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Abstract. A general class of linear self-adjoint random boundary value problems
with weakly correlated coefficients is considered. The earlier result that the distribution
function of the solution approaches the normal as the correlation length e tends to zero is
generalized somewhat. Correction terms are derived that yield estimates for the distri-
bution function when e is small but nonzero. The results are also applied to the eigen-
values and eigenfunctions of a corresponding class of random eigenvalue problems. The
discussion is given in terms of second-order equations, but extensions to higher-order
problems are readily apparent.

1. Introduction. For many years it has been of interest to find conditions under
which the distribution of the solution of a random differential equation tends to the
normal. In 1930, while studying Brownian motion, Uhlenbeck and Ornstein [8] es-
tablished that the solution y(t) of certain initial-value problems has approximately a
normal distribution. They accomplished this by showing that

<y"> s 0, n odd
^ 1 ■ 3 • 5 • • • (n — IKy2}"12, n even (1.1)

where < • ) denotes the mathematical expectation.
In 1966 Boyce [1] established a similar result for a class of linear self-adjoint bound-

ary value problems

L[>] =/(*), 0 < x < 1 (1.2)
with boundary conditions

l/.O] = 0 (1.3)
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at the end points. The operator L has the form

L[y]= Z(-iyw%0)]0). (1.4)
j=0

Randomness entered the problem (1.2), (1.3) only through the forcing function/, which
was assumed to be weakly correlated with correlation length e 1. The solution y(x) was
shown to satisfy equations similar to (1.1), with the approximation becoming exact as
e —> 0. This means that the distribution of ^xV^/e approaches a normal distribution as
e—> 0. Combining the methods of [7] and [1] with a perturbation expansion, Purkert and
vom Scheidt [4, 7] generalized this result to the case in which f r0,..., rm_ t are indepen-
dent and weakly correlated processes. In Sec. 2 we extend this result still further so as to
permit rm also to be a weakly correlated stochastic process.

In many problems arising in applications the correlation length £ is small, but not
vanishingly so. This raises the question of how far the solution y(x) departs from nor-
mality when e is a small positive number. To answer this question we calculate the second
nonzero term in the Hermite-Chebyshev expansion of the distribution function of y{x)-,
this is the most important contribution of the present paper. It turns out that two cases
must be considered, depending on whether the correction term is of order ,/e or of order
e, and these are discussed in Sees. 3 and 4 respectively. Sec. 5 is devoted to an example
that gives some feeling for the orders of magnitude of the terms. Purkert and vom Scheidt
[3, 5, 6, 7] have also considered self-adjoint eigenvalue problems

L[u] = Xu, 0 < x < 1, (1.5)

Vi M = 0, (1.6)
where the coefficients in L are weakly correlated processes with common correlation
length e. They showed in [5] that (A, — Hj)/y/e approaches a normal random variable as
e —>0. Here //, is the 7'th eigenvalue of the mean problem obtained by replacing each
random coefficient in L by its mean. At the same time they established the asymptotic
normality of the eigenfunctions of (1.5), (1.6). By proceeding much as in Sees. 3 and 4 it is
possible to determine correction terms for the distributions of the eigenvalues and eigen-
functions for small positive values of e. These matters are discussed briefly in Sec. 6.

In [3] and [5], in particular, Purkert and vom Scheidt have also developed much
necessary background material in a detailed and formal manner. We will use their defini-
tions and nomenclature in this paper without explicit reference.

2. Boundary-value problems with weakly correlated coefficients. Although the same
methods can be applied to higher-order problems, in this section we consider the nonho-
mogeneous two-point boundary-value problem consisting of the second-order differential
equation

Liy] = -0(*, «)>'']' + <l(x, oj)y = fix, co), 0 < x < 1, (2.1)
and the boundary conditions

[/,[>] =0; i = 1,2. (2.2)

The coefficients in the differential equation (2.1) are stochastic processes defined on an
underlying probability space (ft, J5", P). Except possibly on an a>-set of probability zero,
the sample functions of p, q, and/satisfy the standard conditions:/and q are continuous,
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p is continuously differentiable, and p is never zero in 0 < x < 1. The emphasis here will
be on the consequences of assuming that the leading coefficient p(x, co) is random, since
this extends the results of [4]. This section also provides a framework for the following
sections.

The boundary conditions (2.2) are deterministic and are such that the problem is
self-adjoint. For example, for the problem (2.1), (2.2) it is sufficient that the boundary
conditions be separated, in which case

= a iXO) + a2 /(0) = 0, (2.3a)
U2[y] = biy(l) + b2A 1) = 0, (2.3b)

where au a2, bl5 and b2 are given constants.
We can express p, q, and / as a sum of their respective means and a random fluctu-

ation:

p(x, co) = p0(x) + rjp^x, <u), p0(x) = (p(x, co)), (2.4a)

q(x, co) = q0(x) + t]qi(x, co), q0(x) = (q(x, co)), (2.4b)

f(x, co) =/0(x) + riMx, co), f0(x) = </(x, co)), (2.4c)

where

<Pi(x, co)> = {q^x, co)} = </i(x, co)) = 0 (2.5)

and r] is an indexing parameter; sometimes rj = 1. In addition, we assume that pu qu and
/i are pairwise independent wide-sense stationary processes.

We are interested in the case in which p1, qu and/x are also weakly correlated, a term
that has been defined by Purkert and vom Scheidt [4, 5] in the following way. Let S =
(xj,..., x„) be an n-tuple of real numbers and let e > 0 be a positive constant. Let S1 =
(x^, ..., xik) be a subset of S, and suppose that xh < xh < ■ ■ ■ < xik; this ordering can
always be attained by relabeling the elements of Sl if necessary. Then S1 is said to be
£-neighboring if

I xfl - xi21 < e, |xi2 - xl3| < e,1*^, - xik\< e.

A single element subset is always e-neighboring. The subset S, is maximally e-
neighboring, with respect to S, if Sj is e-neighboring, but is not contained in any larger
e-neighboring subset of S. It can be shown [5] that S can be separated into disjoint
maximally e-neighboring subsets in a unique way. Then a stationary process h(x, co) is
said to be weakly correlated with correlation length e if, for each n,

</i(Xi, co) h(x„, co)) = <h(xlt) ■ ■ ■ h(x lpi)) ■ ■ ■ (h(xkl) • • • h(xkpk)), (2.6)

where the n-tuple S has been separated into the maximally e-neighboring subsets(x11;...,
Xipi), ■ • ■, (xkl, ... xkpk) and i Pi = n.

