
Machine Learning, 20, 95-117 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufact•red in The Netherlands.

The Appropriateness of Predieate Invention as Bias

Shift Operation in ILP

IRENE STAHL strahl @informatik.uni-stuttgart.de
Fakultät Informatik, Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany

Editor: M. des Jardins and D. Gordon

Abstract. The task of predicate invention in Inductive Logic Programming is to extend the hypothesis language
with new predicates if the vocabulary given initially is insufficient for the learning task. However, whether
predicate invention really helps to make learning succeed in the extended language depends on the language
bias currently employed.
In this paper, we investigate for which commonly employed language biases predicate invention is an appro-
priate shift operation. We prove that for some restricted languages predicate invention does not help when the
learning task fails and we characterize the languages for which predicate invention is useful. We investigate
the decidability of the blas shift problem for these languages and discuss the capabilities of predicate invention
as a bias shift operation.

Keywords: Inductive Logic Programming, Bias Shifl, Predicate Invention.

1. Introduct ion

Because of the limited knowledge representation formalism of propositional learning
algorithms and their difficulties in using substantial background knowledge, there is an
increasing interest in investigating learning methods in a first order framework, lnductive

Logic Programming (1LP) (Muggleton, 1990; Muggleton, 1993) is an approach that has
received a lot of attention recently. The task of ILP is to learn logic programs by
induction from examples in the presence of background knowledge.

The first order framework of ILP usually leads to an infinite hypothesis space. To allow

for tractable learning procedures, it must be greatly restricted. The term bias refers to
any basis for excluding hypotheses from the search space, other than strict completeness
and consistency with the examples (Mitchell, 1980). An important part of a system's
bias is the hypothesis language. It restricts the range of expressible concepts througb
the vocabulary to be used in the hypotheses, i.e., the available predicate, function and
constant symbols, and the syntactic form of potential target programs.

If the intended target concept is not included in the range of expressible concepts, the
hypothesis language is too restricted for the learning task. In that case, the language bias
needs to be shifted. Deciding whether a learning problem fails in the given language
is called the bias shifi problem in the following, as the need for a bias shift emerges
from the failure of the learning task. Shifting the bias can be done either by al lowing a
less restrictedform of the hypotheses, or by extending the given vocabulary with newly

invented predicates. This is called predicate invention. Both operations attempt to en-

96 ~. STAHL

large the hypothesis language such that it contains a complete and consistent hypothesis.
However, their success depends on the current language bias.

The appropriateness of predicate invention as a bias shift operation depends on both
its usefulness (i.e., the potential of making learning succeed) and the decidability of the
bias shift problem for the current language bias. Only if predicate invention is useful
and the bias shift problem is decidable will predicate invention be worth considering as a
means to recover from a failure of the learning task. In this paper, we present utility and
decidability results for a large range of language biases cornmonly used in ILE These
results mark the boundaries of appropriateness and feasibility for predicate invention and
bias shift operations in general.

The paper is organized as follows. First, we give a formal definition of the usefulness
of predicate invention in the context of ILP, and recall a general result that motivates
the introduction of new predicates to overcome the limitations of the given language.
In the following sections, we show for which language biases predicate invention is an
appropriate shift operation and investigate the decidability of the bias shift problem for
these languages. Finally, we characterize the capabilities of predicate invention as a bias
shift operation, and conclude.

2. Definitions

The task of ILP is defined formally as follows. Given ground facts E e and E e as
positive and negative examples, a logic program B as background knowledge, and a
target language L, the system is to find a logic program H E L such that the following
conditions hold (Muggleton & DeRaedt, 1994):

Prior Satisfiability: B g= E e
Posterior Satisfiability: B U H ~ E e 1
Prior Necessity: B ~ E e
Posterior Sufficiency: /3 U H ~ E °

In the following, we refer to the posterior conditions on B u H as consistency and
completeness with respect to the examples. The quadruple (E ¢, E e , /3 , L) is called the
learning problem. Whether there exists an H E L complete and consistent with respect
to E e and E e and/3 is called the bias shifi problem.

The learning problem is based on the notion of an intended interpretation, which
captures knowledge about the truth and falsity of all ground facts in the considered
domain. In the framework of identification in the limit (Gold, 1967), an infinite sequence
of ground facts that are true and false in the intended interpretation are available as
positive and negative examples. In this setting, the learning task is to construct a finite
axiomatization of the intended interpretation. In more realistic scenarios only finite
subsets of the facts true and false in the intended interpretation are given to the system.
In that case, there is always a solution to the learning problem if not explicitly excluded
by L, H = E ¢. As trivial definitions of that kind prevent the investigation of the utility

THE APPROPRIATENESS OF PREDICATE INVENTION 97

of any bias shift operation, we assume a mechanism similar to cross validation to exclude
them from the hypothesis space.

E e and E e are split in training examples E~ and E~, and test examples Et e and
Et e. The learning algorithm is run on E~ and E~, resulting in a set of hypotheses
Hi. Then, only those Hi which are complete and consistent with regard to Et e and Et e
are returned. Furthermore, we assume that the hypotheses are reduced with respect to
the training examples, meaning that no Hi contains redundant clauses or literals 2. This
restriction is important because there might be learning algorithms which guess a trivial
solution though they are given only a few of the examples. For example, let E ° and E e
exemplify the grandparent relation for a set of people, and B contain all parent reiations
among them. If L is the set of all logic programs using constants from B and the parent-
and grandparent-predicates, nothing prevents a learning algorithm from hypothesizing
E e even if only a part of it is given in E~. However, the hypothesis E ¢ is not reduced
with respect to E~ and E~. That is, the restriction to reduced programs excludes trivial
solutions consisting, for example, of the ground facts in E ¢. Though this method leads
to programs whose predictiveness exceeds the given examples, it is not yet satisfactory
for excluding trivial definitions. This issue needs further investigation.

If the learning task fails in the target language L, L needs to be extended in order to
make learning succeed. L is defined through the vocabulary, i.e., the available predicate
symbols P and function symbols F, and the syntactic form S of the allowed programs.
S is expressed as additional conditions on the set of well-formed formulas over _P and F,
wff(P, F). We assume the elements of wff(P, F) to be in cÂausal form, and P and F to
be finite. The triple (S, P, F) is called the language bias, and we write L as l(S, P, F).
To extend L, each of the sets S, P or F might be extended. Extending F with new
function symbols is largely unexplored. Replacing S by a superset of S, that is, allowing
a less restricted form of the hypotheses, is the classical language blas shift operation. It
extends L to cover a larger subset of wff(P, F) . In contrast, Predicate Invention (PI)
shifts the language blas through extending P with finitely many new predicates. PI adds
further hypotheses to L without violating the syntactic restrictions S.

