 

Animation packages such as MOVIE.BYU and 

products from Wavefront and Alias are some of the more 

common visual applications currently used by scientists. 

These programs are used in a postprocessing mode after 

a numerical simulation is run on a supercomputer or 

mini-supercomputer, typically in batch mode, and after 

the data have been transferred to the display system. The 

traditional drawback of these packages is that they fre- 

quently are too restrictive in their capabilities: Either 

they are tailored for such specific disciplines as com- 

putational chemistry or fluid dynamics or their data for- 

mats are limited to such geometric primitives as points, 

lines, and polygons. Alss these packages typically do not 
integrate well with other applications that may be 

needed to process the visualization-data output from 

one package may need to be converted to a format suit- 

able for processing by another. In addition to these limi- 

tations, the origins of traditional animation packages in 

the television and film industries have oriented them 

toward higher quality rendering, often at the expense of 
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Figure 1. Computational cycle. 
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Figure 2. Analysis cycle. 

the performance that interactive visualization applica- 

tions require. 

Our system unifies work done in a number of areas. 

Traditional animation and rendering-application envi- 

ronments provide a base for developing applications,6.7 

while Oscar’ describes abstractions for implementing 

object-oriented graphics applications. Grape9 and 

Frames” present graphics application development 

systems based on building blocks connected into a net- 

work. AVS has a similar execution mode to Grape, based 

on directed acyclic graphs, but combines it with a vis- 

ual programming paradigm. Conman” presents a sys- 

tem for developing graphics applications using a 

network-oriented visual language similar to ours. There 

are also projects in visualization environments under 

way at a number of academic and research centers such 

as Ohio State University, the National Center for Super- 

computing Applications, and the State University of 

New York at Stonybrook. 

We have borrowed heavily from research into object- 

oriented application development environments.“” All 

of these environments are designed for developing 2D 

bit-mapped graphics applications, but many of their cen- 

tral concepts carry over to 3D applications as well. In 

particular we have tried to extend to higher dimensions 

the concept of an application framework that provides 

a simple application which can easily be modified to 

generate new applications. 

The visualization model 

To deal with the problems of multiple disciplines in the 

computational sciences effectively, it is useful to begin 
by developing a coherent picture of the various steps a 

scientist takes while simulating a natural process using 

a computational model.“~” This way we can capitalize 

on the similarities between the requirements of each tar- 

get discipline. The process of numerical simulation (see 

Figure 1) involves the transformation of basic physical 

equations (for example, the Navier-Stokes, Schroedenger, 

or Maxwell equations) into a computer program. These 
approximations must then be augmented with a speci- 

fication of the domain to be simulated (that is, a computa- 

tional grid, initial conditions, boundary conditions, etc.). 

Together, these constitute a complete description of the 

problem whose solution can now be computed, typically 

by numerical simulation. Once a set of data has been 

produced, the next step is the analysis of the results. The 

outcome of this analysis determines what follows. If the 

analysis reveals problems with the numerical approxi- 

mation, the scientist returns to the programming stage. 

If the structures seen in the solution are not finely 

enough resolved, the computational grid is refined in the 

specification stage. If a problem is discovered in the pro- 
gram or the theory from which the program is derived, 

the program or theory must be modified. If the analysis 

reveals none of these (or other] deficiencies, then the 

researcher summarizes the results. In general, this is a 

very iterative process that can require months or years 

for large complicated calculations. 

The analysis step in the cycle is where computer 

visualization plays a large role. This step can be broken 

down into its constituent parts (see Figure 2) to reveal 

several operations common to all simulations (and a 

great number of experimental processes). The analysis 

process is itself a cycle which is executed repeatedly until 
all questions are resolved. The processes a researcher or 

engineer executes are the following: 

0 Filtering the basic data from the simulation into 

another form which is more informative and perhaps 

less voluminous (filtering data into data). 
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Figure 3. Mapping approaches for 3D scalar fields; 

l Mopping the resulting data into geometric primitives tion of the problem. There are some tools availablelY 
which can be rendered (mapping data into geometry). which go beyond this to incorporate a programming 

__ 

l Rendering the geometric data into pictures (render- 
environment as well. 

ing geometry into images). 
In general, this analysis cycle is executed over and over 

until the user is convinced that the physical mechanism 

Filtering operations include computing derived quan- 
under study is understood. Our visualization environ- 

tities such as the gradient of an input scalar field, integra- 
ment is designed to deliver the tools needed to enhance 

tive processes (for example, deriving flow lines from a 
these processes interactively to the greatest extent 

velocitv field), or simply extracting a portion of the solu- 
possible. 

tion. Filtering can also take data directly to an image, 

bypassing the mapping operation, as is the case with vol- 

ume rendering. 