Thus we assume that pu qu and have the property (2.6). In the particular case
where n = 2 this reduces to

<Pi(xi)Pi(x2)> = 0, | x2 - xj | > e;

= PP(x2 ~ Xi), | x2 - Xj | < e; (2.7)



422 WILLIAM E. BOYCE AND NING-MAO XIA

<4i(*i)4i(*2)> = 0, |x2-x1|>g;

= Pq(*2 ~ *i), I x2 - Xi | < e; (2.8)

</i(*i)/i(*2)> = 0, \x2 - xt | > e;

= ffjpf(x2-xi), | x2 — Xj | < e. (2.9)

In (2.7) through (2.9) <7p, o2q, and aj are the (constant) variances and pp, pq, and pf are
the autocorrelation functions of pu qu and/x respectively. Eq. (2.7) says that p^Xj) and
p,(x,) are uncorrelated except in a strip of width J2z about the line x, = x2, and simi-
larly for (2.8) and (2.9).

Finally, we assume that the distributions of pt, q1( and /x are such as to allow all of
the analytical procedures that we will use without specific justification. This includes the
interchange of the order of various types of limiting processes.

It is convenient to write y(x, co) as a perturbation series in rj,

y(x, co) = y0{x) + X yk(x, a>)r]k. (2.10)
fc= i

Substituting this expression for y in (2.1) and (2.2) and equating coefficients of like powers
of tj, we find that y0(x) satisfies

i-oLVo] = - [Pot*!' + <7oW>'o =fo(x), 0 < x < 1, (2.11)
l/.bol =0; i = 1, 2. (2.12)

Further, from the linear terms in rj, we have

^o[>i] =fi(x, co) - qi(x, co)y0(x) + [px(x, oj)y'0(x)J, 0 < x < 1 (2.13)

t/,Oi] = 0; i=l,2. (2.14)
In general, for k > 2:

LolyJ = ~qi(x, w^-^x, co) + [pt(x, o^y't-^x, co)]', 0 < x < 1 (2.15)
fiW =0; i = 1, 2. (2.16)

If zero is not an eigenvalue of L0 subject to the boundary conditions (2.12), theny0(x)
is given by

y0(x)
1

G(x, xjfoixi) dxu (2.17)
Jo

where G(x, xj is the (deterministic) Green's function associated with L0 and the given
boundary conditions. In the same way

yi(x, co) = G(x, x1)g1(x1, co) dxi (2.18)

where gx is the expression on the right-hand side of (2.13):

gi(x, co) =/i(x, co) - <?,(x, co)y0(x) + [px(x, co)/0(x)]'. (2.19)

Similar formulas can be written down for y2(x, co), y3(x, co), —
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Our primary interest is the calculation of moments of yx(x, co). These are given by the
expressions

<>>i(x, <y)> = J G(x, ®)> dxu (2.20)

G(x, x1)G(x, x2)(g1(x1, co)g1(x2, co)) dxt dx2, (2.21)<y?(x, co)> =

and in general by
o J

<y?(x, co)> =
1 1

G(x, xj • • • G(x, xn)<gr1(x1, co)-- - g%{xn, co)} dxt • • • dxn. (2.22)
o

To evaluate these expressions it is necessary to consider some properties ofg^x, co). Here-
after, for the sake of brevity, we will usually omit explicit indication of co as an indepen-
dent variable.

In the first place, we have

<*(*» - (ta +

= I™ T <Pt(* + A) - p,(x)> = 0 (2.23)
A-0 ^

because of (2.5). Then

<0iM> = </iM - + PiW/oW + Pi(x)yoW)
= </iW> - <qi(x)}y0(x) + <pi(x)>yoW + <Pi(x)>/o(x)
= 0 (2.24)

by (2.5) and (2.23). Consequently, from (2.20),

Oi(x, to)) = /i(x) = 0. (2.25)
Using (2.19) to form the product gi(xl)gl(x2) and then taking the mean, we obtain

<gi(x1)gi(x2)} = <fi(xi)fi(x2)} + <«i(x1)q1(x2))>'o(xi)}'o(x2)

+ <[Pi(xi)yo(*i)]'[Pi(*2)yo(*2)]'>; (2-26)

we have used (2.5) and the independence of fu pu and qr to eliminate cross-product terms
such as </i(x1)q1(x2))>'o(x2). The last term in (2.26) involves the quantities <Pi(x1)p1(x2)),
<p,(x1)p'1(x2)), <p'i(x1)p1(x2)), and <p'i(x1)p'1(x2)). The first of these is given by (2.7), so let
us consider the others. We will need to assume that the correlation function pp is twice
differentiate. First we have

  / , , Pl(*2 + A) - Pj(x2)<Pi(*i)Pi(*2)> = ( Pi(*i) lim 7 
\ A-0 ^

= lim I [<pi(x!)pi(x2 + A)> - <p1(x1)p1(x2)>], (2.27)
A-0 A
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If | x2 — x11 < e and if A is such that | x2 — xt + A | < e also, then from (2.7) we have

<Pi(*i)p'i(*2)> = o2p lim j [pp(x2 — xx + A) — pp(x2 - xj]
A-»0 A

= Pp(x2 - *i), I x2 - Xi I < e. (2.28a)

At the endpoints p'p is interpreted as a one-sided derivative. For \x2 — xt \ > e and for A
small enough so that | x2 — xx + A | > £ also, then (2.27) and (2.7) yield

<Pi(*i)Pi(*2)> = 0, |x2 — Xj | > e. (2.28b)

In the same way we find that

<Pi(*i)Pi(*2)> = 0, | x2 - Xj | > e;

= - a2p p'p{x2 - Xj), | x2 - x11 < e. (2.29)

Proceeding analogously with the remaining term, we obtain

<p'i(xi)p\(x2)} = 0, | x2 - xj | > e;

= - a2p pp(x2 - Xj), | x2 - xx | < e. (2.30)

Finally, substituting from (2.7), (2.8), (2.9), (2.28), (2.29), and (2.30) into (2.26), we have

<0i(*i)0i(*2)> = <r2/Pf(x2 - *i) + tfpq(x2 - *i)>'o(^i)>,o(^2)

+ °2pPp(x2 - *l)>'o(*l)Vo(x2) - al Pp(X2 - Xl)y'o(Xl)y'o(X2)

+ a2p Pp(x2 - *i)[.Vo(xi)}'o(x2) - /o(*i):Vo(*2)]> I x2 - Xj | < e,

(2.31a)

and
<0i(*i)0i(*2)> = 0, | x2 — Xj | > e. (2.31b)

This, in turn, gives <^?(x)) from (2.21). To simplify the latter expression it is convenient to
introduce the new coordinates (Fig. 1)

s = x2 — x1( z = (xt + x2)/2 (2-32)

xy = z — s/2, x2 — z + s/2. (2.33)

Then, since the integrand is even in s, we can write

„2, 1 f£-/ S\J s\ / ( SW S<yi(x)> = 2 G[x,z--)G[x,z + -)(gl[ z--jgl^z + -Jy ds dz - 2J x - 2J 2,

(2.34)
where Jx and J2 are the integrals of the same integrand over the triangular regions Tt and
T2 respectively. Note that J, and J2 are of order e2. By expanding the integrand in powers
of s and keeping only the first terms, we obtain the contribution to <y?(x)> that is linear
in £, namely,

<yl(x)> = I2(x) = A ,(x)£ + 0(e2), (2.35a)
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21 / - ?

where

Ai(x) = 2

Fig. l.

