
The Apprentice Challenge

J. STROTHER MOORE and GEORGE PORTER
University of Texas at Austin

We describe a mechanically checked proof of a property of a small system of Java programs involving
an unbounded number of threads and synchronization, via monitors. We adopt the output of the
javac compiler as the semantics and verify the system at the bytecode level under an operational
semantics for the JVM. We assume a sequentially consistent memory model and atomicity at the
bytecode level. Our operational semantics is expressed in ACL2, a Lisp-based logic of recursive
functions. Our proofs are checked with the ACL2 theorem prover. The proof involves reasoning
about arithmetic; infinite loops; the creation and modification of instance objects in the heap,
including threads; the inheritance of fields from superclasses; pointer chasing and smashing; the
invocation of instance methods (and the concomitant dynamic method resolution); use of the start

method on thread objects; the use of monitors to attain synchronization between threads; and
consideration of all possible interleavings (at the bytecode level) over an unbounded number of
threads. Readers familiar with monitor-based proofs of mutual exclusion will recognize our proof
as fairly classical. The novelty here comes from (i) the complexity of the individual operations on the
abstract machine; (ii) the dependencies between Java threads, heap objects, and synchronization;
(iii) the bytecode-level interleaving; (iv) the unbounded number of threads; (v) the presence in the
heap of incompletely initialized threads and other objects; and (vi) the proof engineering permitting
automatic mechanical verification of code-level theorems. We discuss these issues. The problem
posed here is also put forth as a benchmark against which to measure other approaches to formally
proving properties of multithreaded Java programs.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.3.0 [Programming Languages]: General; F.4.0 [Mathematical Logic and Formal
Languages]: General

General Terms: Languages, Verification

Additional Key Words and Phrases: Java, Java Virtual Machine, parallel and distributed compu-
tation, mutual exclusion, operational semantics, theorem proving

1. THE APPRENTICE SYSTEM IN JAVA

In this article we study the Java classes shown in Figure 1. Here, the main
method in the Apprentice class builds an instance of a Container object and
then begins creating and starting new threads of class Job, each of which finds

When this work was done, G. Porter was at the Department of Computer Sciences, University of
Texas at Austin.
Authors’ addresses: J. S. Moore, Department of Computer Sciences, University of Texas at Austin,
Taylor Hall 4.140A, Austin, TX 78712; email: moore@cs.utexas.edu; G. Porter, Department of Elec-
trical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA
94720.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2002 ACM 0164-0925/02/0500–0193 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002, Pages 193–216.

194 • J. S. Moore and G. Porter

class Container {
public int counter;
}
class Job extends Thread {

Container objref;
public Job incr () {

synchronized(objref) {
objref.counter = objref.counter + 1;

}
return this;

}
public void setref(Container o) {

objref = o;
}
public void run() {

for (;;) {
incr();

}
}

}
class Apprentice {

public static void main(String[] args) {
Container container = new Container();
for (;;) {

Job job = new Job();
job.setref(container);
job.start();

}
}

}
Fig. 1. The Apprentice example in Java.

the Container object in its objref field. The run method for the class Job is
an infinite loop invoking the incr method on the job. The incr method ob-
tains a lock on the objref of the job and then reads, increments, and writes
the contents of its counter field. This is a simple example of unbounded par-
allelism implemented with Java threads. The name “Apprentice” is both an
allusion to the “Sorcerer’s Apprentice” (because, under a fair schedule, more
threads are continually being created) and a reminder that this is a beginner’s
exercise.

We prove that under all possible scheduling regimes, the value of the counter
in our model “increases weakly monotonically” in a sense that allows for
Java’s int arithmetic. More precisely, let c be the value of the counter in any
state reachable from the initial state of the Apprentice class. Let c′ be the
value in any immediate successor state. Then one of the following is true:
c is undefined, c′ is c, or c′ is the result of incrementing c by 1 in 32-bit

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 195

twos-complement arithmetic. The first disjunct is only true if the main thread
of the system has not been stepped sufficiently to create the Container. A sim-
ple corollary of the claim above is that once the counter is defined, it “stays
defined.”

We make several basic assumptions. First, the semantics of Java is given
by the Java Virtual Machine (JVM) bytecode [Lindholm and Yellin 1999] gen-
erated by Sun Microsystem’s javac compiler. Second, our formal operational
model of JVM bytecode is accurate, at least for the opcodes in this example.
Third, the JVM provides a sequentially consistent memory model, at least for
“correctly synchronized” programs. That is, any execution of such a JVM pro-
gram must be equivalent to some interleaved bytecode execution. The JVM
memory model, which is described in Chapter 17 of Lindholm and Yellin [1999],
does not require this and probably will not require it for arbitrary programs.
The memory model is under revision [Manson and Pugh 2001]. For details see
www.jcp.org/jsr/detail/133.jsp.

Many readers may think the monotonicity claim is so trivial as not to deserve
proof. We therefore start by demonstrating the contrary.

Readers unfamiliar with multithreaded programming may not see why syn-
chronization is necessary. After all, the only line of code writing to the counter
is the assignment statement

objref.counter = objref.counter + 1;

Such code cannot make the counter decrease even without synchronization.
Right? Wrong. Imagine that two Jobs have been started (with no synchro-
nization block in the incr method). Suppose the first reads the value of
objref.counter, obtains a 0, increments it to 1 in the local memory of the
thread, and is then suspended before writing to the global counter. Suppose
then that the second Job is run for many cycles and increments the counter to
some large integer. Finally, suppose the scheduler suspends the second Job and
runs the first again. That Job will write a 1 from its local memory to the global
counter, decreasing the value that was already there. Hence, the synchroniza-
tion is necessary.

Given the synchronization block, one might be tempted to argue that our
theorem is trivial from a syntactic analysis of the incrmethod. After all, it locks
out all accesses to objref during its critical section. This argument, if taken
literally, is specious because Java imposes no requirement on other threads
to respect locks. At the very least we must amend the syntactic argument to
include a scan of every line of code in the system to confirm that every write to
the counter field of a Container is synchronized. This, however, is inadequate.
Below we describe a “slight” modification of the main method of the Apprentice
class. This modification preserves the systemwide fact that the only write to
the counter field of any Container is the one in the synchronized block of the
incr method. But under some thread interleavings it is still possible for the
counter to decrease.

To see how to do this, consider the fact that objref is a field of the self object,
not a local variable. The synchronization block in the incr method is equivalent

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

196 • J. S. Moore and G. Porter

to the following under Java semantics.

synchronized(this.objref) {
(this.objref).counter = (this.objref).counter + 1;

}
Thus, it is possible to synchronize on one Container (the value of this.objref
at the time the block is entered) and then write to the counter field of another
Container, if some line of code in the system changes the objref field of the
self object of some thread, at just the right moment. (Such code would violate
Praxis 56 in Haggar [2000], where Haggar writes “Do not reassign the object
reference of a locked object.”)

Imagine therefore a different main. This one creates the “normal” Container
and a “bogus” one; then it creates and starts two Jobs, say job1 and job2, as above.
It momentarily sets the objref field of job1 to the bogus Container and then sets
it back to the normal Container. Thereafter, main can terminate, spin, or create
more Jobs. Everything else in this revised system is the same; in particular,
the only write to the counter of any Container is from within the synchronized
critical section of incr, the entire Job class is unchanged, and, except for main,
every thread is running a Job. This modified system is only a few instructions
different from the one shown. But the counter can decrease in it.

