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Abstract. The task of predicate invention in Inductive Logic Programming is to extend the hypothesis language 
with new predicates if the vocabulary given initially is insufficient for the learning task. However, whether 
predicate invention really helps to make learning succeed in the extended language depends on the language 
bias currently employed. 
In this paper, we investigate for which commonly employed language biases predicate invention is an appro- 
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the decidability of the blas shift problem for these languages and discuss the capabilities of predicate invention 
as a bias shift operation. 
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1. Introduct ion 

Because of  the limited knowledge representation formalism of  propositional learning 
algorithms and their difficulties in using substantial background knowledge, there is an 
increasing interest in investigating learning methods in a first order framework, lnductive 

Logic Programming (1LP) (Muggleton, 1990; Muggleton, 1993) is an approach that has 
received a lot of  attention recently. The task of  ILP is to learn logic programs by 
induction from examples in the presence of  background knowledge. 

The first order framework of  ILP usually leads to an infinite hypothesis space. To allow 

for tractable learning procedures, it must  be greatly restricted. The term bias refers to 
any basis for excluding hypotheses from the search space, other than strict completeness 
and consistency with the examples (Mitchell, 1980). An important part of  a system's  
bias is the hypothesis language. It restricts the range of  expressible concepts througb 
the vocabulary to be used in the hypotheses, i.e., the available predicate, function and 
constant symbols, and the syntactic form of potential target programs. 

If  the intended target concept is not included in the range of expressible concepts, the 
hypothesis language is too restricted for the learning task. In that case, the language bias 
needs to be shifted. Deciding whether a learning problem fails in the given language 
is called the bias shifi problem in the following, as the need for a bias shift emerges 
from the failure of  the learning task. Shifting the bias can be done either by al lowing a 
less restrictedform of the hypotheses, or by extending the given vocabulary with newly 

invented predicates. This is called predicate invention. Both operations attempt to en- 
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large the hypothesis language such that it contains a complete and consistent hypothesis. 
However, their success depends on the current language bias. 

The appropriateness of predicate invention as a bias shift operation depends on both 
its usefulness (i.e., the potential of making learning succeed) and the decidability of the 
bias shift problem for the current language bias. Only if predicate invention is useful 
and the bias shift problem is decidable will predicate invention be worth considering as a 
means to recover from a failure of the learning task. In this paper, we present utility and 
decidability results for a large range of language biases cornmonly used in ILE These 
results mark the boundaries of appropriateness and feasibility for predicate invention and 
bias shift operations in general. 

The paper is organized as follows. First, we give a formal definition of the usefulness 
of predicate invention in the context of ILP, and recall a general result that motivates 
the introduction of new predicates to overcome the limitations of the given language. 
In the following sections, we show for which language biases predicate invention is an 
appropriate shift operation and investigate the decidability of the bias shift problem for 
these languages. Finally, we characterize the capabilities of predicate invention as a bias 
shift operation, and conclude. 

2. Definitions 

The task of ILP is defined formally as follows. Given ground facts E e and E e as 
positive and negative examples, a logic program B as background knowledge, and a 
target language L, the system is to find a logic program H E L such that the following 
conditions hold (Muggleton & DeRaedt, 1994): 

Prior Satisfiability: B g= E e 
Posterior Satisfiability: B U H ~ E e 1 
Prior Necessity: B ~ E e 
Posterior Sufficiency: /3 U H ~ E ° 

In the following, we refer to the posterior conditions on B u H as consistency and 
completeness with respect to the examples. The quadruple (E  ¢, E e , /3 ,  L) is called the 
learning problem. Whether there exists an H E L complete and consistent with respect 
to E e and E e and/3 is called the bias shifi problem. 

The learning problem is based on the notion of an intended interpretation, which 
captures knowledge about the truth and falsity of all ground facts in the considered 
domain. In the framework of identification in the limit (Gold, 1967), an infinite sequence 
of ground facts that are true and false in the intended interpretation are available as 
positive and negative examples. In this setting, the learning task is to construct a finite 
axiomatization of the intended interpretation. In more realistic scenarios only finite 
subsets of the facts true and false in the intended interpretation are given to the system. 
In that case, there is always a solution to the learning problem if not explicitly excluded 
by L, H = E ¢. As trivial definitions of that kind prevent the investigation of the utility 
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of any bias shift operation, we assume a mechanism similar to cross validation to exclude 
them from the hypothesis space. 

E e and E e are split in training examples E~  and E~,  and test examples Et e and 
Et e.  The learning algorithm is run on E~  and E~,  resulting in a set of hypotheses 
Hi. Then, only those Hi which are complete and consistent with regard to Et e and Et e 
are returned. Furthermore, we assume that the hypotheses are reduced with respect to 
the training examples, meaning that no Hi contains redundant clauses or literals 2. This 
restriction is important because there might be learning algorithms which guess a trivial 
solution though they are given only a few of the examples. For example, let E ° and E e 
exemplify the grandparent relation for a set of people, and B contain all parent reiations 
among them. If L is the set of all logic programs using constants from B and the parent- 
and grandparent-predicates, nothing prevents a learning algorithm from hypothesizing 
E e even if only a part of it is given in E~.  However, the hypothesis E ¢ is not reduced 
with respect to E~  and E~.  That is, the restriction to reduced programs excludes trivial 
solutions consisting, for example, of the ground facts in E ¢. Though this method leads 
to programs whose predictiveness exceeds the given examples, it is not yet satisfactory 
for excluding trivial definitions. This issue needs further investigation. 

If the learning task fails in the target language L, L needs to be extended in order to 
make learning succeed. L is defined through the vocabulary, i.e., the available predicate 
symbols P and function symbols F,  and the syntactic form S of the allowed programs. 
S is expressed as additional conditions on the set of well-formed formulas over _P and F,  
wff(P, F). We assume the elements of wff(P, F) to be in cÂausal form, and P and F to 
be finite. The triple (S, P, F)  is called the language bias, and we write L as l(S, P, F).  
To extend L, each of the sets S, P or F might be extended. Extending F with new 
function symbols is largely unexplored. Replacing S by a superset of S, that is, allowing 
a less restricted form of the hypotheses, is the classical language blas shift operation. It 
extends L to cover a larger subset of wff(P, F) .  In contrast, Predicate Invention (PI) 
shifts the language blas through extending P with finitely many new predicates. PI adds 
further hypotheses to L without violating the syntactic restrictions S. 