G2(x, z)[af + a2 yl(z) + a\{f02{z) - p'p(0)y'o2(z)} ] dz. (2.35b)
o

To evaluate higher moments it is necessary to use (2.22). It is possible, although some-
what tedious, to show that even though g^x, co) is not stationary, it nevertheless has the
property (2.6). It is also helpful to define the set Rk by

R-k = {(*1' ^ *i> •••! xk ^ 1 and (x1; ■•■,xk) is e-neighboring};

it is clear that the volume of Rk is of order e*-1. Examining (2.22) first for n = 3, we note
that the only contribution to <(y?(x)> comes from points in R3; thus

<y?(x)> = G(x, Xi)G(x, x2)G(x, x3Xg1(xi)g1(x2)gl(x3)y dxt dx2 dx3

R 3

= I3(x) = A3{x)e2 + 0(e3). (2.36)

Next, consider <}^(x)>. There is a contribution to this quantity from points in RA, and
there are other contributions from points where x1; x2, x3, and x4 are £-neighboring in
pairs. Thus

<yt(x)> = 3 Il(x) +
«4

3 rCrr

JJJJ G(x, xx
R*

J J G(x, x1

)■■■ G(x, x4)<01(x1) • • • g1(x4)> dxt ■■■ dx4

) • ■ ■ G(x, x4)<6f1(x1)01(x2))<31(x3)01(x4)> dxl ■■■ dx4. (2.37)
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The coefficient 3 in the first and last terms on the right side of (2.37) arises from the
number of ways that four objects can be separated into two parts, while the last term is
needed to compensate for the duplication occurring in the first two terms. In the last term,
note that the integrand is zero in the part of R4 that is not in R2 x R2. More briefly, we
can rewrite (2.37) as

<yt(x)> = 3 I2(x) + U(x), (2.38a)

where /4(x) refers to the last two terms in (2.37), which are of order e3. The quantity IA(x)
will be important later, but for the present we need to keep only the e2 term. Thus we
obtain

<yt(x)) = 3Af(x)e2 + 0(e3). (2.38b)
Similarly,

<y'(x)> = 10/2(x)/3(x) + 0(e4) = lOAt(x)A3(x)£3 + 0(e4). (2.39)

In general, we find that

<yf"(x)> = ^rl I"2(x) + 0(en+l) = ^ An1(x)en + 0(£"+1); (2.40)
2 n! 2 n!

<yf+1M> = 3,2?-.^, ZljT /r1W/3(x) + 0(6"+2)

3!2"_1(n - I)!

We now define the normalized random variable

C2n + /4«-1(x)/43(x)e',+ 1 + 0(en + 2). (2.41)

, o>)
C(x, a>) = (2.42)

A y(X)Z

Then

e2n\ _ <yi"> _ (2«)!<r"> = = Vt + 0(4 (2.43)A"e 2n\

(£2»+1 > = = —(2n +  ill. L + o(e3'2) (2 44)
} (AlEr+1/2 3!2n-1(« — 1)! Af/2 '■ ( '

Thus, as e—> 0, the distribution F( of £ approaches the standard normal distribution O. In
other words,

lim F({u) = 0(u) - —
yj 2.71 ,,

e~'2'2 dt. (2.45)

To the extent that the second- and higher-order terms in (2.10) can be neglected, we have
shown that the distribution of

y(x, (o)-y0(x) 7 = — (2-46)

approaches <D as e—* 0.
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This generalizes the results in [1], [4], and [7] to the case in which the leading coef-
ficient p in (2.1) is random. The further extension to higher-order self-adjoint boundary-
value problems is straightforward.

3. The distribution function; first correction term. In the preceding section we showed
that the distribution function Ft of the random variable £ = yJ-jAys approaches the
standard normal distribution $ as the correlation length e—>0. We can look upon this
result as generating the first term in an asymptotic expansion of F( in terms of s. In order
to investigate more carefully the behavior of F( for small but nonzero e, it is natural to try
to determine at least the second term in this expansion. We will do this by means of an
expansion in terms of Chebyshev-Hermite polynomials, as outlined by Gnedenko and
Kolmogorov [2],

Let p((u) be the density function of £, and consider the representation

p,(u) = -1= £ (- D* £i e'"2'2Hk(u), (3.1)
yJ2n k = o K-

where Hk is the Chebyshev-Hermite polynomial of degree k. The polynomials {Hk} are
defined by

Hk(u) = (-l)ke"2'2^:(e--2/2) (3.2)

r
and satisfy the orthogonality relation

e~"2'2Hj(u)Hk(u) du = 0, if; ^ k;
O

= y/2nk\, if j = k. (3.3)
The first few Chebyshev-Hermite polynomials are

H0(u) = 1, W,(u) = u, H2(u) = u2-1, H3(u) = m3 - 3u,

H\u) = u* - 6u2 + 3. (3.4)

From (3.1) and (3.3) it follows that

c* = (-l)* p((u)Hk(u) du, k = 0, 1, 2,.... (3.5)

In particular,

Co = p^u) du = 1, (3.6a)

c, = - up((u) du = -<{> = - = 0; (3.6b)
o Ajg

consequently

( 1)k(-)I „ , '
Hk(u) (3.7)
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The corresponding expression for the distribution function F^u) is

Ft(u) = <P(u) + £ £ <Dk(u), (3.8)
k — 2 Kl

where
if r

^ J-
By using (3.2) it follows that

^(") = {S f e~,2,2Hk(t) dt. (3.9)

<t>k(u) = {—^e~"2l2Hk_1(u), (3.10)Jin
so

\k-l
F((u) = <P(u) + -JL £ ( Ck (3-11)

yjljl k= 2 K-

Our goal is to determine the contribution to the series (3.11) that is of lowest order in
e. This can be done formally by relating the coefficients ck to the moments of again
using some results given in [2],

The characteristic function i/^(r) of £, is defined by

= ei,u dF((u). (3.12)

Hence, from (3.8),

=
oo r roozM

; = 2 K• J-ao
e"u d<D(u) + X 7: e"u d<t>k(u)

e",2/2 1 + I t<{~it)k
k = 2 K•

(3.13)

On the other hand, we also have the expansions

where ak = <£''>, and

= I S (3-14)
k = 0 K •

'°g W) = Z 77 W* (3-15)
k = 1 K-

where pk is the /cth semi-invariant of Starting from the expressions (2.43) and (2.44) for
a2„ and oc2n+1, we will first determine fik and then find ck. Throughout this process we will
keep terms of order Je and neglect terms of order e.