Here is a schedule that causes the counter in the normal Container to de-
crease. Schedule main to create the two Containers and Jobs and to set the
objref of job1 to the bogus Container. Next, schedule job1 so that it obtains a
lock on the bogus Container and enters its critical section. Then schedule main
again so that it resets the objref of job1 to the normal Container. Schedule job1
again so that it fetches the 0 in the counter field of the normal Container and
increments it, but suspend job1 before it writes the 1 back. At this point, job1 is
holding a lock on the bogus Container but is inside its critical section prepared
to write a 1 to the counter of normal Container. Now schedule job2 to run many
cycles, to increment the counter of the normal Container. This is possible be-
cause job1 is holding the lock on the bogus Container. Finally, schedule job1 to
perform its write. The counter of the normal Container decreases even though
the Job class is exactly the same as shown in Figure 1.

How can we ensure that no thread changes the objref field of the Job holding
the lock on the Container? If we could ensure syntactically that the system
contained no write to any objref of a Job, we would be safe. But the Apprentice
system necessarily contains such a write in the setrefmethod because we must
point each Job to the Container before the Job is ready to start.

We hope this discussion makes it clear that it is nontrivial to establish that
the code in Figure 1 increments the counter monotonically.

2. SEMANTIC MODEL

Mechanically checked proofs of program properties require the construction or
adoption of a mechanical theorem prover of some sort. This also entails the
choice of a mathematical logic in which the programming language seman-
tics is formalized. We use the ACL2 logic and its theorem prover [Kaufmann
et al. 2000b,a]. The ACL2 logic is a general-purpose essentially quantifier-free

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 197

first-order logic of recursive functions based on a functional subset of Com-
mon Lisp [Steele 1990]. ACL2 is the successor to the Boyer–Moore theorem
prover Nqthm [Boyer and Moore 1997]. Formulas in this logic look like Lisp
expressions.

Rather than formalize the semantics of Java we formalize that of the Java
Virtual Machine [Lindholm and Yellin 1999].

We model the JVM operationally. That is, we adopt an explicit representa-
tion of JVM states and we write, in ACL2’s Lisp subset, an interpreter for the
JVM bytecode. One may view the model as a Lisp simulator for a subset of
the JVM. Our model includes 138 byte codes, and ignores certain key aspects of
the JVM, including class loading, initialization, and exception handling. We call
our model M5, because it is the fifth machine in a sequence designed to teach
formal modeling of the JVM to undergraduates at the University of Texas at
Austin.

An M5 state consists of three components: the thread table, the heap, and
the class table. We describe each in turn. When we use the word “table” here we
generally mean a Lisp “association list,” a list of pairs in which “keys” (which
might be thought of as constituting the left-hand column of the table) are paired
with “values” (the right-hand column of the table). Such a table is a map from
the keys to the corresponding values.

The thread table maps thread numbers to threads. Each thread consists of
three components: a call stack, a flag indicating whether the thread is sched-
uled, and the heap address of the object in the heap uniquely associated with
this thread. We discuss the heap below.

The call stack is a list of frames treated as a stack (the first element of the list
is the topmost frame). Each frame contains six components: a program counter
(pc) and the bytecoded method body, a list positionally associating local vari-
ables with values, an operand stack, a synchronization flag indicating whether
the method currently executing is synchronized, and the name of the class in
the class table containing this method. Doubleword data types are supported.

The heap is a table associating heap addresses with instance objects. An
instance object is a table whose keys are the successive classes in the superclass
chain of the object and whose values are themselves tables mapping field names
to values. A heap address is a list of the form (REF i), where i is a natural
number.

Finally, the class table is a table mapping class names to class descriptions.
A class description contains a list of its superclass names, a list of its immediate
instance fields, a list of its static fields, its constant pool, a list of its methods, and
the heap address of an object in the heap that represents the class. We do not
model syntactic typing on M5. Thus, our list of fields is just a simple list of field
names (strings) rather than, say, a table mapping field names to signatures. A
method is a list containing a method name, the names of the formal parameters
of the method, a synchronization flag, and a list of bytecoded instructions. M5
omits signatures and the access modes of methods.

Bytecoded instructions are represented abstractly as lists consisting of a
symbolic opcode name followed by zero or more operands. Here are three exam-
ples: (IADD), (NEW "Job"), and (PUTFIELD "Container" "counter"). The first

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

198 • J. S. Moore and G. Porter

has no operands, the second has one, and the third has two. Corresponding to
each opcode is a function in ACL2 that gives semantics to the opcode.

Here is our definition of the ACL2 function execute-IADD which we use to
give semantics to the M5 IADD instruction. We call execute-IADD the semantic
function for IADD. We paraphrase the definition below.

(defun execute-IADD (inst th s)
(modify th s

:pc (+ (inst-length inst) (pc (top-frame th s)))
:stack (push (int-fix

(+ (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s)))))

(pop (pop (stack (top-frame th s)))))))

Our function takes three arguments, named inst, th, and s. The first is the IADD
instruction to be executed.1 The second is a thread number. The third is a state.
Execute-IADD returns the “next” state, produced by executing inst in thread th
of state s. The modify expression above is the body of the semantic function. It
constructs a new state by “modifying” certain components of s. Logically speak-
ing, the function does not alter s but instead copies s with certain components
changed. In execute-IADD the components changed are the program counter
and the stack of the topmost frame of the call stack in thread th of state s. The
program counter is incremented by the length (measured in bytes) of the IADD
instruction. Two items are popped off the stack and their “sum” is pushed in
their place. The two items are assumed to be Java 32-bit ints. Their “sum” is
computed by adding the integers together and then converting the result to the
corresponding integer in 32-bit twos-complement representation.

Of special relevance to Apprentice is the support for synchronization. Every
object in the heap inherits from java.lang.Object the fields monitor and
mcount. Roughly speaking, the former indicates which thread “owns” a lock on
the object and the latter is the number of times the object has been locked. Our
model supports reentrant locks but they are not used here. The MONITORENTER
bytecode, when executed on behalf of some thread th on some object, tests
whether the mcount of the object is 0. If so, it sets the monitor of the object to
th, sets the mcount to 1, and proceeds to the next instruction. We say that th
then owns the lock on the object. If MONITORENTER finds that the mcount is non-0
and the monitor is not th, it “blocks,” which in our model means it is a no-op.
Execution of that thread will not proceed until the thread can own the lock.
MONITOREXIT unlocks the object appropriately.

We have formalized 138 bytecode instructions, following Lindholm and Yellin
[1999] as faithfully as we could with the exceptions noted below. For each such
opcode op we define an ACL2 semantic function execute-op.

1By convention, whenever execute-IADD is applied, the opcode of its inst will be IADD and the
remaining elements of inst will be the operands of the instruction. In the case of IADD there are
no other operands, so inst will be the constant (IADD), but for many other opcodes, inst provides
necessary operands.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 199

We define step to be the function that takes a thread number and a state and
executes the next instruction in the given thread, provided that thread exists
and is SCHEDULED.

Finally we define run to take a schedule and a state and return the result
of stepping the state according to the given schedule. A schedule is just a list
of numbers, indicating which thread is to be stepped next. Our model puts
no a priori constraints on the JVM thread scheduler. Stepping a nonexistent,
UNSCHEDULED, or blocked thread is a no-op. By restricting the values of sched in
the expression (run sched s) we can address ourselves to particular schedul-
ing regimes.

(defun run (sched s)
(if (endp sched)

s
(run (cdr sched) (step (car sched) s))))

Lisp programmers will recognize our run as a simulator for the machine
we have in mind. However, unlike conventional simulators, ours is written
in a functional (side effect free) style. The complete ACL2 source text for our
machine is available at www.cs.utexas.edu/users/moore/publications/m5/.
For some additional discussion of this style of formalizing the JVM, see Moore
and Porter [2001].

