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1. Introduction. In this paper we shall study the mean and variance of a
large number, n (a sample of size n) of mutually independent random variables:

(1) ‘El’g?"":fﬂ’

having the same probability distribution represented by a (cumulative) distribu-
tion function P(x). The rth moment, absolute moment, and semi-invariant of
P(x) are denoted by ., 8., and v, respectively. It is assumed that for a certain
integer k > 3, By < « and that a; > 0. Hence there is no loss of generality in
assuming that

(2) ay = 0, o = 1.
The characteristic function corresponding to P(z) is denoted by p(2).
We put
: 1 1< B2
@) P L R
@) F(x) = Priv/ni <z}, G() = Pr {i"i("__}) < x}
V-1

The definition of G(x) implies that oy < «© and ey —1 > 0. Thecaseay —1 =0
provides an easy degenerated case which will be treated separately (section 4).
Cramér’s theorem of asymptotic expansion® reads as follows:
TaeorEM 1. If P(x) is non-singular and if B < « for some integer k > 3,
then

(5) F(z) = &(z) + ¥(x) + R(z)
where
__1_ i ~}y?
(6) &(x) = Vo .Loe dy.
¥(z) is a certain linear combination of successive derivatives®® (z), - - - ,®®* ()

with each coefficient of the form 7n ¥ times a quantity depending only on
kyas, -, (1 <v<k—3)and

) | R@) | < Q/n**™
where Q is a constant depending only on & and P(z).

1H, Cramtr: Random Variables and Probability Distributions (1937), Ch. 7. This book
will be referred to as (C).
1
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2 P. L. HSU

In particular, putting ¥ = 3 we get that | F(z) — &(z) | < Qnt provided
P(z) is non-singular and 83 < . If the condition of non-singularity of
P(z) be removed, then Liapounoff’s theorem® furnishes the weaker result:
|F(z) — &) | < ABm™? log n where A is a numerical constant.

Very recently Berry® succeeded in removing the factor log n from Liapounoff’s
theorem under no other condition than that 83 < «. We state here Berry’s

theorem:
TaEOREM 2. If B3 < «, then

8 |Fz) — ®@)| < \/_

where A is a numerical constant.
An essential step in the proof of these results is the selection of a weighting

function w(z) and the appraisal of the integral

©) [: w@) [Fu + ) — 3 + 2) — Y + 2)} du

(¥ =0whenk = 3). Inhis book! Cramér proves Theorem 1 by taking w(u) =
IT(IZ) (—u)*" when u < 0 and w(u) = 0 when

(10) u>20 0<w<l
and proves Liapounoff’s theorem by taking

—u2/2¢2

1) W= >

( o= v 2me
On the other hand, Berry uses the following weighting function in his proof of
Theorem 2:

1 — cos Tu

(12) w@w) = 233

The unfortunate selection of the function (11) accounts for the presence of the
factor log »n in Liapounoff’s theorem.

Now Cramér’s proof of Theorem 1, based on the integral (9) with w(u) defined
in (10), makes use of a result on that integral due to M. Riesz. A more ele-
mentary proof than this can be devised. In fact, one has only to use, with
Berry, the function (12) and to adopt his elementary appraisal® of the integral

2 (C), Ch. 7.
3 A.C.Bzerry: “The accuracy of the Gaussian approximation to the sum of independent

variates.” Trans. Amer. Math. Soc., Vol. 49 (1941), pp. 122-136. This paper will be re-

ferred to as (B).
4 Berry proves the inequality (in our notation):

f l—gﬁ—q}{ﬁ‘(z-{— a) - dz+ a)}dz| <

fT (T - )|f@t) — ¥ ldt
A ¢
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(9) in order to obtain the proof of Theorem 1. One of our purposes is therefore
to give an elementary proof of Theorem 1, without reference to the above-
mentioned result due to M. Riesz. Section 2 is devoted to this work.

We ought to add that Cramér’s theorem and Berry’s theorem correspond to
Theorems 1 and 2 for the case in which the random variables (1) do not follow
the same distribution. The proof given in Section 2 is adaptable to these more
general theorems when subjected to appropriate modifications; the assumption
of a common distribution function for (1) is only made for the sake of con-
venience.

"So much for the known results for the approximate distribution of £. By a
purely formal operational method Cornish and Fisher® obtain terms of successive
approximation to the distribution function of any random variable X with the
help of its semi-invariants. It is hardly necessary to emphasize the importance
of turning Cornish and Fisher’s formal result (asymptotic expansion without
appraisal of the remainder) into a mathematical theorem of asymptotic expan-
sion which gives the order of magnitude of the remainder. In this paper we
achieve this for the simplest function of (1) next to £, viz. the nin (3). We do
not seek to remove the assumption of & common distribution for (1), as there
will be no practical significance (e.g. in statistics) of # if the variables (1) do not
have the same probability distribution. Section 3 is devoted to the proof of
the following theorems:

TueoreM 3. If as < ® and as — 1-— o3 5 0 (it cannot be negative), then

A asg 3/2
13) 6@ - 2@ | < 72 (725 =%)

where A ts a numerical constant.
TrEOREM 4. Let P(z) be non-singular and let an < « for some integer k > 3.