PI, also known as Constructive Induction, is offen described independently of the suc-
cess of the learning task, as a method for extending the language of concept descriptions
to allow more compact and concise expression of theories. In order to distinguish be-
tween mere compactions and predicates really missing in the vocabulary, Lapointe et at.
(1993) introduced the terms useful and necessary for new predicates. Whereas useful
new predicates only compress the hypothesis, necessary new predicates are needed to
produce a hypothesis at all.

This differs from our framework. As we investigate PI as a bias shift operation, we
deal only with necessary new predicates, i.e., predicates without which the learning task
would fail. PI is considered to be usefut if extending the target language L with finitely
many new predicates makes a learning task succeed that otherwise would fall.

Definition. Let 12 be a class of first order languages. PI is useful in Z; if there exists a
learning problem (E e, E e , /3 , L), L E £, such that learning fails in L = l(S, P, F), hut
succeeds in a language L r = l(S, pl , F) E £, P/ D P.

98 i. STAHL

Proving that PI is useless for a class of languages allows the exclusion of PI as bias
shift operation, prior to invoking any specific learning procedure. That is, our results
capture the a priori utility of PI with respect to different language classes.

Our definition of usefulness is relatively weak inasmuch as only the existence of a
learning problem that is solved using PI is required for PI to be adjudged useful. A
stronger definition would demand that every leaming problem that fails could be solved
by means of PI. A theorem proved by Kleene (1952) can be interpreted as proving this
strong utility of PI in the framework of identification in the limit with a first order target
language.

THEOREM 1 (Kleene, 1952). Any recursively enumerable set C of formulas in a first

order language L is finitely axiomatizable in a first order language L ~ that extends L

with finitely many additional predicate symbols.

If C is equal to the set E ® of facts that are true in the intended interpretation, this
theorem proves that every first order learning problem can be solved by inventing appro-
priate new predicates, provided that E s is recursively enumerable. So why be concerned
with the utility of PI?

There are two problems with Kleene's theorem and the strong definition of usefulness.
First, the theorem states that every learning problem can be solved by PI, but does not
identify which require PI to obtain a finite axiomatization. If there were none, PI could
not be deemed useful despite the theorem. Second and more importantly, in the more
restricted framework of ILR both the target language L = l(S, P, F) and the extended
language L I = l(S, PI, F) are subject to the same syntactic restrictions S. PI only extends
the set of available predicate symbols P, but leaves S unchanged. As there are learning
tasks that fail not because of missing predicates in P, but because of the restrictions S
that also apply to U , there is no chance to prove strong results on the usefulness of PI. For
example, PI is very useful for regular unary logic programs (Yardeni & Shapiro, 1991).
It allows detection of recursive substructures in the examples. However, if learning fails
because non-regular predicates are given as examples, PI does not help. Therefore, we
adopt the weak definition of usefulness.

3. Usefulness of PI as a Bias Shift Operat ion

To prove that PI is useful, according to our definition, it suffices to give examples of
learning problems that succeed through PI and otherwise fail. There are two different
classes of hypothesis languages for which PI is useful. The first is that of infinite
languages with recursive functors. It includes powerful languages, e.g., first order Horn
logic. The second class contains languages restricted to a finite size by size bounds,
schemes or language parameters. Though their expressiveness is restricted, they allow for
tractable or even efficient learning procedures. PI mainly serves to extend the language
without violating the specified parameters or schemes. It increases the expressiveness of
the language without completely sacrificing its efficiency.

In the following, we briefly recall the definition of each language and present an
example that proves the usefulness of PI.

THE APPROPRIATENESS OF PREDICATE INVENTION 99

3.1. Infinite Languages with Recursive Functors

Infinite languages allow us to produce infinitely many hypotheses for each learning
problem. They contain at least one functor with arity _> 1. PI is useful for overcoming
the limitations inherent in the vocabulary of the given language, as we will show for first
order Horn logic and more restricted infinite languages.

3.1.1. First Order Horn Logic

In Horn logic, all clauses in a program are restricted to contain at most one positive
literal. More formally, Horn logic as the target language of a learning problem is written
as l(S, P, F), where

S : { H • w f f (P , F) I V C • H : C : (A ~ - B 1 , . . , B ~) V C = (+ - - B 1 , . . , B ~) }

and F contains at least one n-ary functor, n _> 1. Clauses with exactly one positive
literal A are called definite, in contrast to goaI clauses (+-- B1, ..., Bin). Goal clauses
(~-- B) are offen written as B. Definite clauses without body literals (A +--) are called
unit clauses or facts. The empty clause is denoted by [::]. Though first order Horn logic
restricts full clausal logic, it is still very expressive. Kleene's theorem can be adapted to
Horn languages so that in principle every learning problem in first order Horn logic can
be solved by PI. However, as we have argued in the previous section, we still have to
prove that there are learning problems that fail because of predicates missing in P and
succeed through PI.

Example: Assume E e and E ° exemplify a predicate square(X) which is true for all
square numbers X. Numbers are written in standard successor notation. For example,
3 is written as the third successor of zero, s(s(s(O))), abbreviated s3(0). Then there is
no solution to the learning problem using only the predicate square/1, the function s/1
and the constant 0.
Proof: Assume a solution H exists. Without loss of generality, we might assume that

•2
each clause in H is either of the form square(s (0)), or square(sm(X)) ~-- Body,

and Body contains no existential variables nor constants. This is because body literals
of the form square(sÆ(Z)), Z # X, or square(sk(O)) are always true or always false,
regardless of the current proof.
That is, each non-unit clause C in H is of the form

sq~~~.~(~,~~(x)) ~ ~q~~,~~(~k~ (x)),, ~q~~<~(s k~ (x)), kj ¢ ~~.

Assume C is called with V = s ~ (0), v > m. Then kj > m means that square is called
with V plus some constant cj. Likewise, kj < m means that square is called with V
minus a constant cj. So C can be written more informally as

square(V) ~-- square(V J= cl),, square(V + cz), cj > O.

100 I. STAHL

Let e be the maximum cj for all non-unit clauses in H, and n~a~ the maximum n for
all unit-clauses. Choose w > max{n~ax, c} + 1, and assume H F- square(w 2) via an
SLD-resolution-proof 3

square(w 2)

~01 C1

0k Ck

[]

where C], ..., Ck E H. Because of the linearity of SLD-proofs, they can be written
clown linearly, in our case as

(ù (square(w2) • C101)....). CkOÆ.