PI, also known as Constructive Induction, is offen described independently of the suc- 
cess of the learning task, as a method for extending the language of concept descriptions 
to allow more compact and concise expression of theories. In order to distinguish be- 
tween mere compactions and predicates really missing in the vocabulary, Lapointe et at. 
(1993) introduced the terms useful and necessary for new predicates. Whereas useful 
new predicates only compress the hypothesis, necessary new predicates are needed to 
produce a hypothesis at all. 

This differs from our framework. As we investigate PI as a bias shift operation, we 
deal only with necessary new predicates, i.e., predicates without which the learning task 
would fail. PI is considered to be usefut if extending the target language L with finitely 
many new predicates makes a learning task succeed that otherwise would fall. 

Definition. Let 12 be a class of first order languages. PI is useful in Z; if there exists a 
learning problem (E e,  E e , /3 ,  L), L E £, such that learning fails in L = l(S, P, F), hut 
succeeds in a language L r = l(S, pl ,  F)  E £, P/  D P.  
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Proving that PI is useless for a class of languages allows the exclusion of PI as bias 
shift operation, prior to invoking any specific learning procedure. That is, our results 
capture the a priori utility of PI with respect to different language classes. 

Our definition of usefulness is relatively weak inasmuch as only the existence of a 
learning problem that is solved using PI is required for PI to be adjudged useful. A 
stronger definition would demand that every leaming problem that fails could be solved 
by means of PI. A theorem proved by Kleene (1952) can be interpreted as proving this 
strong utility of PI in the framework of identification in the limit with a first order target 
language. 

THEOREM 1 (Kleene, 1952). Any recursively enumerable set C of formulas in a first 

order language L is finitely axiomatizable in a first order language L ~ that extends L 

with finitely many additional predicate symbols. 

If  C is equal to the set E ® of facts that are true in the intended interpretation, this 
theorem proves that every first order learning problem can be solved by inventing appro- 
priate new predicates, provided that E s is recursively enumerable. So why be concerned 
with the utility of PI? 

There are two problems with Kleene's theorem and the strong definition of usefulness. 
First, the theorem states that every learning problem can be solved by PI, but does not 
identify which require PI to obtain a finite axiomatization. If there were none, PI could 
not be deemed useful despite the theorem. Second and more importantly, in the more 
restricted framework of ILR both the target language L = l(S, P, F) and the extended 
language L I = l(S, PI, F) are subject to the same syntactic restrictions S. PI only extends 
the set of available predicate symbols P, but leaves S unchanged. As there are learning 
tasks that fail not because of missing predicates in P, but because of the restrictions S 
that also apply to U ,  there is no chance to prove strong results on the usefulness of PI. For 
example, PI is very useful for regular unary logic programs (Yardeni & Shapiro, 1991). 
It allows detection of recursive substructures in the examples. However, if learning fails 
because non-regular predicates are given as examples, PI does not help. Therefore, we 
adopt the weak definition of usefulness. 

3. Usefulness  of  PI  as a Bias Shift Operat ion 

To prove that PI is useful, according to our definition, it suffices to give examples of 
learning problems that succeed through PI and otherwise fail. There are two different 
classes of hypothesis languages for which PI is useful. The first is that of infinite 
languages with recursive functors. It includes powerful languages, e.g., first order Horn 
logic. The second class contains languages restricted to a finite size by size bounds, 
schemes or language parameters. Though their expressiveness is restricted, they allow for 
tractable or even efficient learning procedures. PI mainly serves to extend the language 
without violating the specified parameters or schemes. It increases the expressiveness of 
the language without completely sacrificing its efficiency. 

In the following, we briefly recall the definition of each language and present an 
example that proves the usefulness of PI. 
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3.1. Infinite Languages with Recursive Functors 

Infinite languages allow us to produce infinitely many hypotheses for each learning 
problem. They contain at least one functor with arity _> 1. PI is useful for overcoming 
the limitations inherent in the vocabulary of the given language, as we will show for first 
order Horn logic and more restricted infinite languages. 

3.1.1. First Order Horn Logic 

In Horn logic, all clauses in a program are restricted to contain at most one positive 
literal. More formally, Horn logic as the target language of  a learning problem is written 
as l(S, P, F), where 

S : { H • w f f ( P , F )  I V C • H :  C : ( A ~ - B 1 , . . , B ~ ) V C = ( + - - B 1 , . . , B ~ ) }  

and F contains at least one n-ary functor, n _> 1. Clauses with exactly one positive 
literal A are called definite, in contrast to goaI clauses ( +-- B1, ..., Bin). Goal clauses 
( ~-- B) are offen written as B.  Definite clauses without body literals (A +-- ) are called 
unit clauses or facts. The empty clause is denoted by [::]. Though first order Horn logic 
restricts full clausal logic, it is still very expressive. Kleene's theorem can be adapted to 
Horn languages so that in principle every learning problem in first order Horn logic can 
be solved by PI. However, as we have argued in the previous section, we still have to 
prove that there are learning problems that fail because of  predicates missing in P and 
succeed through PI. 

Example: Assume E e and E ° exemplify a predicate square(X) which is true for all 
square numbers X.  Numbers are written in standard successor notation. For example, 
3 is written as the third successor of zero, s(s(s(O))), abbreviated s3(0). Then there is 
no solution to the learning problem using only the predicate square/1, the function s/1 
and the constant 0. 
Proof: Assume a solution H exists. Without loss of generality, we might assume that 

•2 
each clause in H is either of  the form square(s (0)), or square(sm(X)) ~-- Body, 

and Body contains no existential variables nor constants. This is because body literals 
of  the form square(sÆ(Z)), Z # X,  or square(sk(O)) are always true or always false, 
regardless of the current proof. 
That is, each non-unit clause C in H is of the form 

sq~~~.~(~,~~(x)) ~ ~q~~,~~(~k~ (x)), ...., ~q~~<~(s k~ (x)), kj ¢ ~~. 