Then

(14) G(x) = 2(z) + x(z) + Ri(z),

where &(x) is the function (6), x(x) is a linear combination of the derivatives ®'(z),
v o, %D (1) with each coefficient of the form n”™¥ times a quantity depending only
onkand a3, s, +++ , am—2, and

(B), p. 128. The “‘appraisal”’ mentioned here refers to (50) which is contained in B, p. 128.
But Berry’s appraisal of the integral in the right-hand side of the above inequality is in
default. He writes

e [e/ef11 g 1.1 e 1 g 2] g
-— — — —l‘ = — :_____ 1'1__ Py _‘Izd
6,£ (e t)t 3 di o 1/; 3 6‘/;‘ ( o+ ¢ 2 1e t

(B, p. 132, line 3) whilst the last integral ought to be

f {11 = Q)+ ¢ — 2}t/ dt.
cle

$B. A. Cornish and R. A. Fisher: “Moments and cumulants in tke specification of dis-
tributions.” (Revue de I’Institut International de Statistique (1937), pp. 1-14.)
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(15) |B@)| < s ih=4,50r6
Q: .

where Qi and Qy, are constants depending only on k and P(x).

It may be noticed that Theorem 3 is a “Berryian” theorem about G(z), its
characteristic feature being the absence of any condition on the distribution
function except the two on its moments, and that Theorem 4 is a “Cramerian’’
theorem about G(z), the charaeteristic feature being the assumption of non-
singularity of P(z) besides that an < «. ,

In proving these theorems we have devised a method which is applicable to
getting similar results about functions other than 7, such as functions com-
monly used in applied statistics: the higher moments about the means, the
moment ratios (e.g. K. Pearson’s b; and b,), the covariance, the coefficient of
correlation, and “Student’s” t-statistic. Works on such functions are being
done by my university colleagues, and the results will be published shortly.

If £ is any of the random variables (1), then

0 < efa(®® — 1) + bE} = a*(es — 1) + 2abas + b

for all real (a, b). Hence as — 1 — a3 > 0,and & — 1 — a2 = 0 means that
there is unit probability that ¢ assumes exactly two values. This easily degene~
rated case is first eliminated in Theorem 3 by the assumption ax — 1 — o %= 0
and then considered in section 4. In Theorem 4 the condition s — 1 — of = 0
is implied since ¢ cannot be a random variable of the nature just described owing
to the non-singularity of P(z).

2. Lemmas. Throughout this paper A, B, C, etc. will denote positive numeri-
cal constants; Ai , By (Aim , Bim), etc., will denote positive constants depending
only on some integer k (integers k& and m), and Qi (Qwm) will denote a positive
constant depending only on k¥ (k and m) and the distribution function P(z).
3, 0, Ok, (Okm), Ax (Arm) will denote respectively quantities such that |8 | < 1,
(0] < 4, |6:] £ Ak (|6im| < Arm), [Ax] £ @ (| Atm| £ Qim). These
symbols do not necessarily stand for the same quantity at each occurrence.
Thus 2¢-= 6, k6 = 6, etc. In particular any positive functions of &, as, - - - , o

isaQ;,.

1.1. Cramér obtains the asymptotic expansion of the characteristic function
of the distribution of v/ 7§, viz. e(e”V*), when (1) do not have the same distribu-

tion, valid for [¢| < Q:n'®. Since we assume a common distribution for (1),
t " .
so that the characteristic function is {p (\—/—;)} , we are able to derive an

— - t
asymptotic expansion valid for |¢{| < @Qw\/n. The extension to {p ;/1—;,,’
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< -\—/t%)} presents no difficulty. This is done in the following three lemmas,

of which Lemma 3 contains the final resuit.
LeEMmMa 1.

L. Ge) & 1/k
(17) log p(t) = 22 T + 6| t[f, for[t] < g™

k~1 AT k
Proor: Since p(H) = 1 + Zl 9‘# + %'ikl'ﬂ = 1 + ¢(?) say, we have, for
gt <1,

k r k 1/& r [
q(t)szﬁ"lt] S;(ﬂkl!t[) <Ez_=e_2<

=2 7! T r!

a0

Hence

(18) logp(t) = 2

157<[}(k-1)]

For 1 < j < [3(k — 1)] let us expand each (—1)"*'7{¢(#)}  to get a polynomial
qi(t) of degree k — 1 and a remainder r;(¢). In doing this we regard ¢(t) formally
as a polynomial of degree k in t. For this polynomial we have the majorating

relation

(_1)J'+1 {Q(t)}: + 9] q(t) l[l(lc+l)l.

Tkfg]
b

qt) K &
whence
0 gy < o™,
J
which gives

w o orfk r . .
a9) |no| < ;_Zk“’%,'ﬂ St al el <o < At

Similarly,

(20) [q@t) [ 4T < Auga| 2] ™.
From (18), (19), (20) we obtain

(1) log p(t) = 15,-5%-‘:»_1” g;t) + 6: 6| t [".