M5 omits support for syntactic typing, field and method access modes, class
loading and initialization, exception handling, and errors. In addition, our se-
mantics for threading is interleaved bytecode operations (and thus assumes
sequential consistency).

3. THE APPRENTICE SYSTEM IN BYTECODE

Recall the Apprentice system given in Figure 1. Using the Sun Java compiler,
javac, we converted Figure 1 to class files and then, using a tool written by the
authors and called jvm2acl2, we converted those class files to an initial state
for our JVM model. We define *a0* to be this state.2 We exhibit and discuss
a0 below. As with all M5 states, the value of *a0* is a triple consisting of a
thread table, a heap, and a class table.

The initial thread table, shown in Figure 2, contains just one thread, num-
bered 0. The call stack of the thread contains just one frame, poised to execute
the bytecode for the main method of the Apprentice class. As the Apprentice
system runs, more threads will be created by the execution of the (NEW "Job")
instruction at offset 11 below. That instruction allocates a new heap object of
class Job and also constructs a new unscheduled thread because the class Job
extends the class Thread. The newly created thread will become SCHEDULEDwhen
the start method (at main 25) is invoked on the Job.

The initial heap, shown in Figure 3, contains eight instance objects. Each
represents one of the classes involved in this example (or a primitive class

2It is a Common Lisp convention that the names of constants begin and end with “*”.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

200 • J. S. Moore and G. Porter

((0 ; thread number

(; call stack (containing one frame)

(0 ; program counter of frame

nil ; local variables of frame (none)

nil ; stack of frame (empty)

(; bytecoded program of frame (main)
; byte offset from top

(NEW "Container") ; 0
(DUP) ; 3
(INVOKESPECIAL "Container" "<init>" 0) ; 4
(ASTORE 1) ; 7
(GOTO 3) ; 8 (skip)

(NEW "Job") ; 11
(DUP) ; 14
(INVOKESPECIAL "Job" "<init>" 0) ; 15
(ASTORE 2) ; 18
(ALOAD 2) ; 19
(ALOAD 1) ; 20
(INVOKEVIRTUAL "Job" "setref" 1) ; 21
(ALOAD 2) ; 24
(INVOKEVIRTUAL "java.lang.Thread" "start" 0) ; 25
(GOTO -17)) ; 28
UNLOCKED ; synchronization status of frame

"Apprentice") ; class from which this method comes

) ; end of call stack

SCHEDULED ; scheduled/unscheduled status of thread

nil)) ; heap address of object representing this

; thread (none)

Fig. 2. The initial thread table.

supported by our machine). Each object is of class java.lang.Class, from
which it gets a <name> field, and each extends java.lang.Object, from which
it gets the monitor, mcount, and wait-set fields. We omit most of the fields
after the first object, since they all have the same structure. These fields
of Class objects are used by synchronized static methods. We discuss syn-
chronization below. The object at heap location 0 represents the java.lang.-
Object class itself. The heap address referring to this object is (REF 0). As
the main method executes, new objects in the heap will be created. A new
Container is built by the execution of the NEW instruction at main 0, and new
Jobs are built thereafter as the main program cycles through the infinite loop,
main 11–28.

The initial class table contains eight class declarations. The first five are for
the built-in classes java.lang.Object, ARRAY, java.lang.Thread, java.lang.-
String, and java.lang.Class.

Figure 4 presents the class declaration for the Apprentice class. We have
omitted the bytecode for the main method, since it is shown in Figure 2.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 201

((0 ("java.lang.Class" ("<name>" . "java.lang.Object"))
("java.lang.Object" ("monitor" . 0)

("mcount" . 0)
("wait-set" . 0)))

(1 ("java.lang.Class" ("<name>" . "ARRAY"))
("java.lang.Object" . . .))

(2 ("java.lang.Class" ("<name>" . "java.lang.Thread"))
("java.lang.Object" . . .))

(3 ("java.lang.Class" ("<name>" . "java.lang.String"))
("java.lang.Object" . . .))

(4 ("java.lang.Class" ("<name>" . "java.lang.Class"))
("java.lang.Object" . . .))

(5 ("java.lang.Class" ("<name>" . "Apprentice"))
("java.lang.Object" . . .))

(6 ("java.lang.Class" ("<name>" . "Container"))
("java.lang.Object" . . .))

(7 ("java.lang.Class" ("<name>" . "Job"))
("java.lang.Object" . . .)))

Fig. 3. The initial heap.

("Apprentice" ; class name

("java.lang.Object") ; superclasses

nil ; instance fields (none)

nil ; static fields (none)

nil ; constant pool (empty)

(; methods

("<init>" ; initialization method name

nil ; parameters (none)

nil ; synchronization flag

(ALOAD 0) ; method body

(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN))
("main" ; main method name

(|JAVA.LANG.STRING[]|) ; parameters (one)

nil ; synchronization flag

(NEW "Container") ; method body

. . .

(GOTO -17)))
(REF 5)) ; heap address of class representative

Fig. 4. The Apprentice class description.

Figure 5 presents the class declaration for the Container class. Note that it
has one instance field, namely, counter. It has only one method, the initializa-
tion method.

Finally, Figure 6 presents the class declaration for the Job class. It has one
field objref into which the Container object will be stored. The class has an

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

202 • J. S. Moore and G. Porter

("Container" ; class name

("java.lang.Object") ; superclasses

("counter") ; instance fields

nil ; static fields (none)

nil ; constant pool (empty)

(("<init>" ; methods

nil
nil
(ALOAD 0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN)))

(REF 6)) ; heap address of class representative

Fig. 5. The Container class description.

initialization method and the three user-defined methods, incr, setref, and
run. The instructions marked with * in the incr method are within the critical
section of that method.

4. THE THEOREM AND ITS PROOF

The theorem we prove is named Monotonicity and is stated formally in ACL2
below. It may be paraphrased as follows. Let s1 be the state obtained by run-
ning an arbitrary schedule sched, starting in the initial state of the Apprentice
system *a0*. Thus, by construction, s1 is some arbitrary state reachable from
a0. Let s2 be the state obtained by stepping an arbitrary thread from s1.
Thus, s2 is any possible successor of s1. Suppose the value of the counter in s1
is not nil. Then the counter in s2 is either that in s1 or is one greater (in the
32-bit twos-complement sense of Java arithmetic).

THEOREM. Monotonicity.

(let* ((s1 (run sched *a0*))
(s2 (step th s1)))

(implies (not (equal (counter s1) nil))
(or (equal (counter s2)

(counter s1))
(equal (counter s2)

(int-fix (+ 1 (counter s1)))))))

Our proof of the theorem is based on our definition of an invariant on states,
named good-state. We prove three main lemmas.