With this new, derived data in hand, the researcher 
then maps this information into geometric primitives. 

The possibilities at this step are the broad suite of geo- 

metric primitives commonly used in traditional com- 

puter graphics: points, lines, splines, polygons, surfaces, 

and spheres, A single set of data, such as a scalar field 

in 3D, could be transformed into geometric primitives 
in a number of ways, as shown in Figure 3. 

Once a collection of geometric primitives is chosen 

and calculated, a variety of rendering parameters must 

be specified. In this rendering step, the user selects the 

visual representation characteristics of coloring, place- 

ment, illumination, and surface properties to transform 

this geometry data into imagery. The majority of visuali- 

zation programs available to date are devoted to this por- 

The application visualization system 

We are developing AVS to meet the requirements 

described above. AVS allows software components to be 

combined into executable flow networks, or directed acy- 

clic graphs, to construct a visualization application. The 

components, called modules, implement specific func- 

tions in the visualization cycle: filtering, mapping, or 

rendering. The flow networks are built from a menu of 

modules by using a direct-manipulation visual program- 

ming interface. In many cases researchers can use sup- 

plied modules to construct an entire visualization 

application through this visual interface, without resort- 

ing to any traditional procedural programming. 

Given the nature of scientific visualization and the 

need for extensibility, it is also important to support the 

July 1989 33 



creation of new modules. One important aspect of AVS 

is that researchers can develop new modules without 

detailed knowledge of the AVS implementation or 

expertise in disciplines outside their areas of interest. To 

programmers, modules are software building blocks 

with well-defined interfaces which can be written in For- 

tran or C. In addition, tools are available to produce code 

that interfaces user-written procedures with the AVS- 

supplied code that implements intermodule communi- 

cation, so that the researcher can focus entirely on writ- 

ing the code that “does the real work.” 

We envision three categories of module developers. In 

the first category are scientists or engineers who wish 

to develop modules with functionality specific to their 

own disciplines or particular research. These users cus- 

tomize the system for their needs. To foster technical 

interchange, they may wish to exchange modules that 

they develop with other users working in their field. 

The second class of module developers are platform 

vendors who wish to provide packages of modules that 

are generic or are targeted at specific disciplines, such 
as computational fluid dynamics or molecular modeling. 

Thus, vendors may provide application software in the 

form of reusable building blocks that take maximum 

advantage of the systems they sell. This is a new model 

for hardware vendors, who typically have provided only 

system software for their products. It is a natural evolu- 
tion of the current trend in which vendors bundle more 

and more sophisticated application software with their 

hardware. 
The final category of module developers is applica- 

tions software vendors. Current applications software is 

typically delivered in monolithic applications which are 

expensive to develop, buy, and port to new hardware. 

This software is also slow to evolve, difficult to customize, 

and does not integrate well with other software on a par- 

ticular platform. Because AVS provides much of the 

functionality common to visualization applications and 

specifies interfaces between software components, third- 

party applications developers will be able to deliver soft- 

ware that is less expensive, more flexible, and more eas- 

ily integrated. 

AVS is written in C+ +,‘O using the Interviews” and 

OOPSzl libraries. It uses object-oriented programming 

techniques to provide the required extensibility features 

and to leverage the development of a large, complex soft- 

ware system. Object-oriented programming hides low- 

level system interfaces, enabling new modules to be 

created using a much higher level module interface. This 

aspect of the system can be completely hidden from the 

user by employing the visual programming interface and 
using existing modules, or it can be exploited by pro- 

gramming in conventional C or Fortran. Alternatively, 

users may take advantage of the object-orientation and 

develop new modules in C + +, thereby gaining the soft- 

ware engineering benefits of object-oriented program 

development. 
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Application visualization architecture 

A key to making scientific visualization applications 

easier to develop in AVS is the use of a consistent archi- 
tecture to define both the software components and well- 

specified interfaces between them and the underlying 

system foundation. Our intent is to define this architec- 

ture so that it can be used by developers and researchers 

to create software components that work together, 

independent of the implementation of the surrounding 

application framework. 