Assume C is called with V = s ~ (0), v > m. Then kj > m means that square is called 
with V plus some constant cj. Likewise, kj < m means that square is called with V 
minus a constant cj. So C can be written more informally as 

square(V) ~-- square(V J= cl), ...., square(V + cz), cj > O. 
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Let e be the maximum cj for all non-unit clauses in H,  and n~a~ the maximum n for 
all unit-clauses. Choose w > max{n~ax, c} + 1, and assume H F- square(w 2) via an 
SLD-resolution-proof 3 

square(w 2) 

~01 C1 

0k Ck 

[] 

where C], ..., Ck E H.  Because of the linearity of SLD-proofs, they can be written 
clown linearly, in our case as 

(ù (square(w2) • C101)....). CkOÆ. 

Here, (A. CO) denotes the result of resolving the goal clause A and the definite clause 
C with substitution 0. As w > nmaz, C]01 must be of the form 

squaTe(W 2) +--- square(w 2 -}- c1), ..-., square(w 2 :~ cl), cj > O. 

For the proof to be successful, each of the literals square(w 2 + cj) must be implied by 
H. However, as for each cj 

( w - l )  2 < w  2 - c j  < w  2 < w  2 + c j  < ( w + l )  9̀  

this means that H implies square(u) for non-square numbers u, which contradicts the 
assumption that H is a solution to the learning problem. However, using the additional 
predicates mult /3 and add/3 with their standard definitions for integer multiplication 
and addition, the clause 

square(X) +-- mult(Z, Z, X) 

solves the learning problem. [] 

This demonstrates that PI is capable of introducing predicates missing in the original 
language. In Horn logic, it is interesting to note that the new predicates must be defined 
recursively. If they were not, there would have been a solution to the learning problem 
in the original language. 

A very common, though weak restriction on Horn logic is that of connected and 
generative clauses. The variables of connected clauses (Rouveirol, 1992; DeRaedt, 1992) 
must be connected to the head of the clause. A variable X in a clause A +-- B1, ..., B,~ is 
connected if either X E vars(A) or X E vars(Bi) and Bi contains a connected variable 
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Y ¢ X.  Conversely, the head variables of generative clauses (Muggleton & Feng, 1990) 
must occur in the body, more formally vars(A) c_ vars({/31,..,/3~}) for a clause 
A ~-- BI,  ..., Bw. As each clause in the proof of the previous example is connected and 
generative, it also proves the usefulness of PI for these more restricted languages. 

3.1.2. Constrained Clauses 

The presence of recursive functors makes PI useful even in cases where the syntactic 
form of the clauses is severely restricted. For example, constrained clauses must not 
contain any existential variables; more formally vars({B1,..,/3~}) C_ vars(A) for each 
constrained clause A +- t31, ...,/3,» Because the previous example requires existential 
variables in its solution, another is needed to show the usefulness of PI for constrained 
languages. For example, there is no constrained definition of the standard reverse- 
predicate that uses only reverse and the list operations. But the efficient definition using 
reverse_aecumulate as an auxiliary new predicate is in fact constrained. 

However, if the learning problem requires existential variables to be solved, e.g., when 
defining 9randparent with parent, PI does not help because the syntactic restrictions 
S remain. Constrained languages are the first example supporting the weak definition of 
usefulness we discussed in the previous section. 

3.1.3. RUL-programs 

Regular unary logic (RUL)programs (Yardeni &Shapiro, 1991) a r e a  special case of 
constrained programs. They contain only unary predicates and allow non-variable ar- 
gument terms only in the clause heads. The head arguments of  clauses of the same 
predicate must have different function symbols. Additionally, every variable in a clause 
must occur exactly once in the head and once in the body. 

The extensions of predicates defined by RUL-programs are regular sets particularly 
suited to describe argument types. RUL-programs allow for v e ~  efficient induction 
methods (Stahl et al., 1993). If the example set is regular, PI can make the learning task 
succeed. 

Example: Let B =- ¢, 

S ° : { t(f(g([~]))) ,  

t( f(g([a,a])))  } 

E e = { t(9([a])),t([a]),f([]), 
~(g([~,~])),t([~,~]) } 

Then there is no complete and consistent RUL-program H using only tl1. Using an 
additional predicate symbol newp/1 allows a definition 

t ( f (g([alY])))  *-- newp(Y)  

newp([atY]) ~ newp(Y) .  K] 



102 I. STAHL 

However, if E ° exemplifies non-regular predicates, e.g., E e C_ {t(f(L1, Le)) IL1, L2 

lists of the same length}, only the introduction of n-ary new predicates will help. 

3.2. Finite Languages 

Finite languages contain for each learning problem only finitely many hypotheses. The 
finite size resulting from size bounds, schemes or parameters leads to restricted expres- 
siveness when compared to infinite languages, but allows for tractable learning proce- 
dures. PI is useful for extending the language without violating the size restrictions. It 
increases the expressiveness of the language without sacrificing tractability. 

3.2.1. Size and Complexity Measures 

Heuristic size. or complexity measures place a fixed or application-dependent size- or 
complexity bound on the hypotheses. More formally, a hypothesis language of that kind 
is written as l(S, P, F) with 

S = {H E wff(P, F) I size(H) ~ bound A ... additional restrictions...} 

where size(H) is the size- or complexity measure and bound is the size- or complexity 
bound. The additional restrictions might, for example, constrain H to a Horn formula. 
The intent of using size- or complexity bounds is to implement Ockham's razor principle 
that advocates the simplest solution to the learning problem. There are different ap- 
proaches to measure the simplicity of a program. Some use only syntactic properties of 
the hypotheses as criteria, either independently of the examples (Muggleton & Buntine, 
1988; Wrobel, 1994) or in comparison to them (Quinlan, 1990). More sophisticated 
measures consider the complexity of proofs derived from the theory (Muggleton, 1988; 
Wirth, 1989; Srinivasan et al., 1992). 