—Lemma 1: *a0* satisfies good-state.
—Lemma 2: if s is a good-state, then so is (step th s), the result of stepping

(any) thread th in s.
—Lemma 3: if s is a good-state, then either its counter is nil or else the

desired relation holds between its counter and that of (step th s).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 203

("Job" ; class name

("java.lang.Thread" "java.lang.Object") ; superclasses

("objref") ; instance fields

nil ; static fields (none)

nil ; constant pool (empty)

(("<init>" ; methods

nil

nil

(ALOAD 0)

(INVOKESPECIAL "java.lang.Thread" "<init>" 0)

(RETURN))

("incr" ; incr method

nil ; parameters (none)

nil ; synchronization flag

(ALOAD 0) ; 0

(GETFIELD "Job" "objref") ; 1

(ASTORE 1) ; 4

(ALOAD 1) ; 5

(MONITORENTER) ; 6

(ALOAD 0) ; 7 *

(GETFIELD "Job" "objref") ; 8 *

(ALOAD 0) ; 11 *

(GETFIELD "Job" "objref") ; 12 *

(GETFIELD "Container" "counter") ; 15 *

(ICONST 1) ; 18 *

(IADD) ; 19 *

(PUTFIELD "Container" "counter") ; 20 *

(ALOAD 1) ; 23 *

(MONITOREXIT) ; 24 *

(GOTO 8) ; 25

(ASTORE 2) ; 28

(ALOAD 1) ; 29

(MONITOREXIT) ; 30

(ALOAD 2) ; 31

(ATHROW) ; 32

(ALOAD 0) ; 33

(ARETURN)) ; 34

("setref" ; setref method

(CONTAINER) ; parameters

nil ; synchronization flag

(ALOAD 0) ; 0

(ALOAD 1) ; 1

(PUTFIELD "Job" "objref") ; 2

(RETURN)) ; 5

("run" ; run method

nil ; parameters

nil ; synchronization flag

(GOTO 3) ; 0

(ALOAD 0) ; 3

(INVOKEVIRTUAL "Job" "incr" 0) ; 4

(POP) ; 7

(GOTO -5))) ; 8

(REF 7)) ; heap address of class representative

Fig. 6. The Job class description.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

204 • J. S. Moore and G. Porter

From Lemmas 1 and 2 and induction it is easy to prove

—Lemma 4: (run sched *a0*) is a good-state; that is, every reachable state
is good.

PROOF OF MONOTONICITY. From Lemma 4 we conclude that state s1 of Mono-
tonicity is a good state. From Lemma 2, therefore, s2 is also a good state. Hence,
from Lemma 3, we can conclude that the relation holds when the counter is
defined. h

Lemma 1 is trivial to prove by computation, since *a0* is a constant and
good-state is just a Lisp function we can evaluate.

Lemmas 2 and 3 are basically proved the same way, so we discuss only
Lemma 2. We break the proof into three cases depending on the number, th, of
the thread, being stepped. The first case (Lemma 2a) is when th is 0; in this
case, the main method is being stepped. The second (Lemma 2b) is when th is
the number of some SCHEDULED thread other than 0; such a thread will neces-
sarily be running a Job. The third case (Lemma 2c) is when th is anything else;
in this case, either th is not a thread number or indicates a still-UNSCHEDULED
Job (one created by the NEW at main 11 but not yet started by the INVOKEVIRTUAL
at main 25). Stepping such a th is a no-op.

See www.cs.utexas.edu/users/moore/publications/m5/ for the ACL2
source text for our proof.

5. THE GOOD STATE INVARIANT

Defining good-state is the crux of the proof. Roughly speaking, good-state
characterizes the reachable states. The definition may be found at the URL
above. We merely present the highlights here.

The formal definition of good-state is shown below. The variable counter,
below, is bound to the value of the counter field of the Container at location 8
of the heap of s. We know that (in the good states) the Container created by the
Apprentice system will be referenced by (REF 8).

In addition, the variables monitor and mcount are bound, below, to the cor-
responding java.lang.Object fields of the Container object.

As the definition below makes clear, s is considered a good state provided it
has a good class table, a good thread table, a good heap, and a certain condition
holds on the counter, mcount, and monitor.

(defun good-state (s)
(let ((counter (gf "Container" "counter" 8 (heap s)))

(monitor (gf "java.lang.Object" "monitor" 8 (heap s)))
(mcount (gf "java.lang.Object" "mcount" 8 (heap s))))

(and (good-class-table (class-table s))
(good-thread-table (thread-table s)

(- (len (heap s)) 1)
counter monitor mcount)

(good-heap (thread-table s) (heap s))
(or (equal (len (heap s)) 8)

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 205

(and (integerp counter)
(if (equal mcount 0)

(equal monitor 0)
(and (equal mcount 1)

(< 0 monitor)
(< monitor (- (len (heap s)) 8)))))))))

The condition is that either the Container has not yet been allocated or else
counter is an integer and either the mcount and monitor is 0 (meaning the
Container is unlocked) or else the mcount is 1 and the monitor is the number of
a Job thread in the Apprentice system.

The notions of “good” thread table and “good” heap are interdependent. In-
deed, the two main aspects of the invariant concern both the thread table and
the heap. A thread can be in its critical section only if it owns the monitor, a
condition that requires inspecting the heap. Similarly, the object in the heap
representing a particular Job must have its objref field set to the Container,
unless main has not yet reached the setref for that Job, a condition that re-
quires inspecting the thread table. Disentangling these two notions was one
key to our success. Since we have to prove that good-state is invariant under
step, it was important to make each conjunct above “as invariant” as possible.

Our disentangling is most apparent in the application of good-thread-table
above. That predicate needs just four items from the heap: the heap address of
the last object in the heap and the values of the counter, monitor, and mcount.
Proving good-thread-table invariant is relatively easy for steps that do not
change these quantities. The disentangling is not apparent in the application
of good-heap above; but inside the definition of that predicate we apply an
auxiliary predicate to the heap and pass it a flag that indicates whether the
setref for the most recently created Job has been executed.

We now discuss the three main conjuncts above. The good-class-table pred-
icate just recognizes the class table of the Apprentice system.

The good-thread-table predicate requires that thread 0 be running
Apprentice main (and the methods it invokes) and that all other threads be
Jobs appropriately spawned by main. By looking at the bytecoded programs
and the class names of each frame of a call stack we can tell which meth-
ods are running; the program counter of the frame tells us where execution
is. The call stack may be deep; for example, the top frame may be running
java.lang.Thread.<init>, in which case the frame below it must be suspended
at instruction 1 of Job.<init> and the frame below that must be suspended at
instruction 15 of main.

All the threads must be “good” in a sense that depends on which methods
are running in them. To check these conditions it is necessary to know the heap
address of the last object in the heap as well as the current counter, mcount,
and monitor values. The last object in the heap may or may not be a Job and, if a
Job, may or may not be SCHEDULED, depending on where control is in main. If one
of the Job threads is running the incr method and is in its critical section, then
we must ensure that the corresponding thread owns the lock on the Container
and that certain items (thought of by us as the value of the counter or derived

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

206 • J. S. Moore and G. Porter

from that value) in the thread’s local state are accurate relative to the actual
value of the counter.

We now turn to the good-heap predicate. One requirement on a “good” heap
is that it start with the “standard prefix” which contains the eight previously
mentioned objects representing the primitive and loaded classes of the Appren-
tice system. In addition, “good” heaps may subsequently contain the Container
followed by a sequence of Jobs, but whether these objects are present and their
exact configurations depend on the program counter in the main program of
thread 0. The Container does not exist until the first instruction has been ex-
ecuted. Each new Job comes into being at instruction 11 but is not fully set
up until the execution of the setref at instruction 21 is nearly completed. It
is crucial that the objref field of a Job point to the Container when incr is
invoked, but Jobs do not come into existence satisfying that invariant.

In all, our good-state invariant involved the definition of 32 functions and
predicates, consuming a total of 565 lines of pretty-printed ACL2. Many defini-
tions could be eliminated at some cost to the perspicuity of the invariant and our
function names are quite long, for example, Good-java.lang.Object.<init>-
Frame. Syntactic measures of complexity are misleading here. The best way
to think of good-state is that it almost perfectly characterizes the reachable
states. How does it fail?