Modules are the software components of the system 

and can be connected together to build visualization 

applications. They are at a higher level of abstraction 

than procedures but at a lower level than complete appli- 

cations. The concept of applications composed of 

smaller components that can be customized and reused 

has become widespread and is a theme of object- 

oriented programming technology.” Modules process 

input data under the control of parameters to produce 

output data, and they can be interconnected to form 

computation networks where the modules can execute 

in parallel, much as in traditional dataflow networks. 

Modules can be characterized by their input and out- 
put connections as follows: 

Source modules have no upstream inputs and one or 

more downstream outputs. They represent such data 

sources as data-access programs or simulations that 

are producing data directly within the system. 

Transformation modules may have multiple inputs 

and outputs. They represent any data transformation, 

including (1) data filters (numeric data in/out) that 

perform operations like interpolation, scaling, and 

warping; (2) geometric mapping functions (numeric 

data in/geometric data out), for example, contour and 

surface generators; (3) renderers (geometric data 

in/image data out) or (4) volume renderers (numeric 

data in/image data out). Transformation modules cor- 

respond to the filtering, mapping, and rendering 

operations of the analysis cycle. 

Terminal modules have one or more input connec- 

tions and no downstream outputs. They represent 

outputs of the network, such as displays or video 

recorders. 

Modules take typed data as inputs and produce typed 

data as outputs. The basic data types in the system are 

oriented toward scientific data manipulation and 

graphic display. These types include lD, 2D, and 3D vec- 

tors of floating-point values, 2D and 3D grids with vec- 

tors of floating-point values at each grid point, geometric 
data, and images or pixel maps. In the same way a 

developer can add a new module to AVS, a new data type 

can be added by implementing a few procedures that 

describe and handle the data. 

In addition to input and output data, modules also 
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have parameters used to control the module’s computa- 

tion. AVS generates the user interfaces to a module by 

automatically associating parameters with either graphi- 

cal control panels (buttons, sliders, etc.) or peripheral 

input devices (dials, joysticks, etc.). Parameters may also 

be global, in that they are not directly associated with a 

single module but can be accessed by all modules in the 

environment. Global parameters are used to provide 

overall controls, such as a simulation time base or frame 

control in an animation. They are represented in the sys- 

tem by parameter managers, and can be modified via 

control panels just as module parameters are. When the 

frame parameter is changed, for example, AVS recalcu- 

lates the values of all module parameters based on values 

set in key frames and then generates an image cor- 

responding to the new parameter values. 

AVS implementation 

AVS is implemented as outlined in the following 

sections. 

Flow network construction and execution 

Through the object-oriented design of AVS, most of the 

complexity of the implementation is abstracted into a 

base module. The base module implements both proce- 

dures that pass data through the flow network and proce- 

dures that present the flow network on the user’s screen. 

To encourage the development of a wide range of mod- 

ules and to make it easy for users to integrate their code 

into the AVS environment, a number of tools are 

provided to construct the modules’ “glue” automatically. 

In particular, each module can be described starting with 

a template file and a name for the module, its input and 

output data types, and the parameters that can be 

accessed from the control panel. This approach requires 
module writers to implement only the functionality 

required by their algorithm in the module. Inputs and 

outputs can be represented by arguments based on the 

description in the template. 

The module writer will usually write only a transfor- 

mation procedure that performs the processing unique 

to the module. This will be called either when there is 

new input or when a parameter has changed. Cus- 

tomized modules that go beyond the default skeleton 

need to supply an initialization function (in addition to 

the user-supplied transformation procedure) that tells 

AVS about its inputs, outputs, and parameters. The rela- 

tionship between the base module glue and the user’s 

application-specific code is shown in Figure 4. 

As an example, a module that returns a 2D slice of a 

3D scalar field would define itself to have a 3D scalar 

field as its single input and a 2D scalar field as its single 

output. It would declare one parameter that would deter- 

mine which slice to return and would implement a sin- 

gle procedure that would accept a 3D array of 
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AVS module implementation 

Figure 4. Conceptual model of a module. 

floating-point numbers and fill in a 2D array with the 

return value. 