To relate {/3k} with {at} we need to calculate the logarithm of ip((t) from (3.14). We
first substitute for ak from (2.43) and (2.44), letting B = AJA^2 and w = it. Then

log il/((t) = log X 77
k = 0 K-

= log
00 w2n ® Bjew2n+lBje

^ 2"n\ ' n% 3!2"-1(fi - 1)!
1+ Z ^7+ Z +
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= log

= log

£ w2" bJe w3 ® w2n~2
,„?„2V + 3! 2"-'(n-1)!+ W

.+5^ lew2/2 + 0(e)

w' . Byje w= ~ + log ̂ 1 + —^—J + 0(e)

= y + w3 + 0(e). (3.16)

Comparing (3.15) with (3.16), and neglecting terms of order e, we obtain

P i = 0, P2 = 1, Pi — B^/e, and fik = 0 for k > 4. (3.17)

Next we write

ip^t) = exp [log il/((t)~] = exp

t2 B^/e ,
2 +-fr w +

i,N■]
3!

= exp

= exp (—12/2) exp

By comparing (3.13) with (3.18) we obtain

VR./e 1
+ 0(8)

+ 0(e). (3.18)

1 + Z 77 (~it)k = exp
k = 2 K•

hila
3! (it)3

-i+^« 3! (it)3 + 0(e). (3.19)

Again neglecting terms of order e, we find that

c2 = 0, c3 = — B^/e, and ck = 0 for k > 4. (3.20)

Substituting these coefficients in (3.11) gives the desired result:

FJu) = 4>(u) - ~7= e "2l2H 2(u) + O(e)
V2tt 3!

^3\/je-2'2 dt - 3^ (u2 - l)e~"2'2 + 0(e), (3.21)
v^3u3'2

where Ax and A3 are defined by (2.35) and (2.36) respectively. The corresponding formula
for the density function is

Pt(u) = 4>(u) 1 + 3\A3*2 ("3 ~ 3m^ + (3.22)
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where

#i) = -^=e~u2'2 (3.23)
J 2 n

is the normal density function.
The second term on the right side of (3.21) gives the dominant contribution to

F((u) — <t(«) when e is nonzero but small; at least this is so when A3 / 0. Unfortunately,
there are important cases in which A3 = 0. For example, this will occur when the distri-
bution of £ is symmetric about £ = 0. To deal with this situation we must calculate the
0(e) term in (3.21), and this is done in the next section.

Before turning to that problem, let us briefly consider the calculation of <y3(x)>, which
leads to the coefficient A3 in (3.21) and (3.22). The only nonzero contribution to the
integral

*i pi pi
<y?W> = G(x, xx)G(x, x2)G(x, x3Kgl{x1)gl(x2)gl{x3)} dxi dx2 dx3 (3.24)

comes from the region where at least one of the following sets of inequalities is satisfied:

|x, — x2|<e and |x2 —x3|<e; (3.25a)

or |x2 — x3|<e and |x3 —xj<£; (3.25b)

or |x3— Xj | < e and |xj — x2|<e. (3.25c)

This is a right cylinder whose axis is the line x, = x2 = x3 and whose cross-section in a
plane perpendicular to the axis is a regular six-pointed star.

It is helpful to introduce a new orthogonal coordinate system z, su s2 by the trans-
formation

z = (Xi + x2 + x3)/3, Si = (x, - 2x2 + x3)/v/2, s2 = (x, - x3)/x/2. (3.26)

The coordinate z lies along the axis of the cylinder, while and s2 are in a transverse
plane. The Jacobian of this transformation is one, and its inverse is

J2 Jl
X1 = Z + — S j + — s2, X2 = z — s1;

X3 = z + Sj - s2. (3.27)

In a plane z = c the cross-section of the cylinder is the star S shown in Fig. 2. The su s2
coordinates of the points of S are (±3 eA/2, ±e/J2) and (0, ± J2 e), where all combi-
nations of plus and minus signs occur. If we introduce the new coordinates in (3.24),
expand the integrand in the transverse variables s1; s2, and keep only the lowest terms, we
find that

<y?W> = | ds1 ds2 J G3(x, z)<fifi(z)> dz + 0(e3)

= 6 e2
i
G3(x, z)(g3i{z)y dz + 0(e3), (3.28)
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v/l5,/e

Fig. 2.

where 6 e2 is the area of S. The calculation of <gf3(z)> is greatly simplified by the assump-
tion that pj, (jfj, and/t are independent and the fact that <?!>, <pi>, <<h>, and </t) are
all zero. Thus most of the terms in <g\(z)) are zero, and

<0fr)> = </?> - <ql>y3o + <{CPiy'oD'}3>- (3-29)
Since A3 is the coefficient of e2 in (3.28), we have

X3(x) = 6
i
G3(x, zKgl(z)} dz, (3.30)

where <g?(z)> is given by (3.29). A further determination of A3 requires some specific
hypotheses about the distributons of pu qu and fv

4. The distribution function; second correction term. In order to deal with the case in
which A3(x) = 0, and hence <Vi(x)) = 0(e3), we must determine the 0(e) term on the right
side of (3.21). In turn, this requires the determination of higher-order terms in I2(x) and
also a consideration of /4(x). We write

I2(x) = Aj(x)e + A2(x)e2 + 0(e3), (4.1)

J3(x) = 0 + 0(e3), (4.2)