Consider the call stack of thread 0 and, in particular, the frame in that stack
running main. Is there a frame under that one? In fact, there is never a frame
under the main frame in any reachable state. But it is not necessary to say so,
because there is no return in the main frame. Our notion of good-state allows
arbitrary frames under the main one. Similarly, we characterize the values of
locals 1 and 2 of the main frame, but do not say there are no others.

The invariant was created manually, starting with the main idea: no two
threads are in their critical section simultaneously. How is this said? If a Job
is in the incr method and the program counter is between 7 and 24, then the
monitor of the Container is the thread number of the thread in question and the
mcount of the Container is 1. Working backward from there, we had to ensure
that the object upon which MONITORENTER is called is indeed the Container,
which is located at heap address 8. That in turn forced us to require that the
objref of the Job is the Container, and so on.

We envision mechanized tools to fill in these simple but tedious aspects of the
invariant; such tools are necessary if this method were to be used repeatedly on
still larger Java programs. We have developed no such tools yet. Our interest
in this exercise was in proving the invariant.

6. THE MECHANIZED PROOFS

Here is Lemma 2b. It says good-state is preserved when the thread being
stepped, th, is running a SCHEDULED job. The first hypothesis establishes that s
is a good-state. The next three establish that th is the number of a Job thread
in such a state. The last hypothesis is largely redundant: essentially all it adds
is that thread th is SCHEDULED. By explicitly saying the thread is “good” we make
this lemma a little easier to prove.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 207

LEMMA 2b.

(implies (and (good-state s)
(integerp th)
(<= 1 th)
(<= th (- (len (heap s)) 9))
(good-thread th

’SCHEDULED
(assoc-equal th (thread-table s))
(gf "Container" "counter" 8 (heap s))
(gf "java.lang.Object" "monitor" 8 (heap s))
(gf "java.lang.Object" "mcount" 8 (heap s))))

(good-state (step th s)))

The conclusion is that the result of stepping th is a good-state.
How should we go about proving this formula? Consider a case analysis

on s based on the expansion of the good-state and good-thread hypotheses.
Those hypotheses essentially describe all the possible states of thread th. For
each of those states of thread th, we can determine the instruction that will be
executed by the step expression in the conclusion. It is fairly obvious that one
should not expand the step expression until such a determination is possible;
the premature expansion of step (i.e., the expansion of step before the next
instruction can be uniquely determined) results in an explosion of cases. In
the worst case, it will result in the symbolic consideration of all possible next
instructions, even those not occurring in class files in question. For this reason,
we configure ACL2 so as not to expand step until the next instruction can
be determined [Boyer and Moore 1996]. This configuration is done by “user-
level” interactions with ACL2, namely, stating lemmas and disabling certain
definitions, before Lemma 2b is proved.

Even when so configured, if the theorem prover attacks Lemma 2b on its
own, it expands both good-state expressions and the good-thread expression
and considers all the cases. There are initially 28,944 of them, although many
of them are contradictory and can be dismissed with further simplification.
However, that was not the attack we wanted (indeed, we did not even consider
letting the theorem prover try such a direct approach until we were assembling
data for this article).

The attack we used is:

(i) expand the good-state and good-thread expressions in the hypothesis,
break the formula into cases, and simplify maximally to eliminate impos-
sible combinations;

(ii) when no further simplification is possible, expand the step in the conclu-
sion and simplify maximally; and

(iii) when no further simplification is possible, expand the good-state in the
conclusion and simplify maximally.

Phase (i) of this attack generates about 400 subgoals. Phase (ii) then expands
the step expression in each of these. In most cases, phase (ii) expansion gen-
erates only one subgoal; but in about a quarter of the cases it generates up to

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

208 • J. S. Moore and G. Porter

10 cases, most of which are dismissed by further simplification. In each of the
remaining cases, phase (iii) expands the concluding good-state. Each of the
resulting cases is proved.3

In all, during the proof of Lemma 2b, approximately 2800 subgoals are con-
sidered and there are about 1000 tips of the proof tree. Each case requires about
150 to 200 lines (about 6000 bytes or 2 to 3 pages) of text to print, so the for-
mulas are moderately large. The theorem prover generates a total of 19 MB
of text to describe the proof, although of course we do not read it.4 The theo-
rem prover spends 2854 seconds (about 48 minutes) proving Lemma 2b on a
728 MHz Pentium III with 256 MB of RAM, running Allegro Common Lisp.

This same three-phase simplification strategy is provided as a hint in the
proofs of Lemmas 2a (559 seconds), 3a (369 seconds), and 3b (1686 seconds).
Lemmas 1, 2c, and 3c are trivial, requiring less than a tenth of a second each
to prove.

In addition to the lemmas discussed in this article, we had to prove approx-
imately 75 helper lemmas. The need for these lemmas was discovered using
“The Method” described in Kaufmann et al. [2000b]. We name and paraphrase
a few of the lemmas here, omitting many details.

—len-bind: The length of a table (e.g., heap or thread-table) grows by one when
a new entry is added.

—good-objrefs-new-thread (good-threads-new-thread): If the heap (thread-
table) is good and a new thread is allocated, the heap (thread-table) is still
good.

—good-threads-new-schedule: If the thread-table is good and a thread’s status
is switched from UNSCHEDULED to SCHEDULED, it is still good.

—rreftothread-good-threads: The object representing thread i has heap ref-
erence (REF i+ 8). (The arithmetic correspondence is unimportant; this the-
orem was a succinct way to establish that distinct threads have distinct rep-
resentatives in the heap. Although the JVM does not permit arithmetic on
references, in our model, JVM objects are numbered sequentially in order of
their creation and one can use arithmetic to describe that ordering.)

—good-threads-step-over-monitorenter: If the thread-table is good when the
Container is not locked and a thread locks the Container, then the thread-
table is good with the Container locked by that thread.

—good-threads-step-over-putfield: If the thread-table is good for a certain
value of the counter and the Container is locked by a given thread, then the
thread-table is good for the next “highest” value of the counter.

Generally speaking, these are inductively proved lemmas that require only a
few seconds each to prove.

3The first time we tackled the Apprentice challenge we configured ACL2 to do “phased simplifica-
tion” by first proving some rather cleverly designed lemmas. We subsequently saw the utility of
phased simplification and ACL2 was changed to provide basic support for it through the computed
hint facility.
4The theorem prover’s output is most often read only when a case fails.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 209

A total of 85 theorems was stated by the user and proved by the system. ACL2
Version 2.6, running on a 728 MHz 256 MB Pentium III in Allegro Common
Lisp requires 6869 seconds (about 115 minutes) to construct/check this proof.
The proof would take approximately two-thirds as much time if Lemmas 2b
and 3b were combined; most of the time for each of those is spent in phases (i)
and (ii), which are identical for both lemmas. We proved them separately for
pedagogical reasons.

7. HUMAN EFFORT

How much time was spent developing this proof ? That is a common question
in connection with mechanized theorem-proving projects. The question is hard
to answer in this case because the project was done three times.

The first time, we used our simplest JVM thread model, named M4, which
supports about 20 JVM bytecodes. We coded a version of Apprentice directly in
M4 bytecode; the version had a main method that spawned exactly two Jobs.
Our original motivation was simply to give us a multithreaded example upon
which we could test our then-new M4 model.

