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The approach of a vortex pair to a plane surface 
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It is shown that a symmetrical vortex pair consisting of equal and opposite vortices 

approaching a plane wall at right angles must approach the wall monotonically in 

the absence of viscous effects. An approximate calculation is carried out for uniform 

vortices in which the vortices are assumed to be deformed into ellipses whose axis 

ratio is determined by the local rate of strain according to the results of Moore & 
Saffman (1971). 

1. Introduction 

The behaviour of a vort'ex pair in a ground effect is of some interest for aerodynamic 

and environmental reasons. The simplest theoretical treatment models the vortex 

pair by two rectilinear line vortices of equal and opposite circulation at  the same height 

above an infinite plane. Each vortex moves in the velocity field induced by the other 

and the images in the plane. The trajectories are easily computed (see Lamb 1932, 

p. 223) and are found to be the curves 

where x = 0 is the plane of symmetry, y = 0 is the wall, and 2x0 is the initial separation 

of the vortices when infinitely far from the plane. According to this elementary 

solution the vortices approach the wall monotonically as they separate from one 

another, the final asymptotic distance from the wall being x,,. 

Dee & Nicholas (1968) reported on flight test observations of trailing vortices pro- 

duced by an aircraft flying close to the ground. They found moderate agreement 

between the observed trajectories and those predicted by the elementary theory when 

allowance is made for additional horizontal displacement produced by a cross-wind. 

Harvey & Perry (1971) noted, however, that the theory and the observations differed 

in one noteworthy respect. In  many of the tests, the vorticesrose again after having ap- 

proached the ground, i.e. they appeared to bounce. Harvey & Perry carried out some 

wind-tunnel experiments on a single vortex shed by a half-span wing over a moving 

floor and concluded that the cause of the vortex bounce is separation of the boundary 

layer on the ground underneath the vortex. They argued that boundary-layer separa- 

tion produces a secondary vortex whose development slows down the horizontal 

motion of the primary vortex and makes it rise. It was reported that in some configura- 

tions the horizontal motion of the primary vortex could be reversed. 

Recently and in ignorance of the earlier work, Barker & Crow (1977) observed 

rebounding for a vortex pair, generated in water, approaching either the free surface 

or a horizontal rigid plane immersed in the water. They claimed that the phenomenon 

Xg(X2f y2) = x2y2, (1.1) 
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can be attributed to the effect of finite core size, which is of course neglected in the 

elementary theory. However, they gave no evidence to support their contention 

apart from reference to unpublished numerical simulations and an unsubstantiated 

statement that core deformation would lead to unsteadiness that could explain the 

effect. 

We shall present below simple arguments to show that in the framework of an 

inviscid theory, the rebounding cannot be explained by finite core size and that the 

velocity of the vortices towards the wall cannot change sign. We shall also calculate 

the paths and shapes of the vortices by means of an extension of an approximation 

introduced by Moore & Saffman (1975) which was used quite successfully by them 

and others (e.g. Bilanin, Teske & Williamson 1977) in similar contexts. 

The implication of these calculations is that  the explanation of rebounding given 

by Harvey & Perry is the correct one, a t  least for rigid walls. However, the phenomenon 

was also observed by Barker & Crow when the vortices approached a free surface. 

Since the boundary layer a t  a free surface is much weaker than that a t  a rigid 

boundary (and is in a sense continually separating) it is most unlikely that secondary 

vortices would be produced in this case as required by Harvey & Perry’s explana- 

tion. Unless surface contamination in Barker & Crow’s experiment had the effect 

of making the free surface behave like a rigid boundary with respect to slip, their 

observations that the nature of the boundary had little effect upon the gross 

properties of thevortex motion would suggest an inviscid explanation. Since an inviscid 

explanation dose not exist, the observations on rebounding a t  a free surface present 

an unsolved problem. 

2. Theoretical considerations 

From symmetry, it is sufficient to consider the vorticity o in the positive quandrant 

bounded by the wall (y = 0 )  and the axis of symmetry (x = 0).  The motion is two- 

dimensional with velocity components (u, v). The total vorticity in the quadrant is 

given by 

The circulation r is conserved when viscosity is neglected. Vjscous effects would pro- 

duce vorticity a t  the wall and cause diffusion of vorticity across the axis of symmetry. 

The components ( Iz ,  I,) of hydrodynamic impulse of the vorticity are 

The co-ordinates ( E , j j )  of the vorticity centroid are 

E = -r,/r, g = Z/r. (2.3) 

It follows from Euler equations for incompressible inviscid fluid that 

Integrating by parts, using the kinematic boundary conditions 

u = O  on x = O ,  v = O  on y = O ,  (2.5) 
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which follow from symmetry, and using (2.3) to replace I, by y, we obtain 

Similarly, 

Here vo= v(0, y ) ,  uo = u(2,O). (2.8) 

Supposc that the vortex pair is initially at  a large distance from the wall x = 0. 