U(x) = /l4(x)e3 + 0(e4), (4.3)

where A^x) is the same as before, /l3(x) has been set equal to zero, and the calculation of
A2(x) and A4(x) will be discussed later. We will follow the same line of argument as in Sec.
3. We will first determine the moments <>'*(x)) or <^k(x)), which give the coefficients ak in
the series (3.14) for the characteristic function i/^(t). Next we find the semi-invariants flk,
and finally the coefficients ck in the series (3.11) for F((u). Throughout the derivation we
will keep the terms that contribute to order e in F^u).
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By keeping the 0(e" + 1) term in <y?") we obtain, for n>2,

<y?"(x)> = r2W + r-\n-2)\4\ r^x)Ux) + °{E" + 2)- (44)

The first term on the right side was obtained in (2.40) and is 0(e"). The second term is the
contribution of order e"+1; its coefficient comes from a consideration of the number of
ways that one set of four and n — 2 pairs can be chosen from a set of 2n objects. Note that
if v43(x) were not zero, then there would be another contribution of order e" + 1 of the form
I"2~ 3{x)ll(x). From (4.1) and the binomial theorem it follows that

t i Al1 + n — £Ai
+ 0(en+2). (4.5)r2=(Ale)n

Then

1 + " ^ £] + 2" 2(n - 2)!4! + 0(en+2). (4.6)<^n> = f~r^16)"

Since £(x) = _v1(x)/v/A1(xje, we have

«2n = <£2"> =

Ai/Ai aja\+ ■ e > + 0(e ), n >2. (4.7)
2"(n — 1)! 2"~2{n — 2)!4!_

Of course,

a0 = 1, a2 = 1 + (Xj/zlJe + 0(e2). (4.8)

Also, because /43(x) = 0, we have <yi"+ H*)) = 0(en + 2), and

«2n + i =<t2" + 1> = 0(e3>2). (4.9)

Next we consider

log 1J/£t) = log 1H (4.10)

where w = it. Since to order e only the even-powered terms contribute, we can write

'o§ «') - loB<1 + I 1 + % s) 1" + ,1 [2^ + '

aja\
2" ~ (n Ml2)!4i;j

w2n + 0(e3/2)

Ai/A1 w2„

= ^ + e-w*/2£ y w2n + 2 , y fjfMj h-2" + 4"| I 0(C3/2)
\4i2V4l"' J + 0<E >
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Thus, referring to (3.15), we obtain the semi-invariants fik:

Pi — 0, /?2 = 1 + e~r> P3 = 0, PA = e4±, pk = 0 for k > 5, (4.12)
A i Ax

where terms of order e3/2 have been neglected. Next we write

•Ai(f) = exp ^ (it)*J

_cxp{-L + e[-^l + ̂ L] + 0(£W)J

= + '[^i + ̂ fO + 0('n (413)
Then by comparing (4.13) with (3.13) we determine the coefficients ck:

A A
c2 = ~~ £, c3 = 0, c4 = —| e, ck — 0 for k > 5, (4.14)

where again terms of order e3/2 have been neglected. Finally, from (3.11) we have

F^u) = <D(u) - -j= e'"1'2 //,(*) + ^ tf3(u)J + 0(e3'2)

- tt, l"r"' * - iz *-"* -+- 3»»}+^
(4.15)

By differentiation we obtain the density function

p((u) = <Ku) |l + e (u2 - 1) + (m4 - 6m2 + 3)J + 0(83'2)J, (4.16)

where <j>(u) is given by (3.23).
Let us now consider the calculation of the coefficient A2 in (4.1). This involves a

determination of the contributions of order e2 in (2.34). First consider the integral Ju
which is given by

Jj = | G (x, z — G ^x, z + _ ^ 9i (z + ^ ds dz, (4.17)

T i

where the triangle is indicated in Fig. 1; note that the area of T, is e2/4. Thus, if we
expand the integrand in powers of s and z about the point z = 1, s = 0, we need keep only
the first, or constant, term in the expansion in order to obtain thee2 contribution to Jt.
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The result is

J,=jG\x, l)<g?(l)> + 0(e3), (4.18)

where <gff(l)) is found by evaluating the expression

<0?(z)> = a] + a] y&z) + o2 y",2(z) - a2p p"p{Q)y'fc) (4.19)

for 2 = 1. Eq. (4.19) follows from (2.31a) by introducing the variables s and z, and then
setting s = 0. The integral J2 over the triangle T2 is calculated in a similar way:

Ji = j G2(x, 0)<^(0)> + 0(e3), (4.20)

where <gj(0)) is also obtained from (4.19).
There may also be a contribution of order e2 arising from the main integral in (2.34).

This contribution can be found by expanding the integrand in (2.34) in powers of s and
keeping the linear, as well as the constant, term. The calculation is rendered somewhat
more complicated by the fact that the derivative of one of the Green's function factors is
discontinuous when z + (s/2) = x. Thus we must consider the interval | z — x \ < e/2 separ-
ately, so that

G[x,z + 0i( 2 - ^) 01 (Z + ^)) ds dz

ds dz +
Jo Jo

|z — x| > £/2

For | z — x | > e/2, we can write

fx +

Jx-e

e/2

e/2 J
...dsdz. (4.21)

G ( x, z + = G(x, z) + G'(x, z) ~ + 0(s2),

G ^x, z — = G(x, z) - G'(x, z)-2 + 0(s2) (4.22)

where G' refers to the derivative with respect to the second argument of G. Then

s\ „ / s
G(x,z + ^G^x,z-^)= G2(x, z) + 0(s2). (4.23)

By starting from (2.31a) and proceeding in a similar way it is possible to show that

3i(z + 00ifz-^))=ff/ + <^ yfc) + y'o(z) ~ o2P Pp(0)y'o(z) + 0(s2). (4.24)

For example, consider the second term on the right side of (2.31a):

<*1 P„(x2 ~ ^i )>'o(^i)>'o(^2) = P9(s)y0 (z ~ 0 V0 (z + ^

'I= 1 + 0(s )] y0(z) - ~ y'o(z) + 0(s2) y0(z) + % y'0(z) + 0(s2)2 v 7 || ',uv ' 2

= <72 y2(z) + 0(s2). (4.25)
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The other terms on the right side of (4.24) are obtained in a like manner. Thus

Jo Jo
|z — jc| >s/2

G ( X, z - ^ ) G (X, z + ^ )( 0! ( z - ^ ) 0! ( z + £ I ) ds dz

1

[G2(x, z)<gi(z)) + 0(s2)] ds dz
Jo

\z-x\ >e/2

= S

fx-e/2 ri \
+ G2(x, z)(gf(z)) dz + 0(e3)