Here, (A. CO) denotes the result of resolving the goal clause A and the definite clause
C with substitution 0. As w > nmaz, C]01 must be of the form

squaTe(W 2) +--- square(w 2 -}- c1), ..-., square(w 2 :~ cl), cj > O.

For the proof to be successful, each of the literals square(w 2 + cj) must be implied by
H. However, as for each cj

(w - l) 2 < w 2 - c j < w 2 < w 2 + c j < (w + l) 9̀

this means that H implies square(u) for non-square numbers u, which contradicts the
assumption that H is a solution to the learning problem. However, using the additional
predicates mult /3 and add/3 with their standard definitions for integer multiplication
and addition, the clause

square(X) +-- mult(Z, Z, X)

solves the learning problem. []

This demonstrates that PI is capable of introducing predicates missing in the original
language. In Horn logic, it is interesting to note that the new predicates must be defined
recursively. If they were not, there would have been a solution to the learning problem
in the original language.

A very common, though weak restriction on Horn logic is that of connected and
generative clauses. The variables of connected clauses (Rouveirol, 1992; DeRaedt, 1992)
must be connected to the head of the clause. A variable X in a clause A +-- B1, ..., B,~ is
connected if either X E vars(A) or X E vars(Bi) and Bi contains a connected variable

THE APPROPRIATENESS OF PREDICATE INVENTION 10]

Y ¢ X. Conversely, the head variables of generative clauses (Muggleton & Feng, 1990)
must occur in the body, more formally vars(A) c_ vars({/31,..,/3~}) for a clause
A ~-- BI, ..., Bw. As each clause in the proof of the previous example is connected and
generative, it also proves the usefulness of PI for these more restricted languages.

3.1.2. Constrained Clauses

The presence of recursive functors makes PI useful even in cases where the syntactic
form of the clauses is severely restricted. For example, constrained clauses must not
contain any existential variables; more formally vars({B1,..,/3~}) C_ vars(A) for each
constrained clause A +- t31, ...,/3,» Because the previous example requires existential
variables in its solution, another is needed to show the usefulness of PI for constrained
languages. For example, there is no constrained definition of the standard reverse-
predicate that uses only reverse and the list operations. But the efficient definition using
reverse_aecumulate as an auxiliary new predicate is in fact constrained.

However, if the learning problem requires existential variables to be solved, e.g., when
defining 9randparent with parent, PI does not help because the syntactic restrictions
S remain. Constrained languages are the first example supporting the weak definition of
usefulness we discussed in the previous section.

3.1.3. RUL-programs

Regular unary logic (RUL)programs (Yardeni &Shapiro, 1991) a r e a special case of
constrained programs. They contain only unary predicates and allow non-variable ar-
gument terms only in the clause heads. The head arguments of clauses of the same
predicate must have different function symbols. Additionally, every variable in a clause
must occur exactly once in the head and once in the body.

The extensions of predicates defined by RUL-programs are regular sets particularly
suited to describe argument types. RUL-programs allow for v e ~ efficient induction
methods (Stahl et al., 1993). If the example set is regular, PI can make the learning task
succeed.

Example: Let B =- ¢,

S ° : { t(f(g([~]))) ,

t(f(g([a,a]))) }

E e = { t(9([a])),t([a]),f([]),
~(g([~,~])),t([~,~]) }

Then there is no complete and consistent RUL-program H using only tl1. Using an
additional predicate symbol newp/1 allows a definition

t (f (g([alY]))) *-- newp(Y)

newp([atY]) ~ newp(Y) . K]

102 I. STAHL

However, if E ° exemplifies non-regular predicates, e.g., E e C_ {t(f(L1, Le)) IL1, L2

lists of the same length}, only the introduction of n-ary new predicates will help.

3.2. Finite Languages

Finite languages contain for each learning problem only finitely many hypotheses. The
finite size resulting from size bounds, schemes or parameters leads to restricted expres-
siveness when compared to infinite languages, but allows for tractable learning proce-
dures. PI is useful for extending the language without violating the size restrictions. It
increases the expressiveness of the language without sacrificing tractability.

3.2.1. Size and Complexity Measures

Heuristic size. or complexity measures place a fixed or application-dependent size- or
complexity bound on the hypotheses. More formally, a hypothesis language of that kind
is written as l(S, P, F) with

S = {H E wff(P, F) I size(H) ~ bound A ... additional restrictions...}

where size(H) is the size- or complexity measure and bound is the size- or complexity
bound. The additional restrictions might, for example, constrain H to a Horn formula.
The intent of using size- or complexity bounds is to implement Ockham's razor principle
that advocates the simplest solution to the learning problem. There are different ap-
proaches to measure the simplicity of a program. Some use only syntactic properties of
the hypotheses as criteria, either independently of the examples (Muggleton & Buntine,
1988; Wrobel, 1994) or in comparison to them (Quinlan, 1990). More sophisticated
measures consider the complexity of proofs derived from the theory (Muggleton, 1988;
Wirth, 1989; Srinivasan et al., 1992).

Example: In CIGOL (Muggleton&Buntine, 1988) the significance of a hypothesis is
measured by the degree to which it compresses the data. The size measure to be mini-
mized is defined as

size(H) = 1 + ~CeH size(C), H logic program
size(C) = 1 + EL~C size(L), C clause
size(f(t t , . . , t~)) = 2 + ~~~=1 size(ti)

size(V) = 1, V variable

Then, introducing a new predicate into a program

H : arch(X, beam, Z) ~ column(X),column(Z)

arch(X, we@e, Z) ~- column(X), column(Z)

with size(H) = 27 yields

FIlE APPROPRIATENESS OF PREDICATE 1NVENTION 103

H': arch(X, Y, Z) +-- column(X), newp(Y),column(Z)

newp(beam)

newp(wedge)

with size(H') = 26 < size(H). That is, PI reduces the size of the theory and improves
compression of the data. It might allow one to find a solution within the specified bounds.

[]

Size bounds are often used to restrict the complexity of proofs derived from the target
theory (Kietz & Wrobel, 1992; Kietz & Morik, 1994) in order to make both induction and
deduction feasible. If the learning task falls, PI can be used to overcome the limitations
without completely sacrificing feasibility.

Example: KLUSTER (Kietz&Morik, 1994) uses a restricted terminological logic as
target language. In terminological logic, a concept is defined by its superconcepts and
additional conditions. For example, in a drug domain, an active substance affecting
excitement is defined as

activel := active A all(a f f ects, excitement)

which transcribes to the first order sentence

Vx activel(x) +-+ (active(x) A (Vy a f f ects(cc, y) --+ ecceitement(y))).

KLUSTER does not allow for embedded formulas in place of affects and excitement.