Since the sum in (21) must equal the sum in (17), the Lemma is proved.
Lemma 2. Let (51, $2,-°-,¢m) be a random point with et:) = 0 and
(| £:1%) = Bis < o for some integer k >3 (1 =1,---,m). Letp(ty, -+, tm)
be the characteristic function. Then for |t;| < m g lt/n (i =1,---,m)
we have
h tn =, 0.V,
22) n logp(v;z, e, \7-;) = g s T n*’:”‘;
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where U, and V, are the rth semi-invariant and the absolute moment respectively of
LS
Proor: If [&;| < m*™*6"\/n, then Vi’* < m®* V*(Zg |t [)V* <

- t i 1
k=D k(5 01/ x . 1 )

. ‘. < . ——1 y « v , —_— = T =
m (28" | t:) < +/n. Sincep (\/n \/;L) is the value at ¢ v of
the characteristic function of Zt;;, it follows from Lemma 1 that for /n >
Vi* we have (22).

Lemma 3. Let (41, -+, tm) be a random point with e({) = 0, e(t}) = 1 and
(| £:|%).= Bri < o for some integer k > 3. Let pi; = (Tt (o = 1;4,5 = 1,
.-+, m) and the matriz || pi; || be positive definite. Let

-1 § ijtit;
(28) A=det|psl, ol tw) =6 e
Let p(ty, « - ¢ , tm) be the characteristic function. Then there exists a Bym such that

forlt;]<%’-"( 1, .-+, m) we have

ki

! L 1 e
{p(7;7 ,,\/1_,")} = ‘P(tla :tm){1+‘p(7'tl’ ;Ztm)}

(24) + s {Z B
Al 4gmm—1 § tz

+ It" Ik+1 o+ Itila(k_’))}e— it
where ¢ (ity, - - - , itm) is a polynomial each of whose terms has the form
1 oy \» .
P Gy v (G81)™ -+ (i)™,

withl1 < v< k—3,3< n+ -+ + vm < 3(k — 3), and a,,...»,, depending only
on k and the moments (' -+ - &™), 3 <+ -+ un <k — 1. Ifk = 3,
then ¢y = 0.

Proor. If |&| < m 2T g¥* A 4/p, then | t; | < m™**P gl* £/ since
A < 1 and By > 1. It follows from Lemma 2 and the fact U, = Zp;tit; that

AT -

B k3 o 0|s|’_"2e"'}
= ¢(t, "',tm){l +EJ!+(_’G-—-2)—!

jm1

(25)

where
B Y U oV
(26) 8§ = \/n 2 +3)!n" + D -
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Regarding s formally as a polynomial in n~* let us expand each (j)™'s’ (1 <
7 < &k — 3) to get a polynomial s; of degree ¥ — 3 in n™* and a remainder r; .
For the formal polynomial s we have the majorating relation

B3 Ve A R yeton AV it
. (27) S<<\/ Z rin CERAS -\/n; r'nrlz < »\/- 4
whence
1 V3]/k ]Vllk" 4
]

i S < Ak k

gt

which gives
;| <

Since Vi’*n < 1 as shown in the proof of Lemma 2, we have

Ay Vrk Aen(X B | t: [Py ETH2 M
L]
1 LK) I A=) = p T

351k * k—2+27) [k —
AkV g ”. 7 V"I Ay V,ﬁ 2 ej(v,‘,/"l\/n)

w2 Vel me f viplt — ni%-2)

L Am G B LUDTT 5 g s

< =D = A
Since Bi; > 1 we have g2/ < gDk Hence
Apm 3 GLEDIE| g, [b2v2d
13 £ 3
28 . i
( ) l Ti l S ni&—-2) )
Similarly

I s |k_2 Asm Z Ba(k—z)/k , # l3(k-—2)
(29) ) < e .

From (25), (28), (29) we get

tl tm n k=3 k—3 s
p(Faro Gl = st B+ Gk gl
= ‘P(tl, B tm) {1 +¢’(7:t1: "'7itm)}

(3;".';) EREPE( G + 6 + o+ 6P e, -, ta)e™

where ¢(ify, - -+, itm) stands for Zs;. The assertion about ¥(it;, - -+ , itm)
announced in the lemma can now be seen without difficulty. It remains to show
that with suitable Bi.. in the lemma, we have

i At 3
¢(t1 y T t,,.)e <e i=1
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ie.

(30) —-= Z pility + || £ — mAm_l'Z_)ltf.

$,fe=1

From (27) we have
lsl < \/_ Va/k \/k% (Z“ ﬁkilti Ik)a/k

Awm
< 2 O |l < 2 3 gt

If we choose Bim < (4m™ *Ain) " (and Bim < m~ 2% in order that the earlier
results may not be affected), the Awm here coinciding with the last written Azn
in (31), we have, for | t:| < BimBii "Av/'n,

(32) HEP=S9 7}

On the other hand, if A, Ae, -+, A\ are the latent roots of || ps; || then each
A: <-m since their sum is m. Letting \; be the smallest one we have

Ao oo MAz - Am
@) FTettzpnTa=piilesigs Lo

(32) and (33) imply (30). Hence the lemma is proved.
Let us write down the particular cases m = 1 and m = 2 of (24):

{p (\—};)} = ¢ (1 + y(at))

@k ﬁ:m—z)/lc{ltlk + [t lk+1 .+ I la(k—z) —t2/4 ([ tl < Ak'\/;l«)