We decided to use the example as our first M4 proof exercise. Because the
M4 model supports unbounded arithmetic, the counter in that system increases
monotonically (no wraparound). We proved this using the same approach de-
scribed here: we defined a good-state predicate and proved its invariance
and other properties using phased simplification. We invented phased sim-
plification for that application and spent a day developing a clever suite of
rewrite rules and “destructor elimination” rules to “trick” ACL2 into perform-
ing phased simplification. The total amount of time spent on the 2-Job M4 ver-
sion of Apprentice was one week, from testing of the M4 bytecode to the final
“Q.E.D.”

The proof was presented to the Austin ACL2 user’s group meeting a few
days later, on October 4, 2000. We had mentioned the problem as part of the
round-table discussion the week before. At that time, Pete Manolios, a member
of our group (now on the CS faculty at Georgia Institute of Technology), had
made some valuable comments about how to define the good-state invariant
and had pursued his ideas on his own. At the October 4 meeting, Manolios also
presented his proof of the 2-Job version. His proof was based on the observa-
tion that, except for the value of the counter, the 2-Job system is finite-state.
Manolios devised a mostly automatic way of generating an invariant by combin-
ing symbolic simulation and reachability analysis to fully explore a finite-state
abstraction of the 2-Job system. The process was carried out in ACL2. He spent
about two days on his proof. A full description of Manolios’ technique will appear
elsewhere.

Since our proof could be “easily” lifted to n Jobs, we changed the main method
to create an unbounded number of Jobs. The good-state invariant was gener-
alized appropriately and the theorem proved again (on October 8, 2000). In our
2-Job proof we had broken the invariance theorem into three lemmas, one for
stepping thread 0, one for stepping thread 1, and one for stepping thread 2.
To do the n-Job case we invented the decomposition shown here. The total

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

210 • J. S. Moore and G. Porter

amount of time we spent lifting the 2-Job problem to the n-Job problem was
8 hours.

The next time we looked at the problem was in July, 2001. By then several
things had changed: (i) we had M5 with its (bounded) int arithmetic and 138
realistically modeled JVM bytecodes, (ii) we had jvm2acl2 to convert class files
to the M5 formalism mechanically, and (iii) we had built-in support for phased
simplification.

We decided to use the Apprentice example as our first M5 proof exercise. We
discarded the hand-coded M4 methods and used jvm2acl2 to produce the javac
bytecode shown here. The mechanically generated code was somewhat differ-
ent from our original code, most significantly due to the use of INVOKESPECIAL
to initialize each new object. In addition, the initial heap in the M5 model
was different because of the existence of objects representing classes. This also
changed the association of thread numbers to heap addresses, but in a linear
way. The introduction of 32-bit arithmetic also required changes to the state-
ment of Monotonicity. All these changes required a careful inspection and redef-
inition of the good-state invariant and the restatement of some of the lemmas.
We spent a total of about 20 hours porting the hand-coded M4 n-Job proof to the
proof described here. About 6 of those hours were spent struggling with an im-
possible subgoal introduced by a careless mistake in our translation of a lemma.
The mistake weakened the lemma so that it was provable but not useful.

8. RELATED WORK

Formally modeling computing machines operationally has a long tradition.
McCarthy [1962] said “The meaning of a program is defined by its effect on
the state vector.” Mechanically analyzing programs with respect to a formally
defined operational semantics also has a long tradition, especially in the Boyer–
Moore community, where many techniques have been developed for it [Boyer
and Moore 1996]. A good example of this is Yu’s work [Boyer and Yu 1996] in
which 21 of the 22 Berkeley C String Library subroutines were verified by me-
chanically analyzing the binary code produced by gcc -o for a Motorola 68020
model in Nqthm.

Turning to the modeling of Java and the JVM, the first mechanized formal
model we know of was Cohen’s “defensive JVM” [Cohen 1997] in ACL2. Cohen’s
machine includes type tags on all data objects so that type errors can be detected
and signaled at run-time. It was designed for use in verifying the bytecode
verifier. Cohen’s machine does not include as many bytecodes as M5 nor does
it include threads.

Our M5 is the fifth machine in a series of ACL2 models approaching the JVM.
Our series was based on Cohen’s machine and initially developed by Moore (with
help from Cohen) to teach an undergraduate course at the University of Texas
at Austin on modeling the JVM in ACL2. The sequential predecessor of M5
is discussed in Moore [1999b], including how we use ACL2 to prove theorems
about sequential bytecode programs.

ACL2 was used to model the Rockwell JEM1 microprocessor, the world’s
first silicon JVM, now marketed by aJile Systems, Inc. The ACL2 model was

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 211

used as the standard test bench on which Rockwell engineers tested the chip
design against the requirements by executing compiled Java programs. The
ACL2 model executed at approximately 90% of the speed of the previously used
C model [Greve and Wilding 1998; Greve 1998]. Greve et al. [2000] describe
how microprocessor models in ACL2 are made to execute quickly. The model
there executes at approximately 3 million simulated instructions per second on
a 728 MHZ Pentium III host running Allegro Common Lisp.

The JEM1 model illustrates an advantage of executable formal models: they
can be tested and compared to other models of the artifact. At Advanced Micro
Devices, an executable ACL2 model of the RTL for the AMD AthlonTM floating-
point square root was tested on 80 million floating-point vectors. The model
computed the same answers as AMD’s RTL simulator and this fact helped
establish confidence in the formal model. ACL2 was then used to prove that the
RTL for each elementary floating-point operation on the Athlon was compliant
with the IEEE 754 floating-point standard [Russinoff 1998].

We now turn to related mechanized formal work other than that by the ACL2
community.

The Extended Static Checker (ESC) [Detlefs et al. 1998] is an example of
a formal, practical, and mechanized tool for establishing certain simple asser-
tions about Modula-3 programs. It is the basis of the ESC/Java verifier [Leino
et al. 2000] for Java. ESC and ESC/Java can check that no shared variable is ac-
cessed without holding a mutual exclusion lock on the variable (“simple locking
discipline”) which is also enforced by the dynamic checking tool Eraser [Sav-
age et al. 1997]. Although the ESC tools and Eraser can deal with dynamically
allocated shared variables, they are incapable of dealing with the race condi-
tions involved in the Apprentice system [private communication]. The authors
recently learned that Shaz Qadeer of HP SRC, Palo Alto, California, has imple-
mented a related tool, called Calvin, with which this example can be analyzed
automatically with a few annotations [private communication].

The Java PathFinder [Brat et al. 2000; Visser et al. 2000] (JPF) is an explicit-
state model-checker for programs written in Java. It can check certain kinds of
invariants and deadlock. A tool with similar functionality is Bandera [Dwyer
et al. 2001]. Both of these model-checking tools have been used to check proper-
ties of a Java version of the DEOS real-time operating system kernel, a program
involving approximately 20 classes, 6 threads, 91 methods, 41 instance fields,
and 51 static fields. The property was a complex time-partitioning requirement.

An anonymous referee of this article used JPF to check a simplified ver-
sion of the Apprentice problem and that experiment is quite illuminating as a
comparison between model-checking and theorem proving.

To check the invariant, the referee added a new field, prev, to the Container
and modified incr to store the old value of the counter into prev before in-
crementing the counter field. To cope with a limitation of the version of JPF
being used (but fixed in more recent releases), the referee split the assignment
statement in incr: (i) add 1 to the value of the counter and save the result into
temp, and (ii) assign the value of temp to the counter. The referee then added an
assertion at the end of the incr method to check prev ≤ counter. In addition, to
keep the state-space “tractable,” the referee modified run to call incr only three

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

212 • J. S. Moore and G. Porter

times and modified main to spawn only three Jobs. Let us call this the “finite
Apprentice” example.