This restriction enables both efficient classification of objects and efficient induction of
concepts, but might cause learning to fail. If, for example, the concepts dru9, active,

ezciternent and pain and the roles (relations) contains and affects are given, then the
complex definition

sedative := drug A all(contains, active A all(a f f ects, emcitement))

is necessary to discriminate a sedative from an anodyne which affects pain. Introducing
the auxiliary concept activel above a!lows one to define sedative without violating the
syntactic restrictions of KLUSTER by

sedative := drug A all(containa, activel).

However, newly defined concepts and roles increase the complexity of proofs derived
from the theory. That is, the increased expressiveness comes at the price of efficiency.

[]

To summarize, PI is useful if no solution to the learning problem exists within the
specified bounds. New predicates can be employed to factor out common parts of
clauses, or to express important sub-relations and exceptions in rules. The resulting
theory might fit the given size and complexity bounds, enabling learning to succeed.

104 I. STAHL

3.2.2. Schemes

Schemes represent one approach for describing the structure of the hypothesis clauses
at an abstract level. They allow the expression of prior knowledge about the expected
structure of hypothesized clauses in certain application domains. Schemes are closely
related to size measures because they implicitly impose size bounds on the hypotheses.
The hypothesis language is defined with respect to the schemes {$1, ..., Sn} as l(S, P, F)
where

S = {H E wff(P, F)] each clause in H matches one of the schemes {S1, . . , S,~}}.

SIERES (Wirth&O'Rorke, 1991) and CAN (Tausend, 1992) use graphs as schemes
to represent the number of literals and the argument dependencies between them. RDT
(Kietz&Wrobel, 1992) and CIA (DeRaedt&Bruynooghe, 1992) employ function-free
second-order clauses with predicate variables to describe the allowed structure of hypoth-
esis clauses. The instantiations of the available schemes with respect to the background
knowledgè constitute the search space for learning.

If no solution instantiating the given schemes exists, PI may help to overcome the
limitations imposed by them.

Example: Let the available scheme be

SIERES, CAN (graph) RDT, CIA (second order clause)

S :

I

l I I I

s : P (x) ~ Q(X), R(x)

and let the target definition be C : p(X) +- q(X),r(X),s(X). Then there is no
equivalent instantiation of S. If a new predicate is introduced, the two clauses

p(X) +- q(X),newp(X)

~ ~ ~ p (x) ~- , - (x) , 4 x)

instantiate S and are equivalent to C. []

In this case, PI extends the hypothesis language without requiring more complex
schemes. Additionally, it allows expression of recursive subcelations.

Example: Suppose a set of clauses

p(X) ~ s(X, U), , ' (U)
p(x) ~- s(x, u), q(u, v) , - (v)
p(x) ~- s(x, u), q(U, v), q(V, w), ~(w)

THE APPROPRIATENESS OF PREDICATE INVENTION 105

is needed to describe the target concept. Without PI, a scheine for each clause is nec-
essary, whereas introducing a new recursively-defined predicate allows the use of the
definition

new;(U) +--- q(U, V), newp(V)

~e~p(u) ~- ~(u)

matching the simple schemes P(X) +-- Q(X) and P(X) ~-- S(X, U), R(U). []

3.2.3. Language Series

Language series (DeRaedt, 1992) are sets of parameterized languages. For each instanti-
ation of the parameters, the resulting hypothesis language is finite. CLINT (DeRaedt &
Bruynooghe, 1992) orders its parameterized languages according to increasing expres-
siveness. If the system falls to detect a complete and consistent definition within the
current language, it shifts to a more expressive one.

As in the case of schemes, PI takes the place of shifting to a more complex language.
For example, CLINT's language series 3 restricts the depth of existential quantification
within the target clauses using k + 1 parameters k, il, .., ik. Each clause C from
Lil,..#k must fulfill the following syntactic restrictions Sil,..,~k:

• head(C) = p(X1, . , X~), where X1, ..., X,~ are different variables,

* C is linked (= connected) and range restricted (= generative), 4

body(C) is a subset of the inductively constructed set Bil,..,ik(X1, .., X~). The
base case B~(W1,. ,Wm) contains all literals sharing at least one variable with
{W1, .., Wm}, and introducing at most i new variables. Then, Bh,..#~(X1, .., X~)

is Bi~ (Z1, .., Zl), where {Z1, .., Zl} ~- vcl.TS(Æii ,.,ik-1 (X t , .., Xn)).

If no solution exists in the given language Lil,..,ik, PI does the same job as shifting to
a more complex language.

Example: A clause

c = p(x) ~ ~(x, u), q(~T, v),p(u, w), ~(v, w)

is not in Ll,o, but in Ll,l,0. With a new predicate it can be replaced by the two clauses

p(x) +-- ,-(x, u), ~~~p(U)
~e~p(U) +-- q(r:, V),p(U, W), ~(V, W).

in Ll,o that are equivalent to C. []

However, as in the case of schemes, PI is a more powerful operation than the pure
language shift because recursive sub-relations are detectable.

106 ~. STAHL

Example: Looking at the last example of section 3.2.2, shifts from L1,0 to L1,1,o and
L1,1,1,o are necessary for defining the target concept if no additional predicate is intro-
duced. In contrast, the new recursively-defined predicate allows a definition in Ll,o.

[]

3.2.4. Determinate Clauses

The determinacy restriction (Muggleton&DeRaedt, 11994) is a semantic restriction on
the number of instantiations of existentially quantified variables with respect to the back-
ground knowledge and the examples. That is, the syntax S of a determinate language
L = l(S, P, F) depends on B and E e.

Definition. Let B be a logic program and E e a set of ground atoms. A clause A ~--
/31, ...,/3n is determinate iff for every substitution 0 that unifies A to a ground instance
e E E ® and for all i c {1, ...,n}, there is a unique substitution 0i such that (B1/~ ... A
Bi)O0i is both ground and true in Æ (B U E¢) . s

In (Muggleton & Feng, 1990), determinacy is combined with a bound on both the depth
of existential quantification and the number of variables that must be instantiated to make
the substitution 0i unique. In the previous section, we have shown that PI is useful to
overcome these kinds of restrictions. In the following, we turn our concentration to the
determinacy constraint.

If the determinacy constraint is violated, the non-determinate background knowledge
Æ (B U E e) has to be transformed into functional form. As the functional parts of a
non-determinate predicate must be named differently, PI is involved.