Then (2.6) predicts that ij decreases at  a rate depending upon the velocity field on the 

axis of symmetry. As the pair approaches the wall, the vortices begin to separate 

under the action of the image vorticity in the wall. This is also shown by (2.7), according 

to which Z increases when uo is not negligibly small on the wall. Eventually, the 

vortices will be so far apart that v,, is negligible. The centroids of the vortices will then 

have reached an asymptotic distance from the wall and continue parallel to it. 

Since the right-hand side of (2.6) is always negative, inviscid dynamics predicts 

that the vorticity centroids approach the wall monotonically, however large the 

vortices or their deformation may be, and asymptote to a line parallel to the wall. 

We cannot assert that the final motion of each vortex is steady. It is possible that 

the final state is a periodic or aperiodic oscillation. However, if the final motion is 

steady, then the time reversibility of the Euler equations ensures that the final dis- 

tance from the wall is equal to one-half the initial separation. 

We should mention the possibility that the rebounding of the vortices is apparent 

and not real. Hooker (1936) claimed that the observed increasing spacing ratios of 

K&rmSn vortex sheets is due to a divergence between the centroid of vorticity and the 

centre of rotation of a vortex as it spreads. The centre of rotation is the instantaneous 

stagnation point of the flow as measured by a given observer, depends of coarse on 

the observer’s speed, and would be indentified as the natural centre of the vortex by 

common flow-visualization techniques. Thus deformation of a vortex as it approached 

the wall might lead to an apparent movement of the vortex away from the wall. 

However, we shall estimate this effect in our approximate calculation to be described 

in the next section and show that it does not occur. 

3. An approximate calculation for uniform vortices 

The deformation of the vortices and its effect on their trajectories can be estimated 

simply if we assume that the vortices are elliptical with axis ratio and orientation 

given by the theory of Moore & Saffman (1971) for steady uniform vortices in uniform 

steady straining fields. We apply this theory by assuming (cf. Moore & Saffman 1975) 

that the appropriate value of the uniform straining field is the rate of strain at  the 

centre of the vortex due to the other vortex and the images in the plane. The configur- 

ation of the vortex pair and its image is then as shown in figure 1. The centre of the 

vortex in the first quadrant is at  (X, g). The semi-major and semi-minor axes have 

length a and b, respectively and the major axis is inclined at angle 8 to the x axis. 

We require the velocity and rates of strain induced a t  (Z, g) by the other three 

vortices. Consider a uniform elliptical vortex, of strength K ,  bounded by 

X2/a2 + Y2/b2 = 1. (3.1) 
17-2 
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FIGURE 1. Configuration of the vortex pair and its image in the well y = 0.  

An elementary calculation shows that the complex potential w(2) (2 = X + i Y )  
outside the ellipse is 

N = - i ~ / 2 7 ~ ( c +  +e-25), (3.2) 

where Z = ccoshc, c2 = a2-b2, 5 = g+ir. (3.3) 

The complex velocity a t  the point ( X ,  Y )  relative to  the axes of the ellipse is 

i K  
U - i V  = _. 

- = --ee-C. 

Denote the rate-of-strain tensor eij = &(aui/axj + auj/axi) a t  (X, Y )  by 

(3.4) 

(3.5) 

Then (3.6) 

Relative to axes Oxy which make an angle q5 with those of the ellipse, the velocity 

components (u, v )  and corresponding components (a ,  p)  of the rate-of-strain tensor 

are given by 

A - iB = (d2w/dz2) = ( i K / n c 2 ) e - c  cosech 5. 

u - iv = ( - iK/r ic)e-Ee@, a - ip = (iK/7TC2)e-c ezi$ cosech 5. (3.7) 
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Quadrant Strength X Y e 
2 - r  25 cos 0 25 sin 0 e 

4 -r  2g sin 0 - 29 cos 0 e-n 
3 r 2(52 + 32)t cos (e - tan-lJ/Z) - 2(52 + y2) t  sin (8 - tan-lg/z) - e 

TABLE 1. Parameters for the calculation of the velocity and rate-of-strain at the centre of the 
vortex in the first quadrant. 

The values of K ,  X ,  Y and Q for the contribution a t  ( E ,  I) by the vortices in the 

second, third and fourth quadrants are listed in table 1. 