Data passing, types, and memory 

Data is communicated between modules through 

ports. Each output port has a specific data type it 

produces and each input port has a collection of data 

types it accepts. When connecting an output port of one 

module to an input port of another, the user interface 

queries the target module to discover whether it accepts 

the type produced. If not, an error is signaled. Output 

from a single port can be sent to multiple destinations. 

Each destination is notified when a change occurs and 

can request the data as needed. In some cases multiple 

output ports can also be connected to a single input port. 
The renderer module, for example, has a single input 

port that can have an arbitrary number of connections, 

each of which provides a geometric object. All of the 

modules connected to this port are treated identically, 

and their objects are placed in a 3D environment and 

rendered to produce a single image. For all modules data 
is cached, or buffered, on the output ports to reduce 

unnecessary recomputation, and it is stored with a refer- 

ence count to avoid copying it unnecessarily. 

One goal in designing data handling within AVS is to 

allow modules to handle generic data. For example, a sin- 

gle module can linearly interpolate between two data 

objects that are of the same type-by using functions 

within the data objects to determine the type and 

contents-and it operates appropriately. This module, for 
example, could interpolate between two 3D scalar fields, 

or between two lists of 3D points. 

The execution model 

The flow of data between modules in an AVS flow net- 

work is primarily demand-driven in “lazy evaluation” 
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style, rather than data-driven as in conventional dataflow 

architecture. It is data-driven in that changes to module 

parameters are reported downstream; it is demand- 

driven in that data computation occurs only as modules 
downstream request recomputation of the data. These 

recomputations typically are triggered by interactive 

parameter changes that require a new frame to be gener- 

ated in a display window or by the readiness of an out- 

put device for a new image. In the first case, the 

interactive change is reported to the module whose 

parameter is affected, and is subsequently reported 

downstream until it reaches a display module. Because 

of this notification, the display module indicates to the 

system that its outputs are out of date and at some time 

in the future it is called to update itself. In the second 

case the network is running in a batch mode, and the ter- 

minal module generates new requests for data as often 

as the device is ready to accept the new data. 

To support parallelism and distributed functionality, 

a module that needs new input requests it from all its 

upstream connections and then waits for them to finish 

their computation. The effect is a ripple of requests back 

through the network from the terminators and then a rip- 

ple of computation forward toward the terminators. 

When all the data objects for a module are ready, the 

user-supplied transformation procedure is called. The 

execution of upstream modules and collection of the 

resulting data is invisible to the module writer. All the 

module sees is that its transformation procedure is called 

with up-to-date input. 

This model of execution was chosen over a traditional 

dataflow model for both efficiency and simplicity. In 

dataflow, each change to a module initiates recomputa- 

tion in each downstream module. Since in our model 

many changes can occur before recalculation, it is more 

efficient. Dataflow is more complicated because it is pos- 

sible in a dataflow network to have a condition where 

changes are not propagated through a network because 

not all inputs to all modules are satisfied. This cannot 

happen in our model, since the network is not driven by 

the data, but rather pulls the data through as it is needed. 

The flow executive 

The flow executive is the component of the system that 

determines when to run various modules. It is imple- 

mented much like an operating system scheduler, The 

flow executive maintains two resources: a queue of mod- 

ules which need execution and a pool of tasks, or threads 

of control, which can be assigned to execute one of the 

modules. 

The communications facility in the base portion of all 

modules, the ports, and the flow executive all cooperate 

to execute a flow network through a set of well-defined 

interfaces. This will allow transparent execution of mod- 

ules on remote machines and modules that execute out- 

side the AVS to process on the local machine. The 

cooperative interface also allows multiple processors to 

be used in tandem on a single machine, when they are 

available. Because networks are restricted to directed 

acyclic graphs by the diagram editor, this mechanism 

can avoid race conditions and hazards by isolating the 

data that passes between modules and not allowing 

changes to the network or to parameters while it is 
updating. 

The degree of concurrency that can be expected 

depends on the fan-out and fan-in to each module in the 

network. If a module has four inputs, each of them can 

run concurrently. If each of those four modules in turn 

has two inputs, all eight of those modules can run con- 

currently. In most of the networks we have constructed 

to date, one to six modules can be running concurrently. 

The flow network can be enabled or disabled. If the 

network is enabled, changes in a module’s control panel 

cause the network to be activated, which in turn leads 

to an update of the affected computational modules. 