Example: Let E e and E e contain examples of the ancestor-relation for a set of people,
e.g., ancestor(fred, willi), and let B contain all parent-relations among them, e.g.,
parent(fred, tim) and parent(tim, will@ Furthermore, we assume that each person
in our domain has 0 or >_ 2 children. Then determinate clauses contain only literals
without existential variables, as only these are determinate with respect to the background
knowledge and the examples. This leads to a trivial definition of the ancestor predicate
and, therefore, to the failure of the learning task. To define ancestor with determinate
clauses, the parent-relation in the background must be transformed into functional form,
e.g., by inventing the determinate mother and father predicates. Then, the clauses

ancestor(Anc, Desc) +- f ather(Z, Desc), ancestor(Anc, Z)
ancestor(Anc, Desc) ~ mother(Z, Desc), ancestor(Anc, Z)
ancestor(Anc, Desc) +- parent(Anc, Desc)

are determinate and solve the learning problem. []

This kind of PI involves detecting dependencies between the arguments of a predicate
and restructuring the knowledge base. It is employed in the context of inductive data
engineering (Flach, 1993).

THE APPROPRIATENESS OF PREDICATE INVENTION 107

4. Uselessness of PI as a Bias Shift Operation

In spite of the general utility of PI as a blas shift operation for finite languages, there
are language biases for which even PI falls to extend the range of expressible concepts.
This is particularly true for function-free languages.

Proving the uselessness of PI, according to our definition, is more difficult than proving
its usefulness. Instead of simply giving examples for successful applications of PI, we
have to show that no extension of the target language with new predicates makes the
learning task succeed. The results we prove in the subsequent sections only apply to
complete algorithms. For algorithms leaving some part of the hypothesis space unex-
plored, e.g., hill climbing algorithms, PI may nevertheless be useful to make the learning
task succeed.

4.1. .Function-Free Constrained Clauses

Function-free constrained clauses are constrained clauses without any functors except for
finitely many constants. More formally, a function-free constrained target language L is
l(S, P, F) where

F = { c l , . . . , c,~}

S = {H E w f f (P , F) I VC E H : vars(body(C)) C_ vars(head(C)))

In contrast to the general case of constrained clauses, PI is useless in recovering from a
learning task failure.

Example: Ler examples about grandparent (X, Y) be given for a set of people and let
the background knowledge contain the parent-relations between rhein. Then, there is
no non-trivial constrained program that covers the examples. Furthermore, PI is useless
because it cannot introduce the necessary existential variable. D

The following theorem proves this assertion.

THEOREM 2 If there is no function-free constrained solution H to the learning problem

(E e, E e, t3, L), L = l(S, P, F), then there is also no function-free constrained solution

H' in U = l(S, pr F) for each extension P' of P w#h finitely many new predicate

symbols.

Proof: We assume that a non-trivial solution H ' in L t exists. In H ~, recursive calls of
new predicates are applied to permutations of the arguments of the parent goal. As there
are only finitely many permutations, non-recursive definitions allowing the elimination
of the new predicates in H r can be determined. This results in a non-trivial, complete
and consistent H " in L, in contradiction to the precondition of the theorem.
Construction of H ~~ from Hr: Let

H' = C,~~~p u Cd«

clauses with new clauses that do no~
predicates as conta in a new

positive Iiterals predicate pos i t ive ly

108 I. STAHL

Ao

A1

A2

[C1: newp(X, Y) +- ed9e(X, Y), newp(Y, X) IC2: newp(X, Y) +- final(X)[

B]C4: newp(X, Y) ~ edge(X, Y), final(Y)l

C3: newp(X, Y) +-- egge(X, Y), edge(Y, X), newp(X, Y) / - -

I newp(X, Y) ~ ed9e(X, r) , edge(Y, X), newp(Y, X)

subsumed by C1

Figure 1. Inductive construction of A

Let A0 = C~cwp
Ai+l = Ai @ {C I ~C~, 62 ~ Ai (C = (C1 " C2a)) A

~3C' • Ai (C'O c_ C)}

where (C1 - C2~r) is the result of resolving C1 and C2 with substitution «, and C'O C_ C
standard 0-subsumption. Figure 1 shows the inductive construction of Az for an example
program

H' = reaehes_final(Z, X, Y) ~- edge(Z,X),newp(X, Y)
C 1 : newp(X, Y) 4--- edge(X, Y) , newp(Y, X)

Cn~~p
c2 ne~p(x, Y) ~- fi,~az(x) J

in a graph domain. The predicate edge(X, Y) indicates a connection between the nodes
X and Y, whereas f inal(X) means that X is a final node. The first step of the
inductive process constructs the clauses C3 and C4. Already in the second step only
clauses subsumed by those in A1 are added. Therefore, the inductive construction stops
at that point. More generally speaking, as there are only finitely many clauses reduced
under 0-subsumption in each constrained function-free language U, there is an integer
n such that A n + l = An. Let

A = An - {C c An [C contains a new predicate negatively}.

In our example, A contains C2 and C4 boxed in figure 1. We can show that A has the
same success set as Cn~wp, that is A ~- a ¢:~ Cnewp ~- a for each fact a E L' as follows:
' =~': Let A t- a be true. If a clause C used in the proof is not in C~e~,p, it has been added
during the inductive construction of A, meaning that it results from resolving clauses in
Cn~~p. Merging the resolution derivation of C from Cn~~p in the given proof leads to
a resolution proof Cn~~p F- a.

THE APPROPRIATENESS OF PREDICATE INVENTION 109

'¢= ' : Let C~~~p ~- a be true. If a clause C used in the proof is not in A, it contains new
predicate literals in the body. Due to the inductive construction of A, there is a clause in
A corresponding to each possibility of eliminating the new predicate literals. Therefore,

there is a resolution proof A F- a.
The set A contains only non-recursively defined new predicates, the definitions of

which can be used to unfold the new predicate literals in Cd~f. This results in the
desired non-trivial program H H in L. In our example, H " is

reaches_f inal(Z, X, Y) ~-- edge(Z, X), f inal(X)

reaehes_f inal(Z, X, Y) ~-- edge(Z, X), edge(X, Y), f inal (Y)

meaning that a final node can be reached from Z if Z and X are connected and either
X is a final node or X is linked to a final node Y. []

Therefore, in function-free constrained Horn logic, PI is useless when the learning task
fails. The same is true for the more restricted case of completely bound clauses C where
var s(head(C)) = vars(body(C)).

4.2. Monadic Horn Logic

Monadic Horn logic is function-free Horn logic restricted to unary predicates. For a
monadic hypothesis language L = l(S, t:), F), F is a finite set of constants and P a finite
set of unary predicates. In contrast to RUL-programs, monadic logic programs need not
to be constrained, but might contain existential variables. However, we can show that
for each monadic logic program there is an equivalent one without existential variables.