+
k~2 8/k
nd=2 Bt

{p (\_t/l;:, \—?;)}” _ e—-i(e,+¢,+2p1,z,) (1 + v, i)
(35) + oo i(k—z) {E BRIt F G+ - |t |a(k-z))}

— 2 i
(It,-i < A B‘Z)\/n’ )= e(mz)).
ki

More specially let us rewrite (34) and (35) with k =

——p?) (t34+22)/8
& Gultl + e T (I t] <
Vn

@31

(39)

—(1—p?) (t]+13)/8

37 -
&7 Al = )V n)
Bsi .
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In this paper only these last four formulae are needed; they are used in the
proofs of Theorems 2, 1, 3, 4 respectively. Cases of m > 2 of (24) will be
needed for the works on other functions alluded to in the introduction.

1.2, In the following group of lemmas, which culminate in Lemma 7, one
finds a generalization of the Riemann-Lebesgue theorem, viz. Lemma 6.

Lemma 4. Let f(x) be a polynomial of degree m > 0, with real coefficients:

(38) f@) = f:; a;z™ (@ = 0)
Then

(38)

f1 e"’(’)dxl < An
0 Qo

1
Proor: It is sufficient to prove the inequality for j cos f(x) dz. Divide
]

the interval into A, sub-intervals in each of whose interior none of the deriva-
tives f?(2) (4 = 1, -+-, m) vanishes. It is sufficient to consider one of these
sub-intervals, say (g, b). Consequently each of the polynomials f®(z) are
monotonic in (@, b). Let

(39) I= fb cos f(x) dx.

Suppose first that f/(x) is positive and increasing fora < z < b. Then
b f'(2) cos f(2) dz

[I| < e+

ate J(z)
1"y <b <
= et s j;+.f(:c) cos f@) dz|, (@+e<bi<b),
by the second mean-value theorem. Hence
2
< — .
(40) ]II'—E+f'(a+e)

Now0 <f(a+3e) = f'(a + ¢ — ¢f"(a + 6¢)/2,3 < 6 < 1. Hence f'(a +
¢) > ¥¢f’(a + 0¢). Since f”/(x) is monotonic, we have either f'(a + ¢) > }¢f”’
(a+ eorf'(a+ ¢ > tef’(a + %¢). In other words, there exists a constant C,,
independent of @ or ¢, such that 3 < C: < 1 and f'(a + ¢ > 31¢f(a + Cae).

If f”(z) 2 0, we have, as before f/(a + Ci¢) > 3Ca¢f""’(a + Cse), where Cs
is independent of @ or ¢ and 3 < C3 < 1. If f”(x) < 0, then, since
0 < f(a + 2C2¢) = f'(a + Cae) + Coef'’(a + 6:Cz¢), 3 < 61 < 1, we have
f’(@ + Ci¢e) > —Caf"’(a + 26,Cs¢). As f"”'(x) is monotonic, either f’(a +
Cre) > —Coef’’(a + Cie) or f’(a + Cz¢) > —Caref”’(a + 2Cz¢). In all cases
we obtain f”/(a 4+ C:¢) > Bse|f(a + Cse) | , where B; and C; are independent
ofaore and 3 < Cs < 2. Hence f'(a-+ ¢ > 3Bsé | f/(a + Cs¢) | . Arguing
with £1"""(a + Cse) as we did with f””(a + C:e), and so on until we come to f*™,
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we obtain f'(a + € > Bue™ ' | f™(a + Cme) | = Bne™ | ao|. Substituting
in (40) and putting ¢ = |ao | ™ we obtain |I| < A, |a ™. The proof
presupposes that Cne < b — a. If the reverse inequality is true, then | I | <
b—a < Cn|a|™™ Hence the lemma is true for f'(z) positive and increas-
ing in (a, b).

b—a
If f’(x) is positive and decreasing in (a, b), then I = f cos (—f(b — y)) dy,
(]

—f(b — y) being 2 polynomial with the leading coefficient 4=a, and the first
derivative f'(b — ¥), which is positive and increasing. This case reduces there-
fore to the preceding one. Finally, if f'(x) is negative, we have only to notice

b
that I = f cos (—f(x)) dz. Hence the lemma is proved.

LemMma 5. Let f(x) be the polynomial (38a), and let a, = 0 for somer,0 < r < m.
Then

<A"'

- larldm °

1
f 7D dx
o

Proor: We may assume that | a.| > 1, (41) being trivial if |a.| < 1. If
r = 0 this reduces to Lemma 4. Suppose that the lemma is true for a0, a1,

1. Let fir) = ax™ + -+ + arz™ 7, fal) = fx) — filz) and
divide (0, 1) into A, sub-intervals in each of which fi(x) is monotonic. It is
sufficient to consider one of these sub-intervals, say, (a, b). We have

(41)

1= [ s (1) + ) de

= fb cos fi(x) cos fx(x) dx — fb sin fi(x) sin f2(z) dz.