When disabled, parameters can be set up without caus- 

ing immediate recomputation. One use of this feature is 

in key-frame animation. In this mode, the user sets up 

two or more complete sets of parameters. The system 

then interpolates between them, showing each frame as 

it is computed. When the key-frame system is running, 
it disables the flow network, sets all the new parameters 

in the various modules, then forces a flow network com- 

putation. Repeating this for each interpolated value 

produces a sequence of frames for an animation. With- 

out the ability to disable the network, the animation 

might appear inconsistent or jerky. Another important 

feature in the design of the flow executive is that portions 

of the network can be enabled and disabled. By setting 

disabled inputs to constant values, a portion of a network 

can be debugged with a minimum of unexpected inter- 

action. 

Certain elements in the system need to be accessed by 

many different modules. For example, several modules 

in a simulation may need access to a central clock to 

generate new values. In an animation, different modules 

may need to access the current frame number. These 

global parameters are treated much like module 

parameters by the flow executive. The difference is that 

each module that needs to change when the global 

parameter changes must register with the flow executive 

via a function call. In this manner, the flow executive 

knows to recompute those modules that depend on a 

parameter whenever it changes. 

AVS user interface 

The AVS user interface is designed to allow users vary- 

ing degrees of access to an application during different 

phases of use, rather than targeting different groups of 

users, such as “novices” and “experts.” The diagram edi- 

tor displays a diagram of the module network that serves 

both as the means of constructing the application and 

as a conceptual map of the application to illustrate exe- 
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cution (see Figure 5). Once an application has been con- 

structed. AVS presents an interface. consisting of control 

panels to manipulate module and global parameters plus 

a series of display windows to view the output produced. 

AL’S allows the user to move hetmreen different presen- 

tations of the application (the flow netlvork, the module 

control panels, and the output windows). thus providing 

a common environment for the application design cycle, 

from development of a new application, to debugging 

and cxpcrimentation, to production USC:, and back again. 
Apple’s HyperCard also c1emonstratcs this kind of selec- 

tive “level of involvement” of the user hy allowing such 

operations as customization and authoring to be disa- 

Med. 

Visual programming interface 

An AVS application developer hegins the design cycle 

in the diagram editor by laying out the structure of the 

application in a visual programming paradigm. \‘isunl 

programming is an expanding field in user interfacr: 

technology and varies widely in \,oc:abulary and purpose 

across different systems.’ ’ .” It has become popular in a 

number of dataflow systems.“.“’ simulation products 

such as Extend and I,ahvie\\. and systems like (:on- 

man, ” to name but a few areas. In A\iS, \,isual program- 

ming permits the user to produce an application 1~5 

making a system block diagram of the main moc1ules of 

the application and drawing connections between them. 

As a direct consequence of the user’s editing operations 

on the diagram, the system automatically makes the cor- 
responding changes in the network itself. This sort of 

direct manipulation system can be \.ery effective hecause 

it provides an intuitive, conceptual representation of the 

primary structure of the application, useful for control, 

analysis, and navigation by a lrariety of users. Some s)‘s- 

tems implement entire programming languages as vis- 
ual languages: AVS concentrates on thr: larger grain 

structure of the application as a visual reprr:sentation 

and then supports conventional procedural program- 

ming languages (Fortran, C, and C+ +) for the structure 
of the individual modules themselves. 

In the diagram editor, the user selects modules from 

menus of established libraries and places their icons in 

the diagram. Each module appears as a box with connec- 

tion pads for inputs and outputs. Connections are drawn 

as lines attached at each end to a connection pad sym- 

bolizing a port. When the modules that they are attached 

to get moved or deleted, the appropriate change is made 
to the connections automatically. The editor can print 

out the diagram as documentation or save it to a file for 

later use. 
Data types are checked on each connection, and those 

that do not match are disallowed. The diagram editor 

will display a description of the ports and their types 

when requested. The data types are organized hierarchi- 

cally so that some types are subtypes of others. Wherever 

a port can accept a particular type, it can also accept any 

Figure 5. Application program interface-build 

phase. 