The referee then produced a “buggy version” of that problem by modifying
main to generate a “bogus” Container and to reset temporarily the objref of a
running Job so that the lock could be obtained on the bogus Container, as we
described in Section 1. Both the buggy version and correct version of the finite
Apprentice were submitted to JPF.

The referee writes “When carrying out the experiments above, it took me
less than 5 minutes to set up the tool and start the model-check running. On
the buggy version, the defect was found in less than a minute of run-time. For
the correct version, the model-checker ran for 1 minute and 37 seconds (on a
450 MHz Pentium Xeon quad-processor running Linux).”

What is learned from this experiment? The fact that the buggy version was
rejected with so little human effort is a powerful argument for the utility of
such tools as JPF. As noted, we spent days working on our proof. Furthermore,
less training is required to use a tool like JPF than to use ACL2 and hence more
properties might be checked.

However, the property checked with JPF in this instance is much weaker
than our property. JPF supports several levels of atomicity in modeling concur-
rency. The level chosen for the experiment in question was “line of source code.”
To use that granularity and still detect the bug in the buggy version it was
necessary to split the assignment statement into two lines. JPF also supports
bytecode-level interleaving but that tends to blow up the search space. Tech-
nological and coding improvements will make this less of a problem in future
versions of JPF tool.

Another sense in which the property checked in this experiment is weaker
than ours is that it was checked only when some thread was in the incr method,
not “all the time.” Both Bandera and later versions of JPF support LTL checking
and thus would be able to attack true invariance now.

Somewhat more problematic is the use of a program variable, prev, to
“capture” the property being checked. The experiment establishes that every
time incr writes to the counter, prev≤ counter. This does not mean the counter
increases monotonically. The same invariant can be true for systems where
the counter decreases, as long as prev is suitably set. The property checked
“captures” the intuitive notion of “monotonicity” only if one understands how
prev is being set elsewhere in the system. In our approach, the property being
checked is stated outside the target software.

Finally, because of Java’s int arithmetic, the counter does not increase
monotonically in the Apprentice problem even though it does so in the finite
Apprentice problem. Given the limitations adopted to create finite Apprentice,
incr is called at most nine times. Since the counter starts at 0, it can only
reach 9 and hence actually does increase every time it changes. But had the
finite limitations allowed incr to be called more than 231 times, the “invariant”
prev ≤ counter would be found to be false. On a modern machine, the counter
in Apprentice can be expected to decrease (wrap around) several times an
hour. The invariant proved on finite Apprentice is invalid on the Apprentice
problem.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 213

None of this is meant to suggest that model-checking tools such as JPF are not
extremely useful. The fact that the buggy finite Apprentice was detected with
relatively little work is a demonstration of the value of such tools. Furthermore,
this example of JPF does not fully represent the gap between model-checking
and theorem proving. But, whether we use model-checking or theorem proving,
we must reflect carefully on the conclusions we draw from successful checks of
simplified systems.

There are other theorem-proving based approaches to Java verification. One
such tool is the LOOP tool [Berg et al. 2000; van den Berg and Jacobs 2001]
which translates Java and JML (a specification language tailored to Java)
classes into their semantics in higher-order logic. As such, LOOP can be used
as a front-end for such theorem provers as PVS [Owre et al. 1992] and Isabelle
[Nipkow and Paulson 1992]. However, LOOP currently deals only with sequen-
tial Java.

Other related work includes Pusch [1998] and Barthe et al. [2001], where
models of the JVM are formalized in Isabelle and Coq [Dowek et al. 1991].
In both efforts, the correctness of the bytecode verifier is addressed and the
JVM models are largely concerned with type correctness rather than full
functionality.

9. CONCLUSION

Readers familiar with monitor-based proofs of mutual exclusion, as well as
users of ACL2 familiar with proving properties of operational models of micro-
processors, will recognize our proof as fairly classical. The novelty here comes
from

(i) the complexity of the individual operations on the abstract machine,
(ii) the dependencies between Java threads, heap objects, and synchroniza-

tion,
(iii) the bytecode-level interleaving,
(iv) the unbounded number of threads,
(v) the presence in the heap of incompletely initialized threads and other ob-

jects, and
(vi) the proof engineering permitting automatic mechanical verification of

code-level theorems.

We speculate that the JVM is an appropriate level of abstraction at which to
model Java programs. If that is true, why is the Apprentice example so challeng-
ing? The answer is in items (i) to (v) above. Perhaps direct use of Java seman-
tics would reduce the complexity? We believe not. The most complex features
of Java exploited by Apprentice—construction and initialization of new objects,
synchronization, thread management, and virtual method invocation—are all
supported directly and with full abstraction as single atomic instructions in the
JVM, for example, NEW, INVOKESPECIAL, MONITORENTER, and INVOKEVIRTUAL. The
complexity of this example, we argue, stems from Java’s semantics. The JVM is
straightforward to formalize, especially so compared to the semantics of Java,

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

214 • J. S. Moore and G. Porter

and is the basic abstraction Java implementors are expected to respect. Given
our goal of verifying properties of Java programs, the JVM seems to be both an
appropriate and a critical abstraction.

We are working on tools to help make proofs such as this easier, including
assistance with the formalization of invariants, visualization tools for symbolic
simulation of state machine models, standard simplification strategies, and the
development of lemma libraries that ease the manipulation of our operationally
defined abstractions.

We believe the Apprentice class is a good benchmark for formally based proof
systems for Java. The Java expression of the class (Figure 1) is only about 30
lines long. The theorem can be stated in a few lines, given the definition of the
bytecode semantics. The proof necessarily involves reasoning about the cre-
ation of instance objects and threads in the heap, the inheritance of fields from
superclasses, pointer chasing and smashing, bounded arithmetic, infinite loops,
the invocation of instance methods, dynamic method resolution, the starting of
new threads, the reading and writing of fields in the heap, the use of monitors
to attain synchronization between threads, and consideration of all possible in-
terleavings or scheduling over an unbounded number of threads. Furthermore,
Apprentice is not far from the “natural” domain of both model-checking and
theorem-proving technologies.

Despite the large size of our good-state predicate, the ACL2 theorem prover
was up to the task of proving it invariant, with some key help from the user
such as the formulation of the necessary inductively proved lemmas and the
suggestion to use phased simplification.

We are dismayed by the size of the good-state invariant even though we can
imagine mechanically generating much of it.

It would be nice to be able to factor the proof so as to separate the activity
of the main thread from that of the Jobs. We achieved a little such factoring
in our decomposition of Lemma 2 into parts a, b, and c. However, there is still
too much entanglement, as illustrated by the fact that the notion of whether
the heap is “good” depends upon where the program counter is in thread 0. One
possibility is the transformation into a uniprocessor view as described in Moore
[1999a], although we do not see how to do this yet.

One reason we put this forward as a benchmark is so that we and others are
stimulated to find better solutions while preserving the challenging aspects
of this formulation of the problem. Key aspects of the problem we solved in-
clude that threads and classes are objects in the heap; objects contain mutable
pointers to other objects; objects inherit fields from superclasses; threads can be
created, manipulated as objects; and started as processes: that synchronization
is achieved through monitors that need not be respected by all code; and that
an unbounded number of Jobs (objects and threads) are involved.

The problem is somewhat simpler if one assumes all the Job threads have
been created, initialized, and started before monotonicity is considered. But
realism compelled us to allow the main thread to continue to “boot up” new
threads throughout the computation, preventing the system from ever achiev-
ing a “steady state” and forcing the invariant to deal with “ill-formed” (incom-
pletely initialized) objects in the heap. Of particular note is the fact that the

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

The Apprentice Challenge • 215

invariant must allow the execution of code that writes to the objref field of
a Job.