We have only to consider the integral of cosines, say J. Divide (a, b) into sub-
intervals in each of whose interior cos fi(x) is monotonic and does not vanish.
The number of such intervals does not exceed (im)™'|fi(d) — file)| <
7AG) | 4+ 1fil@) ) < 2(ao] + --- + |a1]). Then, by the second
mean-value theorem,

(@ <5 <D).

by
171 < 200 el + o+ aa])| [ eos te)

Hence, applying Lemma 4 to fx(x), we get
An(ao] + - +|aa])  Anllao] + -+ + [ar])

@) |1[< [a, [T [ a, [t/m

On the hypothesis of induction we have | I | < dnja:|™™ ¢ =0,---,r —1).
If |a;| > |a |"*™ for some ¢ < 7, then |T]| < An|a, [ ;if |ai| <
| a, ['*™, then by (42), |I| < An|a, ™. The proof is therefore complete.
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LemMA 6. Letf(z) be the polynomial (38a) and g(x) be summable over (— o, ).
Then for every r we have
43) lim 1@ g(z) dz = 0, uniformly in a:(i # ).
lay|—*o0 20

Proor: By Lemma 5 We have

1
lim ¢’ dx = 0, uniformly in a;(¢ # r).

jar| =20 YO
Hence
b
(44) lim f é¢’® dz = 0, uniformly in a:(z # 1)

larl—wo Va
forif @ # 0 and b 0, then (a, b) is the sum or the difference of two intervals of
the form (0, ¢) or (¢, 0), and for the latter intervals the transformation x = ==cy

reduces the interval of integration to (0, 1).
Let G be any open set of finite measure. Then G is the sum of a sequence
{I,} of non-overlapping intervals. Since Zml, = mG < o, we have

ZmI’<€, nZN.

ran

f ¢’? dx
[}

which, together with (44), implies

Hence
f &1 g l
I

N
<e+z

yu=1

(45) lim [ ¢’ dz =0 uniformly in a:(z # r).

lap] w0 Y@
Let S be any set of finite measure. Then there is an open set G such that GOS8
and m(G — 8) < e. Hence

fe“(’) dz| < ‘+’f el® dxl.
S * [

Hence, by (45),
(46) lim | ¢/ dz = 0 uniformly in a:(Z # r).

lar]—w I8
Now let h(z) be any positive “simple”’ summable function, i.e. k(z) = a, > 0
forzeS(» = 1,2, --+,n) and h(z) = O otherwise. Since k(x) is summable,
each S, must be of finite measure. Hence
f e‘f(z) dx‘
8

‘ [ O hz) de| < D an
L] yoml »
which, together with (46), implies

lim ¢’ h(z) dr = 0 uniformly in a;(Z # r).

|ap| o0 L]
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Finally, let g(z) be any summable function > 0. Then by a well-known theo-

rem® we have g(z) = lim h.(x), where {k,(z)} is an ascending sequence of positive
summable simple functions. Hence

[: '@ g(z) dz| < ’ [: e’ h,(x) dx, + [: G(x) — ha(z)) da.

By monotonic convergence the last integral tends to 0 as n — . Hence

[: &7 g(z) dxl <e+ l [: ¢’ ho(z) d:cl ,

which implies (43). If g(z) is any summable function, we have only to consider
the customary expression of g(x) as the difference of two non-negative functions.
This completes the proof.

LemMmA 7. Let P(z) be a non-singular distribution function of a random variable
X, and let

© § tez?
(47) pli,ta, oty = [ 6= ap.
Then for every r and every posilive constant ¢ we have
(48) II‘uIE lp(tly Tt tn)l <L

Proor: We have P(r) = aiPi(z) + a.P:(z), where Pi(z) is absolutely con-
tinuous, P, is singular, a; > 0, @) 4+ a; = 1. Hence

© 5 rz’
[ e = P{(x)dx'+ag.

lp(th b, "’:tm)l <a

By Lemma 6 we may find € > 0 such that
Ip(tl:tz"";tm)lS%al+a¢<1’ if any lt"l>0'

Suppose that

1,

Lub. p(ty, + -, tw)

ltelZe

then ¢ < C and we must have

(49) Lub. lptts, -, tw)] = 1.

€S |t ] SO {ti]| SCiver)
Since p(t , - - - ,tm) is a continuous funection, it must attain itsleast upper bound
in any bounded closed set. It follows that there is a point (f, -« - , ) such
that’ & = 0 ([t;| > ¢) and p(f1, ---, &) = 1. But this implies that the
distribution of Zt{X® is discrete, i.e. that the distribution of X itself is discrete,

¢ H. Kestelman: Modern Theortes of Integration (1937), p. 108.
1Cf. (C), p. 26.
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which contradicts the non-singularity of P(x). Hence (49) is false and (48) is
true.

1.3. In his cited work Berry® shows that if F(z) is any distribution function
and if ®(z) is the function (6), then there is a constant a such that

Lo o0 T p + o) — 2 + o)) do

2 P —cosz
21/;7'5{3]; -—F—-dz-—r}

where § = 1/ g Lub. | F(x) — ®(x)|. This is easily extended to the following

(50)

lemma, which needs no further proof.