subtype of that type. This provides a po~~~erful mechn- 

nism for creating modules that can accept generic data, 

as well as for creating new data types that can be acted 

on by a wide class of existing modules, 

If the existing module libraries do not pro\+1e \\rhat the 
user needs. new modules can be Lvritten in a conven- 

tional programming language and dynamically loaded 

into the editor. Each parameter in a module is automat- 

ically mapped to a user interface element for manipula- 
tion during execution. Many parameters map to sliders 

or dials, for example, Lvhere the default value and the 

range of the slider or dial are specified t\rhen tht: pararn- 

eter is defined. The set of parameters is organized into 

a control panel for the module by AVS. In future \rersions 

of the system. a layout editor \vill allow the user to alter. 

this default layout. 
Each module symbol is an interface to the real rnoti- 

ule in the flow network. In addition to creating and delet- 

ing the module by editing the diagram, the user can also 

interact with the module by clicking on various locations 

on the symbol to get documentation about different ports 

or the module’s type, change the module’s name. or open 

the parameter control panel. 

Additional functions planned for the visual program- 

ming emrironment of AVS include debugging and 

performance-tracing aids based on the network diagram. 

editors for modifying the internal structure of modules, 

and facilities for introducing hierarchy into the net\vork 

so that portions of a network can be collapsed into a 

macromodule to facilitate more structured de\elopment 

of large networks. 

Application interface 

Once the functional structure of the application has 

heen established, AVS can execute the net\vork and allo\\ 



AVS is imJ)lemented using the X Wintiolv System.‘- 

The placement and sizin g of these displa!, M’indo\vs as 

well as of the control panels and the diagram editor lvin- 

do\v is under the control of a seJ>arate \\?ntlo\v nza~xq+~~. 

as is the case with all X aJ,plications. Se\,t:ral different 

window managers are provided lvith X and each suJ)- 

plies a different set of user-interface techniques and fea- 

tures for interacting with these \vindo\vs. 

Figure 6. Application program interface-run phase. 

the user to interact with the application by navigating 

through the network diagram and interacting with \w- 

ious modules through their individual control panels 

(see Figure 5) 

Ideally, once an application has been de\reloped and 

well tuned to the target problem, and its underlying 

structure is relatively stable, the user can then concen- 

trate on using it to process information, rather than 

tinkering with its internals. At this point the diagram edi- 

tor can be hidden from the user to simplify the presen- 

tation of the interface (see Figure 6). The user retains 

some flexibility, remaining able to move around the ele- 

ments of the application’s user interface to economize 

on screen real estate or to place more emphasis on some 

elements at the expense of others. As the user’s abilities 
or interests grow, the AVS system allows the user to begin 

the design cycle anew by navigating through the appli- 

cation’s internal structure and making modifications or 

extensions. 

Graphics subsystem 

The graphics system consists of a user interface and 

a programmer interface. The user interface presented to 

a nonprogramming user is defined by the control panels 

for the render and display image modules supplied with 

AVS. The render module converts a geometric database 

into an image, which in turn can be displayed on the 

screen by the display-image module. III an AVS flow net- 

work, a render module can have many modules that pro- 

duce geometric data connected to it. Each image 

produced as output is a representation from one point 

of view of the scene defined by the modules connected 

to the render module and can be displayed on the screen 
by a display-image module. 

The user interacts bvith the images lvithin the displa!. 

windows and \vith the controls in the control panel lz’in- 

d0M.s to select indilridual objects and manipulate their 

rendering parameters. By changing these parameters. 

the user can move or change lights; modify materials; 

rotate, move, and resize an object; or change its render- 

ing mode. Similarly, the point of view and angle of viclz 

can be controlled. Using this simple interface, a user has 

complete control over the location and appearance of the: 

data to be visualized, M’ithout \vriting any of the 31) user- 

interface code. This rendering subsystem has been pack- 

aged as a separate geometric database application. 

knolvn as AVS I. AVS I currently has input modules that 
can import geometric data from Mathematics. Protein 

Databank. Wavefront, and MOVIE.RYU. 

Programmers developing new modules that J)roducc 

geometry can do so in Fortran, C. or C + + b!. ivriting just 

a fe\v procedures. Some of these proc;edures describe to 

AC’S which parameters will control the geometry that is 

Jlroduced, lvhat sort of input data the module expects, 

and how to regenerate the geometry \zrhen the data on 

which it depends or one of the module parameters 

changes. An additional procedure makes PIIIGS+ 

graphics calls to describe the geometry to A\‘S. One 

major advantage of this architecture is that only the 

graphics primitive calls need to be made to describe the 

geometry-all of the PHIGS+ database and attribute 

calls are made by AVS directly, controlled by the use1 

interface as described above. This dramatically reduces 

the programming burden on the user. 