0 Jx+e/ 2/

1 f*x + e/2

G2(x, z)<gf?(z)> dz £ I G2(x, z)<3i(z)> dz + 0(e3). (4.26)
0 Jx — e/2

Upon substituting (4.26) into (4.21) we are led to consider the combination

X+E/2 r G fx, z-^gLz + Z)/0l fz - + ^ (x + |)\ dz
lx-s/2 JO

-£j

Jx-e

e/2
G2(x, z)(fff(z)) dz (4.27)

k — s/2

By the mean-value theorem, this combination can be expressed as
x + e/2

x — e/2
G ( x, z - ^) G fx, z + ^ Vgl fz - ^ j gy (z + ^ ) ) - G2(x, z)<^(z)> dz

(4.28)
where 0 < s < e. Even though G'(x, t) is not continuous when t = x, the one-sided deriva-
tives of G are bounded throughout the region under consideration, and therefore

G{ x, z ± |) — G(x, z) < Ge (4.29)

where
G = sup | G'(x, z) |, 0 < x, z < 1; (4.30)

at a discontinuity point, G' refers to a one-sided derivative. Further, from (4.19) and (4.24)
it follows that

0i( 2 - ^Wz + ̂ )) ~ = 0(£2). (4.31)

By adding and subtracting suitable quantities to the integrand in (4.28), using the triangle
inequality, and referring to (4.29) and (4.31), we find that the integrand in (4.28) is of order
e. Consequently, the expression in (4.28) is of order e3. Thus, from (4.21) and (4.26),

ffJo Jo
G( x, z - -)g(x, z + | Ydii z - ^ W z + ^) ) ds dz

= e G2(x, z)<g2(z)> dz + 0(e3); (4.32)
0
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that is, this integral has no terms of order s2. Finally, going back to (2.34), we have

<y?(*)> = hi*) = 2e G2(x, z)(gl(z)) dz
0

2

- j [G2(x, 1)<0?(1)> + G2(x, 0)(g2(0))] + 0(e3), (4.33)

where (gf(z)) is given by (4.18). Thus A^x) and A2(x) in (4.1) are the coefficients of e and
e2 respectively in (4.33); of course, A^(x) is the same as given by (2.35). The preceding
derivation assumes tacitly that x is not within a distance e/2 of either endpoint. If this is
not so, then the argument must be modified slightly, but the result is the same.

Now we turn to the calculation of the coefficient A4 in (4.3). From (2.37) and (2.38) we
have

U(x)= jjjj G(x, Xl) ■ G(x, xJIX^Xi) ••• 3i(x4)>

Ri ~ 3<0i(x1)01(x2)><31(x3)g1(x4)>] dxl ■ ■ ■ dx4, (4.34)

where the region of integration is that portion of the four-dimensional cube 0 < xu x2,
x3, x4 < 1 satisfying

|xj — x2|<e, |x2 —x3|<s, and |x3 —x4|<e, (4.35)

or one of eleven other sets of inequalities obtained from (4.35) by permuting the variables.
If we remove the absolute value bars, then we can replace (4.35) by twenty-four sets of
inequalities, of which

0 < Xj — x2 < e, 0 < x2 — x3 < e, 0 < x3 — x4 < e (4.36)

is typical. The integration region is a portion of a cylinder whose axis is the line xl =
x2 = x3 = x4. It is convenient to introduce new coordinates s1( s2, s3, s4 by the trans-
formation

S! = (Xj -I- x2 + x3 + x4)/2, s2 = (xt - x2 + x3 - x4)/2,

s3 = (*1 + X2 - x3 - x4)/2, s4 = (xt - x2 - x3 + x4)/2, (4.37a)

or its inverse
Xl = (st + s2 + s3 + s4)/2, x2 = (S! - s2 + s3 - s4)/2,

^3 = («1 + «2 - «3 - s4)/2, x4 = (s, - s2 - s3 + s4)/2. (4.37b)

The SiS2s3s4-coordinate system is an orthogonal system, and is oriented so that the
sraxis lies along the axis of the cylinder. A straightforward calculation shows that

d(si, s2, s3, s4) d(xu x2, x3, x4)
d{xu x2, x3, x4) d(su s2,s3, s4)

= 1. (4.38)

To find the part of /4 that is of lowest order in e we can expand the integrand in the
transverse variables and then keep only the first term. This amounts to evaluating the
integrand on the s^axis, so that

/4(x) ==Ffc4BK9#*'
- 3V G4(^|)(^(t]) dSl+0(e% (4.39)



SOLUTIONS OF RANDOM BOUNDARY AND EIGENVALUE PROBLEMS 437

where V is the volume of the three-dimensional cross-section of the cylindrical integration
region R4, and V is the volume of the cross-section of the smaller cylinder (R2 x R2) n
R4. The cross-section of RA is a star-shaped region with twenty-four points, as shown in
Fig. 3. It is bounded by twelve identical plane faces, one of which is shaded in the figure.
The inequality sets typified by (4.36) divide the region into twenty-four congruent sub-
regions, each of which is a parallelepiped. For example, in an s2 s3 s4-subspace corre-
sponding to Sj = constant, the inequalities (4.36) yield the parallelepiped with vertices

(0, 0, 0), (0, e, 0), (e, e, 0), (e, 2e, 0), (e/2, e/2, e/2),

(e/2, e/2, -e/2), (e/2, 3e/2, e/2), (e/2, 3e/2, -e/2).
The volume of this parallelepiped is readily found to be e3/2, so the volume of the entire
cross-section is 12e3. A further examination reveals that V = V/2. Substituting these
values in (4.39) and letting z = sJ2 to normalize the interval of integration, we finally
obtain

U(x) = 24e3
i
G\x, z)[<gf(z)> - f<<?f(z)>2] dz + 0(e4), (4.40)

Fig. 3.
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SO

Aa(x) = 24 G\x, z)[<<rf(z)> - f<^(2)>2] dz. (4.41)

5. Example. To illustrate the application of the results derived in the preceding sec-
tions, consider the example

-y" + Mi(x, (o)y = x + rif1(x, co), y(0) = j<1) = 0. (5.1a,b)

In the notation of Sec. 2 we have

p0(x) = 1, Pi(x, co) = 0, q0(x) = 0, f0(x) = x; (5.2)

the statistical properties of q, and /, will be specified later. The coefficient p(x, co) was
chosen to be nonrandom in order to simplify the necessary calculations. As in Sec. 2 we
assume that

y(x, co) = y0(x) + rjy^x, co) + 0(r/2), (5.3)

whereupon it follows that y0 satisfies

L0[y0] = -y'o = m = y(i) = o. (5.4)
The Green's function for L0 with the given boundary conditions is