LemMMA 8. Let F(z) be a distribution function and Fi(z) be a funciion having
the following properties: (i) Fi(x) ¢s bounded for all x, (ii) Fi(x) = 1 as z — =,
Fiz) » 0asx — — oo, (iii) Fi(z) has a bounded derivative, | Fi(z) | < M. Let

= ml.u.b.lF(:c) - Fi@)].
Then there exists a constant a such that

[[1=o2 T2 p 4 0) ~ Fia + o)) da

61) w 2
T8y
> 2MT5{3 1= co82 g w}.
0 z?
14. In section 3 we define, for given ¢, k, A and 2, a function
(52) G, y) =" if z<z<z+ M, Gk y) =0 otherwise.

The introduction of G(x, y) and the appraisal of its Fourier transform constitute

the essence of our method of solving the problem of the asymptotic expansion

of the distribution function G(x). The solution of the same problem about

other functions of (1) alluded to in section 3 is based on the introduction of

functions playing the role of G(z, y). We now prove the following lemma:
Lemma 9. Let G(z, y) be defined by (52) and let

(53) g, ) = [ [ ey y) dr dy.
Then

@ ot )] < X2 g

. xz t Aa t 2 .

(ii) lg(t;,tz)l<ltzl,<x+7,|,-,‘-|+ GL,,‘I) if k = 3,
Ao, Nt

(iii) lg(ts, t) | < [P (élm + ém:l)'

* (B), p. 128.
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Proor:
. o A\
O o0 < [ 66pdedy = [ ety = 42

(ii) Putting ¥ = 3 we have

—i812

g(tl ’ tz) — e’l:tl [w e—eyG—il:y(l - e—il:%yz) dy,

[ wtrea ay),

where u(y) = ¢ V(1 — ™), p(y) = ¢, On integrating by parts we
obtain

lg(tlyt2)l S TallaP Ht F

[ v(y)u"" (y) dyl |t1||t2|3 [:Iu”'(y)ldy.

1
(54) Ig(tx , tz)l < W

Elementary calculation establishes that

lu;:(Iy)l < @160 |y |7 + 756 [y [

+ 336 |y [* + 8N t,l’lyF + 123 4] | % )).

Substituting in (54) and making the transformationy = ¢ “*z we get the result.
(ili)) We have

[00 e—ey“—“zy(l _ e—s‘t;ly’) d:l/l .

Integrating by parts twice we obtain

|g(t1;

* d2 —ey3k e ity
atmar L g = 0

By elementary calculations we get

which, on the transformation y = ¢ *z, gives the result.
1.5. We prove a few additional lemmas used in the proof of Theorems 3 and 4.
Lemma®’ 10. Let w(zy, -« , m) > O be summable in the m-dimensional space

and let

(55) v(tl y tm) = [ ces [ e—“lz‘_'"_“""'u(xl EREN xm) dxl e dxm.

? Although the author believes that this lemma is almost classical, a proof is given owing
to lack of reference.
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If v(ty, --- , tn) is summable in the m-dimensional space, then
(56) u(xl RN xm) = __1__. ‘[ PR f e“lzl+'“+u’":"‘v(tl y "ot tm) dtl ven dtm.
(2‘"’)'" © —o0
Proor: Except for a constant factor the function u(z;, ---, z.) may be

regarded as a probability density function. Hence by the well-known inversion
formula of (55),

f fu(xl,--,x,,,)dxl---dx,,.

(57) a;Szxi<b; (i=1l,-+-,m)

m at ibi __ itja;
(2,,),.[ £ ( : )v(tl,---,tm)dtl---dtm.

Now u(z:, --- , ) is almost everywhere the symmetric derivative of the inter-
val function in the left-hand side of (57):

u(zy, « -, xm)—hm(2),,, f fu(yl,--,ym)dyl Ym -

€0
zi—e<y;<zi;te (i=1,2,--:,m)

Hence
1 . 1 ["’ [”
e " = ———— l _‘—"‘” ...
u(xl ! » & ) (21I')m ellt{} (26) 0 o
(58) m eit,'e . e—e‘tje X A
_(H __._____) ettlzl+-..+ztmxmv(t1 , e, tm) dtl . dtm .
j=1 t;
Owing to dominated convergence the order of the limit sign and the integration

sign in (58) may be inverted: Hence (56) is true.
Lemma 11. We have

[” sl cosTu, {g(T —|t] if|t] < T,

(59) 2 it > T.

Proor: The Fourier transform of the function in the right-hand side of (59) is
T
w[ (T — |t dt = 2—:' (1 — cos Tu).
T u

Hence (59) follows from (56).
Lemma 12.
(60) letr + -+ &) < A
Proor. As (60) is true for k = 1, let us assume, for induction, that it is true

for 1, 2, ---, k. Then, by symmetry,

k 'L
B+ o0+ 8T = nellln + o + £ 2;.( )e(EI“U"”)
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where U = & + -+ 4+ & . Since e(f1)) = 0, we have
k
e+ -+ 8)T = Z( ) (ETUR).

On the hypotheses of induction we have | (U*™) | < Ai(n — N, <
Ant* g, .. Hence

[t + -+ + &) < KA ™28, 60 < Apunt® ™8,y

Therefore the induction is complete.