THEOREM 3 Given an arbitrary monadic logic program H in a language L, there

exists a program H ~ in L with the same success set without existential variables.

Proof: Body literals with an existential variable as argument are always true or always
false, regardless of the current proof. For example, given a clause

bird(X) +-- has_beak(X), f l ies(Z),

the literal f l ies(Z) is true if there is some arbitrary flying object in the theory, and false
otherwise. The instantiation of X in the current proof is irrelevant for the truth or falsity
of flies(Z). Therefore, literals of that form can be eliminated from H. For each clause
Ci E H, let Xi be the set of literals in C~ that contain existential variables. If H L Xi,
add Ui - X~ to H ~. Then H I has the same success set as H, that is H I ~- a e:~ H ~- a
for each fact a C L.

' ~ ' : For each clause C~ E H ~ used in the proof o f a there is a clause Ci E H, C~ C Ci.

As H ~- (Ci - C~), there is also a proof H t- a.

' ~ ' : For each clause Ci C H used in the proof of a there is a clause C~ E H ~, C~ C Ci,
otherwise parts of Ci would not have been eliminated. Therefore, there is also a proof
H~ ~- a. []

110 I, STAHL

So, only constrained clauses need to be considered when learning in monadic Horn
logic. Therefore, PI is useless if learning fails.

4.3. Function-Free Horn Logic

Function-free logic programs contain no functors except for finitely many constants.
That is, the set F of a function-free language L = l(S, P, F) is a finite set {Cl, .., ck} of
constants. Excluding arbitrary functors leads to the decidability of logical entailment, in
contrast to full first order Horn logic.

This decidability accounts for the uselessness of PI. In section 5.2 we prove that, given
(E e , E e, B, L) with a function-free language L, only clauses with at most n different
variables need to be considered for the target program H. The parameter n depends
on the number of constants in B and L, and the arity of the available predicates. This
property accounts for the decidability of the learning problem on the one hand, and the
uselessness of PI on the other. As only clauses with up to n different variables need to
be considered, new recursively-defined predicates can be eliminated by a method similar
to that for constrained clauses.

THEOREM 4 If there is no function-free solution H to the learning problem (E e , E e ,
B, L), L = l(S, P, F), then there is also no function-free solution H' in L' = l(S, P', F)

for each extension pr of P with finitely many new predicate symbols.

Proof: As in the proof of theorem 2, we assume that a complete and consistent H r
in U exists, and construct a complete and consistent H " in L, in contradiction to the
precondition of the theorem. The crucial difference from theorem 2 is in the inductive
construction of the set A of non-recursive new predicate definitions:

Ao ~- Cnewp
B{+I = Ai U {C j 3C1, C2 c Ai (C = (C 1 - 0 2 0 -)) /k

~3C' • A{ (CO C_ C)}

Bi+l might contain clauses with > n variables, where n is the bound on the number
of variables. By the method we describe in section 5.2, an extensionally equivalent set
Ai+l of clauses with at most n variables is constructed from Bi+i. Because there are
only finitely many clauses reduced under 0-subsumption with < n variables, there is an
integer k such that A~+I = AÆ. The set

A = Ak - {C E Ak I C contains a new predicate negatively}

can be proved to be extensionally equivalent to Cnewp. Since it contains only non-
recursive definitions of new predicates, it can be used to unfold the new predicates in
Cdef, resulting in the desired program H ~~. •

So, if the learning method fails to find a function-free solution, PI is useless in re-
covering from the failure. However, this result taust not be over-generalized. It does

THE APPROPRIATENESS OF PRED1CATE INVENTION 11]

not apply if incomplete search is used or if the background knowledge is changing. For
example, if a definition of rnale_ancestor is to be induced that is valid no matter which
family tree is given as background knowledge and examples, introducing an auxiliary
predicate ancestor is useful. But if both the background knowledge and the examples
are fixed, PI is useless in recovering from a failure of the learning task.

5. Decidability of the Bias Shift Problem

Bias shift operations are applied to recover from a failure of the learning task. Deciding
when a bias shift is necessary involves deciding whether the learning task fails in the
given language. For a blas shift operation like PI to be feasible for a class of languages,
both its a priori utility and the decidability of the bias shift problem itself need to be
ensured.

Similar to the utility results of the previous sections, the decidability of the blas shift
problem depends on the complexity of the target language. Two central results, the
undecidability of the bias shift problem for first order Horn togic and the decidability for
function-free Horn logic, mark the boundaries of feasibility for blas shift operations.

5.1. Undecidability for First Order Horn Logic

Though first order Horn logic is less expressive than full clausal logic, it still does not
allow for deciding logical entailment. Accordingly, the bias shift problem is undecidable
in that framework.

THEOREM 5 The bias shift problem is undecidable for learning first order Horn theo-

ries.

Proof: Suppose the bias shift problem is decidable. Then the problem of deciding
logical entailment, an undecidable problem, would be decidable.

Let P be a logic program and e a ground fact. To decide whether P ~- e holds, it
suffices to decide whether the bias has to be shifted for the learning problem consisting
o f E ~ = { e } , E e = Ó , B = ~ a n d L = { P } . II

Though PI is useful in the framework of first order Horn logb, theorem 5 shows that
it is not feasible. The language biases discussed can be seen as attempts to approximate
the decision on shifting the bias and introducing new predicates in first order Horn logic.

5.2. Decidability for Function-Free Horn Logic

The restriction to finitely many constants is fundamental for function-free languages,
otherwise they are as expressive as unrestricted Horn logic. This leads to an interesting
observation, when inductive inference is concerned. If all n constants in B, E H and E e
are known, it suffices to consider clauses with at most n variables for the target program.

112 I. STAHL

In that case, the bias shift problem is decidable because the finitely many programs
can be enumerated and tested for completeness and consistency. The following theorem
captures the above observation.

THEOREM 6 Given a function-free language L = l(S, P, {Cl,.., en}), then for each H

in L there exists an H r in L such that all cIauses in H ~ contain at most n variables,

and H k- a iff H ' F- a for each fact a in L.

Proof: (Reinhardt, 1993) Each clause C C H with m > n variables is replaced by n "~
clauses Ccr for each possible substitution cr : vars (C) ~ {Z1, .., Z,~} substituting the
variables of C with at most n different new variables. For example, if C is

p (X , Y) ~ q (X , Z) , r (Z , Y)

and n = 2, we get 2 3 = 8 different clauses Ccr, e.g.