G(x, xt) - Xj(l — x), 0 < xt < x

= x(l — Xj), x < xx < 1 (5.5)

and

Further,

where

yoM = G{x, xjfoixj dxi = &x - x3). (5.6)

y,(x, to) = G(x, x1)g1(x1, to) dxu (5.7)

gj(x, co) =/i(x, co) - qt(x, co)>'0(x). (5.8)

To estimate the distribution function of y,(x, co) the first step is to normalize yt by calcu-
lating v4t(x) from (2.35b). Since p^x, to) = 0, we have

^i(x) = 2 G2(x, z)[aj + a] y20(z)] dz

2 2 2/1 \2 1 2 2 I 23 2x3 x4 4x5 2x6 2x7 x8 ,
= K*(i-» lHi5-T? + w + 3F-ir-6F + 56}

(5.9)
Next we use (3.29) and (3.30) to determine ^3(x); this requires information, or assump-
tions, about (q]} and </3>. If it turns out that /l3(x) / 0, then (3.22) gives the density
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function p( up to terms of order yje. Let us suppose, however, that <</,) = </J> = 0 so
that A3{x) = 0. In this case we wish to use (4.16) to estimate and this requires the
evaluation of A2(x) and A4(x) from (4.33) and (4.41) respectively. Since
G(x, 0) = G(x, 1) = 0 from (5.5), it follows at once from (4.33) that A2(x) = 0.

The analytical calculation of AJx) from (4.41), while not difficult in principle, requires
a rather lengthy integration process, which ultimately yields a polynomial of degree
twenty whose coefficients depend on </f), o2 a2, and (qf). In most cases it is probably
better to evaluate A4(x) numerically for those values of x that are of interest.

Since A2(x) = 0 in this example, the expression (4.16) for p^u) reduces to

p^u) = cj)(u) + eCe~u2/2(u* — 6 u2 + 3) + 0(e3'2)

= 4>(u) + efaiu) + 0(e3'2), (5.10)
where C(x) = AA{x)l2^^/2n A\(x). In the accompanying plots we have chosen x = 0.5 and
have assumed that

o) = <J2q = 1.0; </i> = 1-75; <^> = 2.0. (5.11)
The solid and dashed curves in Fig. 4 show the normal density function </>(u) and the
correction term respectively. The curves in Fig. 5 are plots of p£u) from (5.10) when
e = 0, 0.1, and 0.5 respectively. In this example, at least, the actual density function is
close to the normal even for fairly large values of e.

6. The corresponding eigenvalue problem. Purkert and vom Scheidt [5, 7] have es-
tablished properties similar to those in Sec. 2 for a large class of eigenvalue problems.

Fig. 4.
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Here we describe briefly the extension of the results in Sees. 3 and 4 to this kind of
problem. For simplicity we consider an eigenvalue problem analogous to the boundary-
value problem of Sec. 2; it will be apparent that the derivation can be extended to a much
larger class of problems, such as that investigated in [5], Suppose that

L0] = - [p(*. «)/]' + <?(*> °>)y = Mx, oj)y, 0 < x < 1 (6.1)
Ui[y] = 0; i = 1, 2. (6.2)

We assume that the coefficients p(x, to) and q(x, co) satisfy the conditions given in Sec. 2,
and that the boundary conditions again have the form (2.3). The coefficient r(x, co) is
continuous and positive on 0 < x < 1 except possibly for an co-set of probability zero. We
assume that p(x, co) and q(x, co) again have the form (2.4a, b), and that

r(x, co) = r0(x) + rjrt(x, co), r0(x) = <r(x, co)>, (6.3)

where r0(x) > 0 on 0 < x < 1. The random perturbations pu qx, and r, have mean zero,
and we assume them to be pairwise independent and wide-sense stationary with corre-
lation length s. Thus pt and qx satisfy (2.7) and (2.8) respectively, while

<ri(xi>i(x2)> = 0, \x2- xj>e

= a? Pr(x2 ~ ^i), I x2 - X! | < £. (6.4)

Under the given assumptions the problem (6.1), (6.2) has a sequence of eigenvalues
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{^(co)} and corresponding eigenfunctions {^(x, co)}. To determine them we assume that
the nth eigenvalue and eigenfunction have the form

4=Z^n >■„(*)= £ W- (6.5)
j-o j=0

A straightforward perturbation analysis leads to the problems

- (Po y'no)' + <?0 yn0 = Ko r0 ynO , Uilyno] = 0 (6.6)

and

(Po y'nl)' + ^O-Vnl - -Uro-Vnl = (PlJ'no)'

- q 1 J'nO + <*n0 r^nO + ^1^0 ^0 . ^iLVnl] = 0 (6-7)

for y„0, 1„0 and _ynl, lnl respectively. Let us denote the nth eigenvalue of (6.6) by n„ and
the corresponding eigenfunction, normalized with respect to the weight function r0, by
w„. Then (6.7) has a solution if and only if the right side of the differential equation is
orthogonal to w„. From this condition we find that

^iN =
where

h„(x, co)wn{x) dx, (6.8)
o

hn(x, oi) = - [p,(x, coK(x)]' + qt(x, m)wn(x) - fin rt(x, co)w„(x). (6.9)

If (6.8) is satisfied, then ynl can be found from (6.7) by means of an eigenfunction ex-
pansion

y„i(x, «) = Z Cim{<JJ) vvf(x), (6.10)
i = 1 /^i A'n
i#n

where

"m-M = J K(x, (u)Wi(x) dx, i^n. (6.11)

An analysis similar to that in Sees. 2, 3, and 4 can be based on (6.8) through (6.11).
If we compare (6.8) with (2.18) we see that they are of the same form with h„(x, co)

corresponding to gi(xl, co) and w„(x) to Gx(x, xx). Thus we can obtain estimates for the
distribution function of /nl similar to (3.21) and (4.15), provided that we can determine the
coefficients corresponding to Ax, A2, A3, and Aa. To do this, define /J, I*, and /J
analogously to I2, I3, and /4, respectively. To evaluate we again introduce the vari-
ables z and s by (2.32) so that

•i
/? = 2 ' K ( 2 - 0 K (z + ̂  J) w„ (Z - w„ (z + 0 ds dz - 2(JX + Jf),

(6.12)

where J* and J* are the integrals of the same integrand over the triangles and T2
in Fig. 1. To evaluate the main integral up to terms of order e2 we expand the integrand
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in powers of s and keep the first two terms. This requires that hn be differentiable, and this
in turn requires the additional hypothesis that p\, qA, and r, be differentiable with prob-
ability one. Assuming this to be true, we have