Substitution of these values into (3.7) and summing over the three vortices gives 

the velocity (4, V )  and rate of strain (01, p )  a t  the centre of the vortex. The motion and 

shape of the vortices are determined by the equations 

dZ/dt = ZL, d j j ld t  = V, (3.8) 

E ( E  - 1) nab 
P n  = - ( E 2 + / 7 2 ) k  r 8 = 3 tan-l =+- 
a 4' (€2+ I) (€+ 1 )  (3.9) 

Here E = a / b  is the axis ratio of the ellipse. Equation (3.8) assumes that the vortex 

moves with the velocity at it5 centre. Equation (3.9) is the result of Moore & Saffman 

(1971) for the shape of a uniform vortex in a uniform straining field. The size of the 

vortex is conserved during the motion; hence 

ab = R2, (3.1) 

where nR2 is hhe area of the vortex. Note that (3.9) has no solution if 

(nab/F)(E2+P2)* > 0.15. (3.11) 

When ij = co, we have the case of a single vortex pair. Then 8 = in-, the major axes 

If this occurs, the vortex is expected to disintegrate. 

of the pair are parallel, and the equation for E reduces to 

-- (E - 1)2 - I- [ 1 + $  (4]-". 
€2+ 1 

(3.12) 

The solution of this equation giving 6 as a function of R/Z is shown in figure 2, together 

with the values of b / 3  and - 4nZV/F. Note that solutions exist for all R/Z. Further, 

b / Z  -f 1 as R/Z --f co, i.e. the vortices become long and elongated and approach one 

another more closely as the distance between their centres tends to zero. The speed of 
the pair is less than the velocity of two point vortices a t  their centres. This behaviour 

is qualitatively similar to that of the exact solution for two hollow vortices (Pockling- 

ton 1894). Notice that the condition (3.11) is never violated, so this simple theory 

predicts that a vortex pair never disintegrates however close the vortices are. Of 

course, the theory may not be accurate for values of a/b  much larger than one. 

We can estimate the position of the centre of rotation by finding the point a t  which 

the velocity produced by the vortex in the first quadrant is equal and opposite to 

the velocity of its centre. Inside the ellipse, the stream function in Cartesian co- 

ordinates of the velocity relative to the centre is 

7,k = (r/2nabc2) [X2(b2 - ab) - Y 2  (a2 - ab)].  (3.13) 
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FIGURE 2. Properties of a vortex pair as functions of R I Z .  Each vortex is appoximated by an 
ellipse of major axis a and minor axis b with centres 25 apart. R2 = ab. x' is the displacement of 
the apparent centre of rotation relative to the centre. 
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FIQURE 3. Approximate calculation of vortex pxir in a ground effect for R / x ,  = I .  -, path 

of centre of vortex; ---, path of apparent centre of rotation. Initial, intermediate and final 
shapes are shown. 0, position of apparent centre of rotation. 

It follows easily that the co-ordinates of the centre of rotation relative to the centre 

and the x, y axes are 

x' = (r/r) (a  + b )  [Ti sin 8 cos 6(a - b )  - @(a cos2 8 + b sin2 8)] , 
y' = (r/I')(a+b)[Ti(asin28+b cos28)-~sin8cos8(a-b)]. } (3.14) 
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It  is assumed in this calculation that the centre of rotation is inside the vortex, which 

turns out to be the case. The values of x'/x are also shown in figure 2. It will be noted 

that for distorted vortices, E > 2 say, the centre ofrotationisdisplacedfrom the centroid 

of vorticity by a significant amount, which might make the vortices appear to be 

further apart than they actually are. 

Results for a vortex pair approaching a wall are shown in figure 3 for R/xo = 1.0. 

These were obtained by numerical integration of (3.8) using a multistep Adams- 

Moulton integration scheme with time step 5xi/2I'. A modified Euler scheme was 

used to specify the initial values for the multistep procedure. The values of Ti and G 

were found by solving (3.9) and (3.7) by Newton's method with the values given by 

table 1.  The integration was completely straightforward. Similar results are found 

for other values of R/xo. For smaller R/xo, the deformation of the vortices is reduced 

and the trajectories of the centroid and apparent centre of rotation are closer. The 

converse holds for larger R/xo. For values of R/xo up to 2.0, for which the axis ratio 

approximates 4, the trajectories of the centroids are indistinguishable from those of 

point vortices. The path of the apparent centre of rotation always approached the 

wall monotonically. The calculated paths are symmetrical about the line x = y and 

the approximation does not allow for the existence of oscillations which might occur 

in reality. In any event, it now seems clear that the explanation of the observed 

rebounding must be elsewhere than the inviscid dynamics of finite vortices. 

The work was supported by the U. S. Army Research Office, Durhen (DAAG 

29-78-C-001 I )  and the Department of Energy (EY-76-S-03-0767). 
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