3. Elementary Proof of Theorem 1. 2.1 We have deﬁned

(61) F(z) = Pr{v/nk < z}, (@) = \/2 e dy
with the characteristic functions

(62 10=-5(ZH)  wo=am
Following Berry" we use the equation

(63) f (Fz) - 3@)}e* do = TO — ¢ *"(’)

Let ¢(#t) be the polynomial in (34), and let us deﬁne ¥(z) as the function ob-
tained from y(it) through the replacement of each power (if)” by (—1)'®"(z).

Integration by parts shows (—1)"" [ e (z) dx = (st)""¢(t), whence

(64) [: Y(2)e* dx = ¢_(z’i);;(t) .

From (63) and (64) we obtain

6 [ 7@ - 2@ ~ v@)e s =10 — o1 + ¥()}

—1t
The function ¥(x) defined here is precisely the ¥(z) appearing in (5) under
Theorem 1. Our task is to prove that
(66) | P@) - 2@) — ¥@)| < ..

Following Berry" we replace z by z + a in (65), getting

{Flx + a) — & + a) — ¥(z + a)}e* dz
_ W) — e 1{1 + v}

—t

(67)

10 (B), p. 127, Equation (23).
u (B), p. 127.
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multiply both sides of (67) by T — | ¢ | and integrate with respect to ¢in (— T, T):

2 [ Lo (5t 0) ~ 4 + @) ~ ¥+ )] do

=[WT—hmﬂwm7¢wu+¢wnm

—1t

the reversion of order of integration involved is obviously justifiable. Hence

“l—i;Lﬂvf{F(x+a)—<I>(x+a)—\Ir(x+a)/}dx

(68)

<Twa—¢wu+mem
<r] t :

2.2. When in particular £ = 3, (68) becomes
®1— cos Tx _ 170 — o |
(69) l‘[”——gz—-—{F(x-Fa) 3@z + a)} do s:rfo M- eBlg,

If we choose a to be the a in (50), the left-hand side of (69) is not less than

T8 —
4/%1’5{3[0 L—;;—Osjdx—w}, 6=,‘/gl.u.b.[F(:c)—-<I>(x)[.

On the other hand, taking T = A—;L;" as in (36) the right-hand side of (69) is
3

not greater than
Af £t g = A
0

Hence .
™1 —cosz
(70) T8{3j; Lo 82— a} < 4.

Now the left-hand side of (70), as a function of T8, is positive and increasing for
sufficiently large 78, and becomes infinite as 76 — «. Hence (70) implies that
Ts < A, ie.

[+

ABy
Lub.|F@) — #@)| < G = -\7‘2,

giving Theorem 2.

2.3. Coming back to the general case, we see that the function &(z) + ¥(x)
has a bounded derivative: | ®’(z) + ¥'(z) | < Q:, and also has all the properties
of the function Fi(z) in Lemma 8. On choosing a in (69) to be the a in (51)
we obtain
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(71) Q,,Ta{3 _{n Lo cosay, 1r} < T[lf(‘) — 00+ V) | a,

x2

where
= Q¢ Lub. |F(z) — ¥(x) — ¥(z)].
Let us take T = (48" +/n)*"* with A, in accordance with (34). Then
"l10 — e®{1 + v},
0 ¢

(72) 71/ (k—2)

= Qunt? f
o

(73) L < Q. fo E b SN g =,

Also,
T =\ |n T .
< }-2) | p@t/+/n)] We—2) o) |1 + ¢(@@ib) |
(74) J: < Qun ‘/;k‘\/; — dt 4+ Qen '/‘;n/? —_— dt.
The second term in the right-hand side of (74) is evidently <Q.. The first
term does not exceed

(75) Qn** ™ T Lub. | p(®) .
t2Qx

T
+ Q‘_ni(k—z) ./; vi = J1+ J; say.
FRVE

By (34) we have

At this step we make use of the non-singularity of P(z) and apply Lemma 7
for m = 1. We have

l.u.b. [p@®) | = .

Hence (75) does not exceed Qy nm""‘” %" < @Qr. We have therefore

TS ¢
(76) Ta {3 -/0‘ }_I_czoﬂ dx — W} S Qk ’ T = an“k_z)-

Arguing with (76) as we did with (70) we conclude that

lub.|F(z) — &(z) — ¥(2)| < = Qk ni%iz)

(72) isvalidfor ' > 1. If T < 1, we have only to suppress the term J; . Hence
Theorem 1 is proved.

4. Proof of Theorem 3 and Theorem 4. 3.1. In connection with the random
variables (1), we assume that 8 < « for some integer k¥ > 3 and define

an =1 z; -9, 6@ = Pr {‘f}‘i’ = 11) < z}

3 I
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Now,
1 T g a— 1 _Y2
=X E-F=1+4 ——X -
where
1 -1 -
78 X=—= —_——, Y= .
() Vi Vas1 Vi
Hence
(79) G(@) = PriX —\Y’ < 2}
with
T Al - 1)°

Let W be the probability function of the distribution of the random point
(X, Y) and f(t:, &) be the characteristic function:

(81) W(S) = Pr{(X, Y)eS} for every Borel set S in R,,
; . h 2 \|"
— T X+t ¥ = —_——
(82) ft, ts) = (e ) {P (\/n’ \/n)}
(83) plta, ) = [ I DIWVah i gp
Let Gy(z) be the distribution function of X. Then
(84) G - Gi(z) = f _[ dW = K(), say.
z<z<sHAy2
Let
(85) K.(z) = f f e dw.
s<z< syl

If we define (for fixed 2) the function G(z, y) by

(86) G(z,y) = ™ i z<x<z+ VT G(z,y) = 0 otherwise,
then

(87) k@ = [ [ e@wam.