2j -n y ■ = [\(z) ~ ^ K(Z) + 0(.S2)J^„(2) + ^ h'Jz) + 0(s2)j

= h2n(z) + 0(s2) (6.13)

and similarly for w„(z — s/2)wn(z + s/2). Since there is no term of order s in (6.13), it fol-
lows that there is no s2 term in the main integral. To evaluate Jj" and J\ we need keep
only the first term in the expansion of the integrand in s, since the area of the triangular
region is e2/4 in each case. The result is

hnlz-^)hn(z + S

It = 2s
1 2
</i2(z)>w2(z) dz-*- [<fc2(0)>w2(0) + <fc2(l)>w2(l)] + 0(e3),

= Afe + A\e2 + 0( g3). (6.14)
To obtain the integrand in (6.14) more explicitly, we can start from (6.9) and use some of
the results of Sec. 2, thereby obtaining

</i2(z)> = a2 w'?(z) - a] p'p(0)w'„2(z) + a2 w2(z) + fi2n a2 w2(z). (6.15)

In the same way as in Sees. 3 and 4 it follows that

I*3 = 6e2

and

It = 24e3

</i3(z)>w3(z) dz + 0(e3) = A%e2 + 0(e3),

- Kh2n(z)>2>t(z) dz + 0(e4)

= A*e3 + 0(e4).

Finally, we define the normalized random variable £ by

c = ij^aXe.
Then (3.21) and (4.15) can be used to give the distribution function for ( simply by replac-
ing At by Af, A2 by A\, and so on.

The analysis of (6.10) and (6.11) for the eigenfunctions is similar, but is rendered more
complicated in practice by the summation in (6.10). Let

•i
Ifj) = <anianj} =

o J
<W^l)'ln(^2))Wi(Xi)wj(x2) dxy dx2.

Then

/V = 2e (h2(z)}wi(z)wj(z) dz

- J [h2(0)Wi(0)Wj(0) + ^(1)W1.(1)W/1)] + 0(e3)

= AfJ\ + Af J)e2 + 0(e3),
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where <^(z)) is given by (6.15). From (6.10) we have

AM - oiM) - £ £
l-lI j=l (Mi - Untv-j - Mn)

i, j^n

= Xt(x)£ + A2(x)e2 + 0(s3),

where

7 , , £ £ AfJ>Wi(x)Wj(x)
A1(x)= £ L 7 v——T>

i = 1 J=! (/if - njnj - nn)
ij * n

and A2(x) is given by a similar expression. In much the same way

hi*) = <yni(*)> = A3(x)e2 + 0(e3),

where

X (X) = y y y
3 X i = 1 j=1 *= 1 (/if - - M„X^k - Hn)

i,k,j * n

and

Also,

where

AfJ-k) = 6
1

,3/<h;(z)}wi(z)wj(z)wk(z) dz.

U(x) = Aa(x)e3 + 0(s%

00 00 00 00x ( \ = y y y y A* '' *' "w' ̂ wj (XWXM*)
4 X i= X j=1 * = 1 1=i (Mi - - M„XM* - MnX^l - Hn)

i,j, k,l^n

and

X<i-J-k-» = 24 ^'[<^(2)) - |</i^(z)>2]w;(z)wy(z)wk(z)w,(z) dz.

Finally we define the normalized random variable

v„(x, CO) = ynl(x, toVV^xje.

Then (3.21) and (4.15) can be used again to estimate the distribution function for v„(x)
provided that Ax is replaced by Al and so forth.

Note added in proof: We mention here two extensions of the results in this paper
that were obtained after the preparation of the original manuscript.

First, suppose that the coefficients p, q, and / are weakly correlated but not necessarily
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stationary. Then (2.7) through (2.9) are replaced by

<Pi(*i)Pi(*2)> = 0, | x2 - xj | > e;

= Rp(xu x2), | x2 - Xj | < e; (A.l)

<<Zi(*i)<Zi(*2)> = 0, I x2 — Xj I > e;

= Rq(xu x2), | x2 - Xj | < e; (A.2)

</i(*i)/i(*2)> = I x2 - xj | > e;

= Rf(x1,x2), | x2 — Xj | < e. (A.3)

It follows that

<Pi(*i)Pi(*2)> = 0. I*2~*i

= S2 Rp{xu x2), I x2 - Xj

<Pl(*l)Pl(*2)> = 0. 1*2 — *1

= 3i R„(xi,x2), I x2 Xj

<Pi(*i)Pi(*2)> = 0, 1*2 — *1

= 0\2 ^p(*i. x2), |x2-xt

> e

< e

> £

< e

> e

< e

(A.4)

(A.5)

(A.6)
where 5, denotes partial differentiation with respect to the ith argument. Then, instead of
(2.31a), in [1], we have

<0i(*i)0i(*2)> = Rf{xi, x2) + Rq(xu x2)y0(*i)j'o(*2)

+ Rp(xi, x2)>'o(x1)yo(*2) + 3iRP(xi, x1)y'0(xl)yl(x2)

+ ^2 RP(xi, *2)y'o(*i)/o(*2)

+ S212 Rp(x 1, *2)yo(*i)>'o(*2)» I *2 - *i I < e. (A.7)

The quantity A Ax) is still given by

AJx) = 2 f'c2(x, zKgfc)} dz, (A.8)
Jo

but now

(gf(z)> = Rf(z, z) + Rq(z, z)yl(z) + Rp(z, z)y'^{z)

+ [diRp(.z, z) + S2 Rp(z, zWo(z)y'o(z)

+ 0i2 RJ,z, z)y'02(z). (A.9)

In a similar way

A2(x) = - i[G2(x, 0)<gi(0)> + G2(x, l)<6r?(l)>] (A.10)

where <gf?(0)) and <g?(l)> are found from (A.9). Eqs. (3.30) for X3(x) and (4.41) for/44(x)
remain valid, but (,gl(z)} and <g?(z)> must be interpreted a little differently.

With these modifications in mind, the expressions (3.21) and (4.15) for F((u) and (3.22)
and (4.16) for p((u) remain valid in this more general setting, as well as the results in Sec. 6.
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It is also possible to combine the results of Sees. 3 and 4 by calculating the term
mentioned just above (4.5). This leads to the formula

p((u) = (p(u) jl + H3(u) Je

+ Al!^1 H2(u) + H4(u) + ^4^- H6(u) e + 0(e312) j (A.l 1)

with a corresponding result for F((u). Of course, (A. 11) reduces to (4.16) when A3 = 0 and
to (3.22) when only the 0(e1/2) term is retained.
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