Example: In CIGOL (Muggleton&Buntine, 1988) the significance of a hypothesis is 
measured by the degree to which it compresses the data. The size measure to be mini- 
mized is defined as 

size(H) = 1 + ~CeH size(C), H logic program 
size(C) = 1 + EL~C size(L), C clause 
size(f(t t , . . ,  t~)) = 2 + ~~~=1 size(ti) 

size(V) = 1, V variable 

Then, introducing a new predicate into a program 

H : arch(X, beam, Z) ~ column(X),column(Z) 

arch(X, we@e, Z) ~- column(X), column(Z) 

with size(H) = 27 yields 
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H':  arch(X, Y, Z) +-- column(X), newp(Y),column(Z) 

newp(beam) 

newp(wedge) 

with size(H') = 26 < size(H). That is, PI reduces the size of the theory and improves 
compression of the data. It might allow one to find a solution within the specified bounds. 

[] 

Size bounds are often used to restrict the complexity of proofs derived from the target 
theory (Kietz & Wrobel, 1992; Kietz & Morik, 1994) in order to make both induction and 
deduction feasible. If  the learning task falls, PI can be used to overcome the limitations 
without completely sacrificing feasibility. 

Example: KLUSTER (Kietz&Morik, 1994) uses a restricted terminological logic as 
target language. In terminological logic, a concept is defined by its superconcepts and 
additional conditions. For example, in a drug domain, an active substance affecting 
excitement is defined as 

activel := active A all(a f f  ects, excitement) 

which transcribes to the first order sentence 

Vx activel(x) +-+ (active(x) A (Vy a f f  ects(cc, y) --+ ecceitement(y) ) ). 

KLUSTER does not allow for embedded formulas in place of affects and excitement. 

This restriction enables both efficient classification of objects and efficient induction of 
concepts, but might cause learning to fail. If, for example, the concepts dru9, active, 

ezciternent and pain and the roles (relations) contains and affects are given, then the 
complex definition 

sedative := drug A all(contains, active A all(a f f  ects, emcitement) ) 

is necessary to discriminate a sedative from an anodyne which affects pain. Introducing 
the auxiliary concept activel above a!lows one to define sedative without violating the 
syntactic restrictions of KLUSTER by 

sedative := drug A all(containa, activel). 

However, newly defined concepts and roles increase the complexity of proofs derived 
from the theory. That is, the increased expressiveness comes at the price of efficiency. 

[] 

To summarize, PI is useful if no solution to the learning problem exists within the 
specified bounds. New predicates can be employed to factor out common parts of 
clauses, or to express important sub-relations and exceptions in rules. The resulting 
theory might fit the given size and complexity bounds, enabling learning to succeed. 
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3.2.2. Schemes 

Schemes represent one approach for describing the structure of the hypothesis clauses 
at an abstract level. They allow the expression of prior knowledge about the expected 
structure of hypothesized clauses in certain application domains. Schemes are closely 
related to size measures because they implicitly impose size bounds on the hypotheses. 
The hypothesis language is defined with respect to the schemes {$1, ..., Sn} as l(S, P, F) 
where 

S = {H E wff(P, F)  ] each clause in H matches one of the schemes {S1, . . ,  S,~}}. 

SIERES (Wirth&O'Rorke, 1991) and CAN (Tausend, 1992) use graphs as schemes 
to represent the number of literals and the argument dependencies between them. RDT 
(Kietz&Wrobel, 1992) and CIA (DeRaedt&Bruynooghe, 1992) employ function-free 
second-order clauses with predicate variables to describe the allowed structure of hypoth- 
esis clauses. The instantiations of the available schemes with respect to the background 
knowledgè constitute the search space for learning. 

If no solution instantiating the given schemes exists, PI may help to overcome the 
limitations imposed by them. 

Example: Let the available scheme be 

SIERES, CAN (graph) RDT, CIA (second order clause) 

S : 

I 

l I I I 

s : P ( x )  ~ Q(X), R(x) 

and let the target definition be C : p(X) +- q(X),r(X),s(X). Then there is no 
equivalent instantiation of S. If a new predicate is introduced, the two clauses 

p(X) +- q(X),newp(X) 

~ ~ ~ p ( x )  ~- , - ( x ) ,  4 x )  

instantiate S and are equivalent to C. [] 

In this case, PI extends the hypothesis language without requiring more complex 
schemes. Additionally, it allows expression of recursive subcelations. 

Example: Suppose a set of clauses 

p(X) ~ s(X, U), , ' (U) 
p(x) ~- s(x, u), q(u, v ) , - ( v )  
p(x) ~- s(x, u), q(U, v), q(V, w),  ~(w) 
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is needed to describe the target concept. Without PI, a scheine for each clause is nec- 
essary, whereas introducing a new recursively-defined predicate allows the use of the 
definition 

new;(U) +--- q(U, V), newp(V) 

~e~p(u) ~- ~(u) 

matching the simple schemes P(X)  +-- Q(X) and P(X)  ~-- S(X,  U), R(U). [] 

3.2.3. Language Series 

Language series (DeRaedt, 1992) are sets of parameterized languages. For each instanti- 
ation of the parameters, the resulting hypothesis language is finite. CLINT (DeRaedt & 
Bruynooghe, 1992) orders its parameterized languages according to increasing expres- 
siveness. If the system falls to detect a complete and consistent definition within the 
current language, it shifts to a more expressive one. 

As in the case of schemes, PI takes the place of shifting to a more complex language. 
For example, CLINT's language series 3 restricts the depth of existential quantification 
within the target clauses using k + 1 parameters k, il, .., ik. Each clause C from 
Lil,..#k must fulfill the following syntactic restrictions Sil,..,~k: 

• head(C) = p(X1, . ,  X~), where X1, ..., X,~ are different variables, 

* C is linked (= connected) and range restricted (= generative), 4 

body(C) is a subset of the inductively constructed set Bil,..,ik(X1, .., X~). The 
base case B~(W1,. ,Wm) contains all literals sharing at least one variable with 
{W1, .., Wm}, and introducing at most i new variables. Then, Bh,..#~(X1, .., X~) 

is Bi~ (Z1, .., Zl), where {Z1, .., Zl} ~- vcl.TS(Æii ,.,ik-1 ( X t ,  .., Xn)). 