The problem is simpler still if one assumes only a small fixed number of
preexisting Jobs, as might actually be the case in some application areas such
as embedded control. But, given trends in multithreaded programming, it is
worthwhile to develop techniques for dealing with large numbers of threads.

ACKNOWLEDGMENTS

We are grateful to David Hardin and Pete Manolios, each of whom made valu-
able suggestions in the course of this work. In addition, we thank the anony-
mous referee who model-checked the two versions of finite Apprentice with JPF.
We deeply appreciate that contribution to this article.

REFERENCES

BARTHE, G., DUFAY, G., JAKUBIEC, L., SERPETTE, B., AND DE SOUSA, S. M. 2001. A formal executable
semantics of the JavaCard platform. In ESOP 2001, D. Sands, Ed. Lecture Notes in Computer
Science, vol. 2028, Springer-Verlag, Heidelberg, 302–319.

BERG, J. V. D., HUISMAN, M., JACOBS, B., AND POLL, E. 2000. A type-theoretic memory model for
verification of sequential Java programs. In Recent Trends in Algebraic Development Techniques
(WADT’99), D. Bert and C. Choppy, Eds. Lecture Notes in Computer Science, vol. 1827, Springer-
Verlag, Heidelberg, 1–21.

BOYER, R. S. AND MOORE, J. S. 1996. Mechanized formal reasoning about programs and computing
machines. In Automated Reasoning and Its Applications: Essays in Honor of Larry Wos, R. Veroff,
Ed., MIT Press, Cambridge, Mass., 147–176.

BOYER, R. S. AND MOORE, J. S. 1997. A Computational Logic Handbook, Second Edition. Academic,
New York.

BOYER, R. S. AND YU, Y. 1996. Automated proofs of object code for a widely used microprocessor.
J. ACM 43, 1 (January), 166–192.

BRAT, G., HAVELUND, K., PARK, S., AND VISSER, W. 2000. Java PathFinder—A second generation
of a Java model checker. In Post-CAV 2000 Workshop on Advances in Verification (Chicago, IL).
http://ase.arc.nasa.gov/jpf/wave00.ps.gz, Moffett Field, Calif.

COHEN, R. M. 1997. The defensive Java Virtual Machine specification, Version 0.53. Tech. Rep.,
Electronic Data Systems Corp, Austin Technical Services Center.

DETLEFS, D. L., LEINO, K. R. M., NELSON, G., AND SAXE, J. B. 1998. Extended static checking. Tech.
Rep. TR 159, Compaq Systems Research Center. December.

DOWEK, G., FELTY, A., HERBELIN, H., HUET, G., PAULIN, C., AND WERNER, B. 1991. The Coq proof
assistant user’s guide, Version 5.6. Tech. Rep. TR 134, INRIA. December.

DWYER, M., HATCLIFF, J., JOEHANES, R., LAUBACH, S., PASAREANU, C., VISSER, W., AND ZHENG, H. 2001.
Tool-supported program abstraction for finite-state verification. In Proceedings of the 23rd In-
ternational Conference on Software Engineering. IEEE Computer Society Press, Los Alamitos,
Calif., 177–187.

GREVE, D., WILDING, M., AND HARDIN, D. 2000. High-speed, analyzable simulators. See Kaufmann
et al. [2000a], 113–136.

GREVE, D. A. 1998. Symbolic simulation of the JEM1 microprocessor. In Formal Methods in
Computer-Aided Design—FMCAD, G. Gopalakrishnan and P. Windley, Eds., Lecture Notes in
Computer Science, vol. 1522, Springer-Verlag, Heidelberg.

GREVE, D. A. AND WILDING, M. M. Jan. 12, 1998. Stack-based Java a back-to-future step. Electr.
Eng. Times, 92.

HAGGAR, P. 2000. Practical Java Programming Language Guide. Addison-Wesley, Reading, Mass.
KAUFMANN, M., MANOLIOS, P., AND MOORE, J. S., Eds. 2000a. Computer-Aided Reasoning: ACL2

Case Studies. Kluwer Academic, Boston.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

216 • J. S. Moore and G. Porter

KAUFMANN, M., MANOLIOS, P., AND MOORE, J. S. 2000b. Computer-Aided Reasoning: An Approach.
Kluwer Academic, Boston.

LEINO, K. R. M., NELSON, G., AND SAXE, J. B. 2000. Esc/java user’s manual. Tech. Rep. Technical
Note 2000-002, Compaq Systems Research Center. October.

LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification (Second Edition).
Addison-Wesley, Boston.

MANSON, J. AND PUGH, W. 2001. Semantics of multithreaded Java. Tech. Rep. TR 4215, Com-
puter Science Department, University of Maryland. May. http://www.cs.umd.edu/∼pugh/
java/memoryModel/semantics.pdf.

MCCARTHY, J. 1962. Towards a mathematical science of computation. In Proceedings of the
Information Processing Cong. 62, North-Holland, Munich, 21–28.

MOORE, J. S. 1999a. A mechanically checked proof of a multiprocessor result via a uniprocessor
view. Formal Meth. Syst. Des. 14, 2 (March), 213–228.

MOORE, J. S. 1999b. Proving theorems about Java-like byte code. In Correct System Design—
Recent Insights and Advances, E.-R. Olderog and B. Steffen, Eds., Lecture Notes in Computer
Science, vol. 1710, Heidelberg, 139–162.

MOORE, J. S. AND PORTER, G. 2001. An executable formal JVM thread model. In Java Virtual
Machine Research and Technology Symposium (JVM ’01). USENIX, Berkeley, Calif. http://
www.cs.utexas.edu/users/moore/publications/m4/model.ps.gz.

NIPKOW, T. AND PAULSON, L. C. 1992. Isabelle-91. In Proceedings of the Eleventh International
Conference on Automated Deduction, D. Kapur, Ed., Lecture Notes in Artificial Intelligence,
vol. 607, Springer-Verlag, Heidelberg, 673–676. System abstract.

OWRE, S., RUSHBY, J., AND SHANKAR, N. 1992. PVS: A prototype verification system. In Eleventh
International Conference on Automated Deduction (CADE), D. Kapur, Ed., Lecture Notes in
Artificial Intelligence, vol. 607, Springer-Verlag, Heidelberg, 748–752.

PUSCH, C. 1998. Formalizing the Java virtual machine in Isabelle/HOL. Tech. Rep. TUM-
I9816, Institut für Informatik, Technische Universiät München. See URL http://www.in.

tum.de/∼pusch/.
RUSSINOFF, D. 1998. A mechanically checked proof of IEEE compliance of a register-transfer-

level specification of the AMD-K7 floating-point multiplication, division, and square root instruc-
tions. London Math. Soc. J. Comput. Math. 1, 148–200. http://www.onr.com/user/russ/david/k7-
div-sqrt.html.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. 1997. Eraser: A dynamic
data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15, 4 (November),
391–411.

STEELE, JR., G. L. 1990. Common Lisp The Language, Second Edition. Digital Press, Burlington,
Mass.

VAN DEN BERG, J. AND JACOBS, B. 2001. The LOOP compiler for Java and JML. In TACAS 2001.
Lecture Notes in Computer Science, vol. 2031. Springer-Verlag, Heidelberg, 299–313.

VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. 2000. Model checking programs. In Proceed-
ings of the Fifteenth International Conference on Automated Software Engineering (ASE). IEEE
Computer Society (Grenoble, France), 3–12.

Received November 2000; revised September 2001; accepted March 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 3, May 2002.