P(Z1, Z1) +-- q(Z1, Z1), y(Z1, Z1)
p (Z l , Z1) ~-- q(Z1, Z2), r(Z2, Z1)
p(Z l , Z2) +- q(Z1, Z1), r(Z1, Z2)

For the resulting program H r we have to show that H ~- a ¢:~ H ~ k- a.
'=~': Without loss of generality we assume H ~- a via an SLD-proof

((ù ((a" C101)" C202)..) • CkOk).

Then, ((. . ((ä . ClOl..Ok) ' C202..0k)..) • CkOk) is also a proof that H k- a. Given a
substitution pi which substitutes for all variables in CiOi..Ok an arbitrary constant, ((..((ä-
ClOi..Okpl). C202..0kp2)..)" CkOkpk) is also a proof. Now CiOi..Okpi is a ground clause
with at most n different constants so that there exists a C~ E H ~ and a substitution p~
such that CiOi..OkD i t t t t C lp l) ' Ckpk) a = Cip i. Thus, ((. . ((g- C~Y2)..) . ' ' is proof.

! / ! !
',~;=': We assume H' F- a via an SLD-proof ((. . ((ä . C101). C;O;). .) . CkOk). For each
C~ there is a C / E H, either Ci = C~ if C~ contains < n variables, or Ci«i = C~. Thus,
((ù ((ä -Cl~r i0 [) - C2«20;) . .)" CkakO•) is a proof that H b- a.

An alternative proof sets H ' to the minimal model of H, Æ (H) 5. Then H ~ trivially
contains clauses with at most n variables. However, this proof technique violates the
restriction to non-trivial programs which our proof preserves. •

The crucial question for the decidability of the bias shift problem in function-free
languages is whether all constants in the learning problem are known during induction.
This will generally not be the case, especially if techniques to exclude trivial definitions
are used. These techniques present only some of the examples as training set to the
learning method. The number of new constants in the remaining test set is unknown,
and likewise the upper bound for the number of different variables in the target clauses.

However, a closer investigation of the situation when E ® and E e contain constants
outside B and L shows that the result of theorem 6 can be generalized. The general-
ization is based on the subsumption theorem (Rouveirol, 1991). A program H implies

THE APPROPRIATENESS OF PREDICATE INVENTION 113

a ground fact e with constants outside H if and only if H implies the fact e' that re-
sults from replacing all new constants in e by variables. That is, the unknown constants
themselves do not matter for the inductive inference method, rather the potential number
of occurrences within one specific example. This number is bounded by the maximum
predicate arity max_A in E e and E e. Thus, given a learning problem (E e, F, e, B, L)

where L and B a r e missing some of the constants in E e and E e, it suffices to consider
clauses with at most n + max_A variables for the target program. So even in cases
where the target program is to handle examples with unknown, new constants, the bias
shift problem is decidable.

An interesting question is whether it is really desirable to induce programs that cover
examples with arbitrary constants. Due to the subsumption tbeorem, covering ground
facts with new constants means, in fact, that the corresponding universally quantified
formula is implied. Often, this is so strong that many systems require knowledge about all
constants in E e and E e to be present in B, e.g., (Quinlan, 1990; DeRaedt & Bruynooghe,
1989). Moreover, in cases where examples contain constants missing in B, techniques to
acquire background knowledge about them have been proposed (DeRaedt et al., 1991).

However, this technique leads to a stronger success criterion for learning. The induced
program is to cover not only the given examples with respect to the given background
knowledge, but arbitrary examples with respect to an augmented background knowl-
edge. Although this criterion makes PI useful, it violates the restriction to function-free
programs because of the need to consider potentially infinitely many constants.

5.3. Decidability for Finite Languages

The languages for which we have proved the usefulness of PI in section 3.2 are all
finite languages, i.e., for a learning problem (E e, E e , B, L) there are only finitely many
hypotheses in L. Additionally, if the completeness and consistency tests of hypothesized
programs are decidable or restricted to decidable cases, the blas shift problem can in
principle be solved by enumerating and testing the finitely many programs.

For example, given function-free E e, E e and B, there are only finitely many programs
in each language of language series 3 (DeRaedt, 1992). Moreover, because of the lack
of recursive functors, the completeness and consistency tests are decidable. Therefore,
the bias shift problem is decidable.

In contrast, the determinacy restriction is not sufficient to ensure the decidability of
the blas shift problem. If an unrestricted background knowledge B it given, both the
completeness and consistency tests might be undecidable and there migbt be infinitely
many determinate programs. In GOLEM (Muggleton&Feng, 1990), B is replaced by
its finite Herbrand h-easy model Mb(B) , the set of ground atoms derivable from B
in at most h resolution steps. This restricts L to a finite language, and renders the
completeness and consistency tests decidable.

114 I. STAHL

~ : ~ PI useless as bias shift operation

* P1 presumably useless

Figure 2. Usefulness of PI and decidabili ty of the bias shift problem

6. Capabilities of PI as Bias Shifl Operation

Figure 2 summarizes the decidability and utility results of the previous sections. The
languages for which PI is a useful bias shift operation can be divided in two classes.
The first is unrestricted or weakly restricted first order Horn logic. If learning fails in
a language of that kind, predicate invention helps to overcome the limitations of the
given vocabulary. PI really has the capability to introduce new predicates missing in the
original vocabulary. However, this power comes at the price of the undecidability of the
bias shift problem.

The second class of languages for which PI is useful contains languages restricted to a
finite size by language parameters, schemes or size bounds. For each learning problem,
these languages result in a finite hypothesis space. In that framework, new predicates
mainly serve the task of extending the given finite language without violating the specified
parameters or schemes. They do the same job as shifts to a more general language, e.g.,
in CLINT (DeRaedt& Bruynooghe, 1992) or supplying more complex schemes. In the
strict logical sense, most of these predicates are not necessary because they can be
eliminated by unfold-operations. However, in contrast to the pure language shifts, new

THE APPROPRIATENESS OF PREDICATE INVENTION 115

predicates additionally allow for expressing recursive sub-relations. Therefore, PI is a
more powerful bias shift operation.

7. Conclusions

The central aim of PI in ILP is to extend the given vocabulary if it is insufficient for the
learning task. This paper investigates the utility of PI as a blas shift operation and the
decidability of the bias shift problem.

Our results are largely negative for PI. For function-free languages, PI can be proved
as useless. These languages are restricted so strongly that PI cannot increase their
expressiveness. For first order Horn logic, PI is useful and really capable of introducing
predicates missing in the original language. But inductive inference is unfeasible in tbis
framework.