If no solution exists in the given language Lil,..,ik, PI does the same job as shifting to 
a more complex language. 

Example: A clause 

c = p(x)  ~ ~(x, u), q(~T, v),p(u, w), ~(v, w)  

is not in Ll,o, but in Ll,l,0. With a new predicate it can be replaced by the two clauses 

p(x)  +-- ,-(x, u), ~~~p(U) 
~e~p(U) +-- q(r:, V),p(U, W), ~(V, W). 

in Ll,o that are equivalent to C. [] 

However, as in the case of schemes, PI is a more powerful operation than the pure 
language shift because recursive sub-relations are detectable. 
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Example: Looking at the last example of section 3.2.2, shifts from L1,0 to L1,1,o and 
L1,1,1,o are necessary for defining the target concept if no additional predicate is intro- 
duced. In contrast, the new recursively-defined predicate allows a definition in Ll,o. 

[] 

3.2.4. Determinate Clauses 

The determinacy restriction (Muggleton&DeRaedt, 11994) is a semantic restriction on 
the number of instantiations of existentially quantified variables with respect to the back- 
ground knowledge and the examples. That is, the syntax S of a determinate language 
L = l(S, P, F) depends on B and E e. 

Definition. Let B be a logic program and E e a set of ground atoms. A clause A ~-- 
/31, ...,/3n is determinate iff for every substitution 0 that unifies A to a ground instance 
e E E ® and for all i c {1, ...,n}, there is a unique substitution 0i such that (B1/~ ... A 
Bi)O0i is both ground and true in Æ ( B  U E¢) .  s 

In (Muggleton & Feng, 1990), determinacy is combined with a bound on both the depth 
of existential quantification and the number of variables that must be instantiated to make 
the substitution 0i unique. In the previous section, we have shown that PI is useful to 
overcome these kinds of restrictions. In the following, we turn our concentration to the 
determinacy constraint. 

If  the determinacy constraint is violated, the non-determinate background knowledge 
Æ ( B  U E e)  has to be transformed into functional form. As the functional parts of a 
non-determinate predicate must be named differently, PI is involved. 

Example: Let E e and E e contain examples of the ancestor-relation for a set of people, 
e.g., ancestor(fred, willi), and let B contain all parent-relations among them, e.g., 
parent(fred, tim) and parent(tim, will@ Furthermore, we assume that each person 
in our domain has 0 or >_ 2 children. Then determinate clauses contain only literals 
without existential variables, as only these are determinate with respect to the background 
knowledge and the examples. This leads to a trivial definition of the ancestor predicate 
and, therefore, to the failure of the learning task. To define ancestor with determinate 
clauses, the parent-relation in the background must be transformed into functional form, 
e.g., by inventing the determinate mother and father predicates. Then, the clauses 

ancestor( Anc, Desc) +- f ather( Z, Desc), ancestor( Anc, Z) 
ancestor( Anc, Desc) ~ mother( Z, Desc), ancestor( Anc, Z) 
ancestor( Anc, Desc) +- parent( Anc, Desc) 

are determinate and solve the learning problem. [] 

This kind of PI involves detecting dependencies between the arguments of a predicate 
and restructuring the knowledge base. It is employed in the context of inductive data 
engineering (Flach, 1993). 
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4. Uselessness of PI as a Bias Shift Operation 

In spite of the general utility of PI as a blas shift operation for finite languages, there 
are language biases for which even PI falls to extend the range of expressible concepts. 
This is particularly true for function-free languages. 

Proving the uselessness of PI, according to our definition, is more difficult than proving 
its usefulness. Instead of simply giving examples for successful applications of PI, we 
have to show that no extension of the target language with new predicates makes the 
learning task succeed. The results we prove in the subsequent sections only apply to 
complete algorithms. For algorithms leaving some part of the hypothesis space unex- 
plored, e.g., hill climbing algorithms, PI may nevertheless be useful to make the learning 
task succeed. 

4.1. .Function-Free Constrained Clauses 

Function-free constrained clauses are constrained clauses without any functors except for 
finitely many constants. More formally, a function-free constrained target language L is 
l(S, P, F) where 

F = { c l ,  . . . ,  c,~} 

S = {H E w f f ( P , F )  I VC E H :  vars(body(C)) C_ vars(head(C)) )  

In contrast to the general case of constrained clauses, PI is useless in recovering from a 
learning task failure. 

Example: Ler examples about grandparent (X,  Y)  be given for a set of people and let 
the background knowledge contain the parent-relations between rhein. Then, there is 
no non-trivial constrained program that covers the examples. Furthermore, PI is useless 
because it cannot introduce the necessary existential variable. D 

The following theorem proves this assertion. 

THEOREM 2 If  there is no function-free constrained solution H to the learning problem 

( E e, E e, t3, L ), L = l( S, P, F), then there is also no function-free constrained solution 

H'  in U = l(S, pr F)  for each extension P'  of P w#h finitely many new predicate 

symbols. 

Proof: We assume that a non-trivial solution H '  in L t exists. In H ~, recursive calls of 
new predicates are applied to permutations of the arguments of the parent goal. As there 
are only finitely many permutations, non-recursive definitions allowing the elimination 
of the new predicates in H r can be determined. This results in a non-trivial, complete 
and consistent H "  in L, in contradiction to the precondition of the theorem. 
Construction of H ~~ from Hr: Let 

H' = C,~~~p u Cd« 

clauses with new clauses that  do no~ 
predicates as conta in  a new 

positive Iiterals predicate  pos i t ive ly  
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Ao 

A1 

A2 

[C1:  newp(X, Y) +- ed9e(X, Y), newp(Y, X) IC2: newp(X, Y) +- final(X)[ 

B ]C4: newp(X, Y) ~ edge(X, Y), final(Y)l 

C3: newp(X, Y) +-- egge(X, Y), edge(Y, X), newp(X, Y) / - -  

I newp(X, Y) ~ ed9e(X, r) ,  edge(Y, X), newp(Y, X) 

subsumed by C1 

Figure 1. Inductive construction of A 

Let A0 = C~cwp 
Ai+l = Ai @ {C I ~C~, 62 ~ Ai (C = (C1 " C2a)) A 

~3C' • Ai (C'O c_ C)} 

where (C1 - C2~r) is the result of resolving C1 and C2 with substitution «, and C'O C_ C 
standard 0-subsumption. Figure 1 shows the inductive construction of Az for an example 
program 