An AVS example 

As an example of a problem that an AL’S application 

can help to solve we ha\re chosen a simulation from the 

field of computational fluid dynamics. One topic of 

major interest in this field is turbulence. Turbulence in 

a fluid results from such instabilities in the flo~v regime 

that the viscous effects become small compared Lvith 

inertial forces. The source data’” is the result of a verl 

large, 3D, transient, pseudospectral simulation of turbu- 

lent flow past a flat plate, solving the Xavier-Stokes equal- 

tions. The entire computational domain consists of 

approximately 10 million grid cells. It takes approxi- 

mately 10 minutes per timestep on a Cray X-MP to gener- 

ate the underlying data with the entire transient 

simulation requiring about 70-100 hours. 

The goal of this research is to understand the mecha- 
nism behind the production of turbulence. To accom 



plish this goal, we ha\e chosen several different visual 

representation forms. It is not possible to predict a pri- 

ori which representation will be the most useful, if at all, 

in exploring the solution space of this simulation. 

Visualization techniques 

Each of these techniques has lrarying degrees of com- 

putational complexity. Thus, some are more appropri- 

ate for interactive use, rvherc others are more costly and 

yield better detail, though they are noninteractive. 

1. Voxel-based volume rendering. Volume rendering 

is used to view 3D data without the usual interme- 

diate step of deriving a geometric representation 

which is then rendered. The volume representation 

uses voxels to determine visual properties, such as 

opacity, color, and shading at each point in the 

computational domain. Several images are created 

by slicing the volume perpendicularly to the view- 
ing axis at a regular interval and compositing 

together the contributing images from back to 

front, thus summing voxel opacities and colors at 

each pixel. This technique has the advantage that 

it is vrery interactive (several frames per second] 

and, as such, gives the scientist a quick, albeit low- 

quality, overall view of the entire domain. By 

rapidly changing the color and opacity transfer 

functions, various structures are interactively 

revealed in the spatial domain. 

2. High-quality volume rendering. Like its counter- 

part, vroxel-based volume rendering, this technique 

requires no intermediate geometric primitives 

from which to render an image. Unlike the voxel 

representation, it results in high-quality frames due 

to the higher-order interpolation of the underlying 

data, antialiasing, perspective, traditional illumina- 

tion models, and solid texture mapping. The addi- 
tion of these attributes results in a vrery low level of 

interactivity, which makes the technique useful 

once a region has been isolated and a fair amount 

of insight has already been generated. This method 

is then employed to get a more accurate represen- 

tation of the data and correlate several scalar fields 

(or a vector and scalar field) by way of 3D transpar- 

ent texture mapping (see Figure 7). 

3. Iso-surface tiling. In this method a threshold is 

chosen for a 3D scalar field, thus defining a contour 
surface. The surface is approximated by a con- 

nected net of polygons. This technique results in a 

clearer representation of critical values of the sca- 

lar field than voxel-based volume-rendering tech- 

niques. However, it can be expensive due to the 

hundreds of thousands of polygons generated for 

even moderately sized computational domains, but 

it is still faster than high-quality volume rendering. 
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Figure 7. Volume-rendered image of the streamwise 

velocity component. The vertical velocity is solid 

texture-mapped onto the stream component, showing 

regions of turbulence generation in red and blue. 

Figure 8. Pressure iso-surface image. The red low- 

pressure regions are the location of the vorticity in the 

flow. 

For this reason it is used once a subregion of the 

domain has been isolated for closer study (see Fig- 

ure 8). 

Particle advection. Most of the aforementioned 

visualization techniques deal with scalar fields in 

3D. This method uses the velocity field. a three- 
vector, to move passive tracers throughout the com- 

putational domain in much the same manner as a 

dye is used to track fluid in an experiment.” These 

passive tracers are then rendered either with a par- 

ticle renderer or as small spheres. This technique 

is highly interactive for small to moderately large 

numbers of particles (up to approximately 30,000). 