Only for the remaining class of finite languages can PI be shown to be useful. However,
this is just the class of languages for which inductive inference can (partly) be shown
to be tractable, as first PAC-learning results show, e.g., (Cohen, 1993; Dzeroskietal.,
1992). Furthermore, PI is useful both for syntactically shifting the language blas and for
extending the vocabulary with necessary new predicates. So, PI integrates two different
bias shift operations in one. This leads us to the supposition that P1 is the most promising
approach to realize bias shift operations in real-world ILP systems with their finite hy-
pothesis languages. It can be integrated more naturally than, for example, language series
and we suppose that, as a more goal-driven operation, PI involves less search than syn-
tactic bias shift operations. Thus, despite the negative results for unrestricted languages,
PI offers a powerful and feasible way out of the contradiction between two requirements
of real-world ILP-systems: expressiveness and efficiency (Kietz & Morik, 1994).

Acknowledgments

This work has been supported by the European Community ESPRIT BRA 6020 ILP
(Inductive Logic Programming). I want to thank Birgit Tausend, Peter Forster and
Rüdiger Wirth for reading and commenting on earlier drafts, and Klaus Reinhardt for
his inspiring proof ideas. The comments of the anonymous reviewers and particularly
their help in clarifying and shortening the proof of theorem 5 have also greatly helped
to improve the article. I am especially grateful to Teri Kinealy and Rosanne Price for
proof-reading the manuscript.

Notes

1. In contrast to our setting, (Muggleton& DeRaedt, 1994) assume that E e contains negative evidence, in
our case negated ground atoms. This requires to rewrite the satisfiability conditions to Æ U E ~ ~ [] and
B U H U E ~ ~ D, respectively.

116 i. STAHL

2. A clause C is redundant in H with respect to E T and E ~ if B U (H - {C}) [- E/e and B U (H - {C}) F/

E ~ . A literal I is redundant in a clause C E H if the program H ~ that results from H by replacing C
with C - {l} is still complete and consistent with respect to the examples.

3. SLD stands for linear resolution with s election function for definite clauses.

4. These terms are more usual in the deductive data base literature.

5 . . M (T) is the least Herbrand model of T, i.e., the set of all ground atoms constmcted using functors and
predicate symbols in T that are logically entailed by T.

References

Cohen, W.. (1993). PAC-learning a restricted class of recursive logic programs. In Proc. of the 3rd Interna-

tional Workshop on lnductive Logic Programming,

De Raedt, L. (1992). lnteractive theory revision: an inductive logic programming approach. Academic Press.
De Raedt, L. & Bruynooghe, M. (1989). Towards friendly concept learners. In Proc. oflJCAl.

De Raedt, L. & Bruynooghe, M. (1992). lnteractive concept-learning and constructive induction by analogy.
Machine Learning, 8(2):107-150.

De Raedt, L., Feyaerts, J. & Bruynooghe, M. (1991). Acquiring object-knowledge for learning systems. In
Y. Kodratoff, editor, Proc. of the Fifth European Working Session on Learning. Springer.

Dzeroski, S., Muggleton, S. & Russel, S. (1992). PAC-learnability of determinate logic programs. In Proc.

of the 5th ACM Workshop on Computational Learning Theory.

Flach, EA. (1993). Predicate invention in inducfive data engineering. In Machine Learning: ECML-93,

European Conference on Machine Learning, Wien, Austria. Springer.
Gold, E.M. (1967). Language identification in the limit. Information and Control, 10:447-474.
Kietz, J.U. & Wrobel, S. (1992). Controlling the complexity of leaming in logic through syntactic and

task-oriented models. In S. Muggleton, editor, Induetive Logic Programming. Academic Press.
Kietz, J.U. & Morik, K. (1994). A polynomial approach to the constructive induction of structural knowledge.

Machine Learning, 14:193-217.
Kleene, S.C. (1952). Finite axiomatizability of theories in the predicate calculus using additional predicate

symbols. In Two Papers on the Predicate Calculus, number 10 in Memoirs of the American Mathematical
Society.

Lapointe, S., Ling, C. & Matwin, S. (1993). Constructive inductive logic programming. In Proc, of the

IJCAI-93. Morgan Kaufmann.
Mitchell, TM. (1980). The need for biases in learning generalizations. In J. W. Shavlik and T. G. Dietterich,

editors, Readings in Machine Learning. Morgan Kaufmann.
Muggleton, S. (1988). A strategy for constructing new predicates in first order logic. In Proceedings of the

Third European Working Session on Learning. Pitman.
Muggleton, S. (1990). Inductive logic programming. In First Conference on Algorithmic Learning Theory,

Tokio, Ohmsha.
Muggleton, S. (1993). Inductive logic programming: Defivations, successes and shortcoming. In Machine

Learning: ECML-93, European Conference on Machine Learning, Wien, Austria. Springer.
Muggleton, S. & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In

Fifih International Conferenee on Machine Learning. Morgan Kaufmann.
Muggleton, S. & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic

Programrning, Special Issue on 10 Years of Logic Programming.
Muggleton, S. & Feng, C. (1990). Efficient induction of logic programs. In First Conference on Algorithmic

Learning Theory, Tokyo, Ohmsha.
Quinlan, J.R. (1990). Learning logical definitions ffom relations. Macht'ne Learning, 5:239-266.
Reinhardt, K. (1993). Personal communication.
Rouveirol, C. (1991). ITOU: lnduction de Théories en Ordre Un. PhD thesis, Université Paris Sud, Centre

d'Orsay.
Roaveirol, C. (1992). ITOU: Induction of first order theories. In Muggleton, S., editor, lnductive Logic

Programming. Academic Press.

THE APPROPRIATENESS OF PREDICATE INVENTION 117

Srinivasan, A., Muggleton, S., & Bain, M. (1992). Distinguishing exceptions from noise in non-rnonotonic
learning. In Proceedings of lLP'92, Tokyo.

Stahl, I., Tausend, B., & Wirth, R. (1993). Two rnethods for irnproving inductive logic prograrnming systems.
In Machine Learning: ECML-93, European Conference on Machine Learning, Wien, Austria. Springer.

Tausend, B. (1992). Using and adapting schernes for the induction of horn clauses. In ECAI Workshop Logical

Approaches to Machine Learning, Wien.
Wirth. R. (1989). Lernverfahren zur Vervollständigung von Hornklauselmengen durch inverse Resolution~

Dissertation, Fakultät Informatik, Universität Stuttgart.
Wirth, R. & O'Rorke, E (1991). Constraints on predicate invention. In Eighth International Conference on

Machine Learning. Morgan Kaufmann.
Wrobel, S. (1994). Concept formation during interactive theory revision. Machine Learning, 14: t69-i91.
Yardeni, E. & Shapiro, E. (1991). A type system for logic programs. Journal of Logic Programming,

(10):125-153.

Received November 18, 1993

Final Manuscript August 22, 1994