H' = reaehes_final(Z, X, Y) ~- edge(Z,X),newp(X, Y) 
C 1 : newp(X,  Y)  4--- edge(X, Y) ,  newp(Y, X )  

Cn~~p 
c2 ne~p(x, Y) ~- fi,~az(x) J 

in a graph domain. The predicate edge(X, Y) indicates a connection between the nodes 
X and Y, whereas f inal(X) means that X is a final node. The first step of the 
inductive process constructs the clauses C3 and C4. Already in the second step only 
clauses subsumed by those in A1 are added. Therefore, the inductive construction stops 
at that point. More generally speaking, as there are only finitely many clauses reduced 
under 0-subsumption in each constrained function-free language U, there is an integer 
n such that A n + l  = An. Let 

A = An - {C c An [ C contains a new predicate negatively}. 

In our example, A contains C2 and C4 boxed in figure 1. We can show that A has the 
same success set as Cn~wp, that is A ~- a ¢:~ Cnewp ~- a for each fact a E L' as follows: 
' =~': Let A t- a be true. If a clause C used in the proof is not in C~e~,p, it has been added 
during the inductive construction of A, meaning that it results from resolving clauses in 
Cn~~p. Merging the resolution derivation of C from Cn~~p in the given proof leads to 
a resolution proof Cn~~p F- a. 
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'¢= ' :  Let C~~~p ~- a be true. If  a clause C used in the proof is not in A, it contains new 
predicate literals in the body. Due to the inductive construction of  A, there is a clause in 
A corresponding to each possibility of  eliminating the new predicate literals. Therefore, 

there is a resolution proof A F- a. 
The set A contains only non-recursively defined new predicates, the definitions of 

which can be used to unfold the new predicate literals in Cd~f. This results in the 
desired non-trivial program H H in L. In our example, H "  is 

reaches_f inal( Z, X, Y) ~-- edge( Z, X),  f inal( X ) 

reaehes_f inal( Z, X, Y) ~-- edge( Z, X),  edge( X, Y), f inal (Y) 

meaning that a final node can be reached from Z if Z and X are connected and either 
X is a final node or X is linked to a final node Y. [] 

Therefore, in function-free constrained Horn logic, PI is useless when the learning task 
fails. The same is true for the more restricted case of  completely bound clauses C where 
var s( head( C) ) = vars( body( C) ). 

4.2. Monadic Horn Logic 

Monadic Horn logic is function-free Horn logic restricted to unary predicates. For a 
monadic hypothesis language L = l(S, t:), F), F is a finite set of  constants and P a finite 
set of unary predicates. In contrast to RUL-programs, monadic logic programs need not 
to be constrained, but might contain existential variables. However, we can show that 
for each monadic logic program there is an equivalent one without existential variables. 

THEOREM 3 Given an arbitrary monadic logic program H in a language L, there 

exists a program H ~ in L with the same success set without existential variables. 

Proof:  Body literals with an existential variable as argument are always true or always 
false, regardless of  the current proof. For example, given a clause 

bird( X)  +-- has_beak( X),  f l ies( Z), 

the literal f l ies(Z) is true if there is some arbitrary flying object in the theory, and false 
otherwise. The instantiation of  X in the current proof is irrelevant for the truth or falsity 
of  flies(Z). Therefore, literals of that form can be eliminated from H.  For each clause 
Ci E H, let Xi be the set of  literals in C~ that contain existential variables. If  H L Xi, 
add Ui - X~ to H ~. Then H I has the same success set as H,  that is H I ~- a e:~ H ~- a 
for each fact a C L. 

' ~ ' :  For each clause C~ E H ~ used in the proof o f a  there is a clause Ci E H, C~ C Ci. 

As H ~- (Ci - C~), there is also a proof H t- a. 

' ~ ' :  For each clause Ci C H used in the proof of  a there is a clause C~ E H ~, C~ C Ci, 
otherwise parts of Ci would not have been eliminated. Therefore, there is also a proof 
H~ ~- a. [] 
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So, only constrained clauses need to be considered when learning in monadic Horn 
logic. Therefore, PI is useless if learning fails. 

4.3. Function-Free Horn Logic 

Function-free logic programs contain no functors except for finitely many constants. 
That is, the set F of a function-free language L = l(S, P, F) is a finite set {Cl, .., ck} of 
constants. Excluding arbitrary functors leads to the decidability of logical entailment, in 
contrast to full first order Horn logic. 

This decidability accounts for the uselessness of PI. In section 5.2 we prove that, given 
(E e ,  E e,  B, L) with a function-free language L, only clauses with at most n different 
variables need to be considered for the target program H.  The parameter n depends 
on the number of constants in B and L, and the arity of the available predicates. This 
property accounts for the decidability of the learning problem on the one hand, and the 
uselessness of PI on the other. As only clauses with up to n different variables need to 
be considered, new recursively-defined predicates can be eliminated by a method similar 
to that for constrained clauses. 

THEOREM 4 If there is no function-free solution H to the learning problem (E e ,  E e ,  
B, L), L = l(S, P, F), then there is also no function-free solution H'  in L' = l(S, P', F) 

for each extension pr of P with finitely many new predicate symbols. 