When very few particles (fewer than a hundred) are 

used, the scientist can visually track each particle 

3 9 
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Figure 9. Example of a computational flow network. 

and get a good feeling for the microscopic behavior 

of the fluid. As the number of particles grows to a 

hundred or so, this no longer becomes possible, so 

the method is almost useless. It is only when large 

numbers of very small, almost transparent particles 

are used that the method again becomes useful. In 

this regime the representation ceases to be discrete 

and begins to resemble a cloud of fluid, bearing a 

remarkable resemblance to experimental fluid-flow 

visualization techniques. The particle advection 

technique is invaluable for determining the source 

of turbulence once its effects have been isolated. 

These and other techniques are presented in more 

detail in the literature.30-36 

Running the example 

These four techniques are used to gain insight into the 

simulated phenomena and have been implemented in 

the network seen in Figure 9. 

The user selects the representation-interactive or 

high-quality volume rendering, iso-surface tiling, or par- 

ticle advection-that is most appropriate for the type of 

information needed at this point in the exploration pro- 

cess. The user then directs the correct data into that sub- 

network, selects parameters, and requests the output. As 

the network is demand-driven, this output request is 

transmitted up through the directed network graph until 

all source modules have received the request. Once these 

have computed their results, the modules connected to 

their output ports execute, and so on until the terminal 

module has delivered the requested output, an image on 

the screen as seen in Figures 7 and 8. 

Conclusion 

We believe that providing an integrated, extensible 

environment for scientific visualization to scientists and 

engineers will enable them to enhance their use of 

powerful new computing and display systems in 

research and development. AVS allows users to integrate 

existing software modules with those that implement 

new algorithms, providing functionality that cuts across 

the scientific and engineering disciplines. It also helps 

minimize the programming required to modify existing 

modules or to implement new modules, allowing appli- 

cations to be tailored to individual needs. 

AVS is currently under development. As of this writ- 

ing (May 1989), the rendering subsystem, AVS I, has seen 

wide use in displaying geometric databases from a vari- 

ety of sources. In addition, a prototype of the visual pro- 

gramming system, AVS II, has been used to create a 

number of visualization applications. Early experiences 

with AVS in the hands of users have helped direct and 

validate the design. Users have demonstrated that the 

environment can be extended without exerting large 

effort. One user developed a graphics application with- 

out AVS based on numerical code from another machine 

in about two weeks. With AVS the same task took about 

one day. Currently, users’ responses to the prototype have 

been employed to refine the look and feel of the user 
interface and the execution model. 

During the early use of AVS, several issues have been 

raised. One such issue is whether the visual program- 

ming interface is the most appropriate for this user com- 

munity. Early adopters find it intuitive, but are these 

users typical? We will continue to develop our current 

40 IEEE Computer Graphics & Applications 



visual programming interface technology and will also 

provide others that seem more natural if needed. The 

ease-of-use issue in scientific visualization software con- 

tinues to be paramount in our efforts. 

The concept of programming via function networks 

is not new. As noted previously there are existing exam- 

ples of this technology. One problem exhibited by these 

implementations is that if the functionality of each mod- 

ule is not high-level enough, the size of the network 

rapidly becomes unmanageable. We strive to keep the 

conceptual level of modules high enough to be useful 

without becoming overly generic. Will this continue to 

be possible? The test will be to demonstrate that modules 

can be defined that are useful across a range of dis- 

ciplines and applications, yet at a functional level that is 

high enough to avoid confusion or overly large networks. 

Another major goal of this environment was to develop 

a single foundation that could be applied to all the com- 

putational sciences. The general consensus in the scien- 

tific visualization field is that a broad commonality exjsts 

among the visual needs of all the numerically intensive 

sciences. While users have applied this computational 

environment to fields as diverse as computational fluid 

dynamics, molecular modeling, geophysics, and 

meteorology, we are keenly awaiting its application to 

fields with a shorter history in numerical computing, 

such as econometrics and the social sciences. Will users 

from these fields find this environment appropriate for 

their needs? 

A number of future enhancements are planned, 

including extensions to allow modules to run in a dis- 

tributed fashion on other systems, to enhance the user 

interface, and to provide better debugging and profiling 

capabilities for flow networks. We also intend to make 

AVS available on multiple platforms and to document the 

architecture to encourage the development of new mod- 
ules by other software and hardware vendors. n 
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