Proof: As in the proof of theorem 2, we assume that a complete and consistent H r 
in U exists, and construct a complete and consistent H "  in L, in contradiction to the 
precondition of the theorem. The crucial difference from theorem 2 is in the inductive 
construction of the set A of non-recursive new predicate definitions: 

Ao ~- Cnewp 
B{+I = Ai U {C j 3C1, C2 c Ai (C = ( C  1 - 0 2 0 - ) )  /k 

~3C'  • A{ (CO C_ C)} 

Bi+l might contain clauses with > n variables, where n is the bound on the number 
of variables. By the method we describe in section 5.2, an extensionally equivalent set 
Ai+l of clauses with at most n variables is constructed from Bi+i.  Because there are 
only finitely many clauses reduced under 0-subsumption with < n variables, there is an 
integer k such that A~+I = AÆ. The set 

A = Ak - {C E Ak I C contains a new predicate negatively} 

can be proved to be extensionally equivalent to Cnewp. Since it contains only non- 
recursive definitions of new predicates, it can be used to unfold the new predicates in 
Cdef, resulting in the desired program H ~~. • 

So, if the learning method fails to find a function-free solution, PI is useless in re- 
covering from the failure. However, this result taust not be over-generalized. It does 
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not apply if incomplete search is used or if the background knowledge is changing. For 
example, if a definition of rnale_ancestor is to be induced that is valid no matter which 
family tree is given as background knowledge and examples, introducing an auxiliary 
predicate ancestor is useful. But if both the background knowledge and the examples 
are fixed, PI is useless in recovering from a failure of the learning task. 

5. Decidability of the Bias Shift Problem 

Bias shift operations are applied to recover from a failure of the learning task. Deciding 
when a bias shift is necessary involves deciding whether the learning task fails in the 
given language. For a blas shift operation like PI to be feasible for a class of languages, 
both its a priori utility and the decidability of the bias shift problem itself need to be 
ensured. 

Similar to the utility results of the previous sections, the decidability of the blas shift 
problem depends on the complexity of the target language. Two central results, the 
undecidability of the bias shift problem for first order Horn togic and the decidability for 
function-free Horn logic, mark the boundaries of feasibility for blas shift operations. 

5.1. Undecidability for First Order Horn Logic 

Though first order Horn logic is less expressive than full clausal logic, it still does not 
allow for deciding logical entailment. Accordingly, the bias shift problem is undecidable 
in that framework. 

THEOREM 5 The bias shift problem is undecidable for learning first order Horn theo- 

ries. 

Proof: Suppose the bias shift problem is decidable. Then the problem of deciding 
logical entailment, an undecidable problem, would be decidable. 

Let P be a logic program and e a ground fact. To decide whether P ~- e holds, it 
suffices to decide whether the bias has to be shifted for the learning problem consisting 
o f E  ~ = { e } , E  e = Ó , B = ~ a n d L = { P } .  II 

Though PI is useful in the framework of first order Horn logb, theorem 5 shows that 
it is not feasible. The language biases discussed can be seen as attempts to approximate 
the decision on shifting the bias and introducing new predicates in first order Horn logic. 

5.2. Decidability for Function-Free Horn Logic 

The restriction to finitely many constants is fundamental for function-free languages, 
otherwise they are as expressive as unrestricted Horn logic. This leads to an interesting 
observation, when inductive inference is concerned. If all n constants in B, E H and E e 
are known, it suffices to consider clauses with at most n variables for the target program. 
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In that case, the bias shift problem is decidable because the finitely many programs 
can be enumerated and tested for completeness and consistency. The following theorem 
captures the above observation. 

THEOREM 6 Given a function-free language L = l(S, P, {Cl,.., en}), then for each H 

in L there exists an H r in L such that all cIauses in H ~ contain at most n variables, 

and H k- a iff H '  F- a for each fact a in L. 

Proof:  (Reinhardt, 1993) Each clause C C H with m > n variables is replaced by n "~ 
clauses Ccr for each possible substitution cr : vars (C)  ~ {Z1, .., Z,~} substituting the 
variables of C with at most n different new variables. For example, if C is 

p ( X ,  Y )  ~ q (X ,  Z) ,  r (Z ,  Y )  

and n = 2, we get 2 3 = 8 different clauses Ccr, e.g. 

P(Z1, Z1) +-- q(Z1, Z1), y(Z1, Z1) 
p (Z l ,  Z1) ~-- q(Z1, Z2), r(Z2, Z1) 
p(Z l ,  Z2) +- q(Z1, Z1), r(Z1,  Z2) 

For the resulting program H r we have to show that H ~- a ¢:~ H ~ k- a. 
'=~':  Without loss of generality we assume H ~- a via an SLD-proof 

((ù ((a" C101)" C202).. ) • CkOk). 

Then, ( ( . . ( (ä .  ClOl..Ok) ' C202..0k).. ) • CkOk) is also a proof that H k- a. Given a 
substitution pi which substitutes for all variables in CiOi..Ok an arbitrary constant, ((..((ä- 
ClOi..Okpl). C202..0kp2)..)" CkOkpk) is also a proof. Now CiOi..Okpi is a ground clause 
with at most n different constants so that there exists a C~ E H ~ and a substitution p~ 
such that CiOi..OkD i t t t t C lp l )  ' Ckpk) a = Cip i. Thus, ( ( . . ( (g-  C~Y2).. ) .  ' ' is proof. 

! / ! ! 
',~;=': We assume H'  F- a via an SLD-proof ( ( . . ( (ä .  C101).  C;O;). . ) .  CkOk). For each 
C~ there is a C / E  H,  either Ci = C~ if C~ contains < n variables, or Ci«i  = C~. Thus, 
((ù ( (ä -Cl~r i0 [ )  - C2«20;) . . )"  CkakO•) is a proof that H b- a. 

An alternative proof sets H '  to the minimal model of H,  Æ ( H )  5. Then H ~ trivially 
contains clauses with at most n variables. However, this proof technique violates the 
restriction to non-trivial programs which our proof preserves. • 

The crucial question for the decidability of the bias shift problem in function-free 
languages is whether all constants in the learning problem are known during induction. 
This will generally not be the case, especially if techniques to exclude trivial definitions 
are used. These techniques present only some of the examples as training set to the 
learning method. The number of new constants in the remaining test set is unknown, 
and likewise the upper bound for the number of different variables in the target clauses. 

However, a closer investigation of  the situation when E ® and E e contain constants 
outside B and L shows that the result of  theorem 6 can be generalized. The general- 
ization is based on the subsumption theorem (Rouveirol, 1991). A program H implies 
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a ground fact e with constants outside H if and only if H implies the fact e' that re- 
sults from replacing all new constants in e by variables. That is, the unknown constants 
themselves do not matter for the inductive inference method, rather the potential number 
of occurrences within one specific example. This number is bounded by the maximum 
predicate arity max_A in E e and E e.  Thus, given a learning problem (E e, F, e, B, L) 

where L and B a r e  missing some of the constants in E e and E e, it suffices to consider 
clauses with at most n + max_A variables for the target program. So even in cases 
where the target program is to handle examples with unknown, new constants, the bias 
shift problem is decidable. 

An interesting question is whether it is really desirable to induce programs that cover 
examples with arbitrary constants. Due to the subsumption tbeorem, covering ground 
facts with new constants means, in fact, that the corresponding universally quantified 
formula is implied. Often, this is so strong that many systems require knowledge about all 
constants in E e and E e to be present in B, e.g., (Quinlan, 1990; DeRaedt & Bruynooghe, 
1989). Moreover, in cases where examples contain constants missing in B, techniques to 
acquire background knowledge about them have been proposed (DeRaedt et al., 1991). 

However, this technique leads to a stronger success criterion for learning. The induced 
program is to cover not only the given examples with respect to the given background 
knowledge, but arbitrary examples with respect to an augmented background knowl- 
edge. Although this criterion makes PI useful, it violates the restriction to function-free 
programs because of the need to consider potentially infinitely many constants. 

5.3. Decidability for Finite Languages 

The languages for which we have proved the usefulness of PI in section 3.2 are all 
finite languages, i.e., for a learning problem (E e,  E e ,  B, L) there are only finitely many 
hypotheses in L. Additionally, if the completeness and consistency tests of hypothesized 
programs are decidable or restricted to decidable cases, the blas shift problem can in 
principle be solved by enumerating and testing the finitely many programs. 

For example, given function-free E e,  E e and B, there are only finitely many programs 
in each language of language series 3 (DeRaedt, 1992). Moreover, because of the lack 
of recursive functors, the completeness and consistency tests are decidable. Therefore, 
the bias shift problem is decidable. 

In contrast, the determinacy restriction is not sufficient to ensure the decidability of 
the blas shift problem. If an unrestricted background knowledge B it given, both the 
completeness and consistency tests might be undecidable and there migbt be infinitely 
many determinate programs. In GOLEM (Muggleton&Feng, 1990), B is replaced by 
its finite Herbrand h-easy model Mb(B) ,  the set of ground atoms derivable from B 
in at most h resolution steps. This restricts L to a finite language, and renders the 
completeness and consistency tests decidable. 
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~ : ~ PI useless as bias shift operation 

* P1 presumably useless 

Figure 2. Usefulness of PI and decidabili ty of the bias shift problem 

6. Capabilities of  PI as Bias Shifl Operation 

Figure 2 summarizes the decidability and utility results of the previous sections. The 
languages for which PI is a useful bias shift operation can be divided in two classes. 
The first is unrestricted or weakly restricted first order Horn logic. If learning fails in 
a language of that kind, predicate invention helps to overcome the limitations of the 
given vocabulary. PI really has the capability to introduce new predicates missing in the 
original vocabulary. However, this power comes at the price of the undecidability of the 
bias shift problem. 

The second class of languages for which PI is useful contains languages restricted to a 
finite size by language parameters, schemes or size bounds. For each learning problem, 
these languages result in a finite hypothesis space. In that framework, new predicates 
mainly serve the task of extending the given finite language without violating the specified 
parameters or schemes. They do the same job as shifts to a more general language, e.g., 
in CLINT (DeRaedt& Bruynooghe, 1992) or supplying more complex schemes. In the 
strict logical sense, most of these predicates are not necessary because they can be 
eliminated by unfold-operations. However, in contrast to the pure language shifts, new 
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predicates additionally allow for expressing recursive sub-relations. Therefore, PI is a 
more powerful bias shift operation. 

7. Conclusions 

The central aim of PI in ILP is to extend the given vocabulary if it is insufficient for the 
learning task. This paper investigates the utility of PI as a blas shift operation and the 
decidability of the bias shift problem. 

Our results are largely negative for PI. For function-free languages, PI can be proved 
as useless. These languages are restricted so strongly that PI cannot increase their 
expressiveness. For first order Horn logic, PI is useful and really capable of introducing 
predicates missing in the original language. But inductive inference is unfeasible in tbis 
framework. 

Only for the remaining class of finite languages can PI be shown to be useful. However, 
this is just the class of languages for which inductive inference can (partly) be shown 
to be tractable, as first PAC-learning results show, e.g., (Cohen, 1993; Dzeroskietal., 
1992). Furthermore, PI is useful both for syntactically shifting the language blas and for 
extending the vocabulary with necessary new predicates. So, PI integrates two different 
bias shift operations in one. This leads us to the supposition that P1 is the most promising 
approach to realize bias shift operations in real-world ILP systems with their finite hy- 
pothesis languages. It can be integrated more naturally than, for example, language series 
and we suppose that, as a more goal-driven operation, PI involves less search than syn- 
tactic bias shift operations. Thus, despite the negative results for unrestricted languages, 
PI offers a powerful and feasible way out of the contradiction between two requirements 
of real-world ILP-systems: expressiveness and efficiency (Kietz & Morik, 1994). 
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Notes 

1. In contrast to our setting, (Muggleton& DeRaedt, 1994) assume that E e contains negative evidence, in 
our case negated ground atoms. This requires to rewrite the satisfiability conditions to Æ U E ~ ~ [] and 
B U H U E ~ ~ D, respectively. 
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2. A clause C is redundant in H with respect to E T and E ~  if B U (H - {C}) [- E/e and B U (H - {C}) F/ 

E ~ .  A literal I is redundant in a clause C E H if the program H ~ that results from H by replacing C 
with C - {l} is still complete and consistent with respect to the examples. 

3. SLD stands for linear resolution with s election function for definite clauses. 

4. These terms are more usual in the deductive data base literature. 

5 . . M ( T )  is the least Herbrand model of T, i.e., the set of all ground atoms constmcted using functors and 
predicate symbols in T that are logically entailed by T. 
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