Letting

(88) [ [ 6 v) drdy = o, 0,
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we replace z by £ — u in the integral and get
(89) [ [ e Qe — w, ) dedy = e g(t, ).
oy . . 1 — cos Tu
Multiplying both sides by -
obtain, with the help of (59), Lemma 11,

[‘ .[n Pt LT W dy [” .].'__?__:.:2_)5_?1" G(x — u, y) du

- {T(T — |t])ott, t) if [6] < T,

and integrating with respect to » we

(90)

0 if [t > T;

the reversion of order of integration in the left-hand side is obviously justifiable.
By Lemma 9 the right-hand side of (90) is summable in the whole plane of
(&1, ). Hence, by Lemma 10,

[ﬁl——fg—s——TﬂG(z —u,y) du

= []a- |t Dy, te™ =" dty iy

[t sT

If we integrate both sides with respect to the probability function W, we obtain,
on reversing the order of integration,

[ Llf?ﬂ'l‘d ffG’(x—u,y)dW

(92) |
=& f f (T — |u]gtr, )f (s, t) dtrdte .

ST

By (86) and (87),
(93) [ f G — u, y) dW = K.(u+ 2).
Hence

[Pt Mgt gau=g [ [ @bt 6, 0 duds.

[t1]ST
We now take the functions

—}(t:+t;+2p:,¢,)

(95) ¢(t1’ t’) = €
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and ¢ (st; , it;) as in (35), where
©(x2 — 1
(96) p__[ HdP—vm_l

Since the condition a4 — 1 — a3 # 0 is assumed in Theorem 3 and implied in
Theorem 4, we have |p| < 1. Let

1
7 wx,y) = m e—(llz(l—p’))(z’+r’—2pzy)

and let v(z, y) be the function obtained from y¥(it , it;) through the replacement

r +rg
of each power ()" ()" by (=1 W,(z, y) = (—1)+22 ooy ':‘;(x',’ v,
Y

Since

(98) w(z, y) = (2#1), [: [_: e T (1, 1) dtudl

we have

(99) Wiz, y) = ( (g;:" _[ [ ()7 (ita) e (b , 1) dlrdla
whence, by Fourier inversion,

100 @, 8 = [ [, ) dedy.

From the definition of y(z, ¥) it follows therefore

aon [ [ e e, 4) + v(a, ) dedy = ol WL+ Wi, )

A comparison of (101) with [ [ 1= g — 14, | 1) shows that (94) will
remain true if K.{u) be replaced by

(102) [[ ™ + 1@ ) dedy = L), say,
u<r<Sutiy?
and f(& , &) be replaced by o(t1, &){1 + ¢(it1, ¢tz)}. Hence
[ 1_:_001_7'_14 {K(u + 2z) — L(u + 2)} du
(103) = [[ @-lubet, s,
[t1]ST

= ot , )1 + Y@, it2)]} dudta .
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Let also

s HE = [ [ (we )+ 60 dedy,

z-\y2<z

H@ = [ [ w6 9 + 16,9} doay,

z<s

105) L@ =HE - H@ = [ [ (e + 60} dzd.

s<z<sHy?

3.2. We now consider the particular case & = 3 and prove Theorem 3. For
k = 3 wehavey =+ = 0and so

He) = [ [ wi v dzay,

(106) T~ 3<z
Hy(2) = ffw(x, y) dz dy = ¥(2),
z<z
L(z) = H(z) — Hi(2),
(107) L(2) = f f e w(z, y) dz dy,
xS e HAyd
[ I—ZM‘ {K.(u + z) — L(u + 2)} du
(108)
== [[ @ - labots, 0ife, ) — o, Wldtdts.
{tal<T
Now

K(u) — L) = {G@) — @)} — (H@) — @)} — {Giw) — 2(w)}
— (K@) — K@)} + {L(w) — L)},

0 < H(u) — ) = [ M dy f Y - e gy

2rv1 — ¢ 1
A
—’h/ . S
< 21\/1 [ W=Vt = )’

Aac

L 1)3” v by Theorem 2,

. A r=
lGl('u) —<I>(u)| < '\/;z‘[ ‘\/cu = 1
0 < K@) — Ki(u) < «(Y*) < Aase by Lemma 12,

0 < L(w) — L(u) < Ae
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Hence
[ 1o G+ 0 — atu + ) du
1
(109) ‘GT@”' VAV RV s ()
+ eT ff lgtts, &) |5t , &) — o(tr, &) | dtrdta .
it1l=T
It is easy to verify that

as 1 o 3/2
(s — 1)** + Vi — DA - 5 < (ou -1- a§) )

For the left-hand side of (109) we refer to (50) and take x to be the number a
therein. Hence

T 1 — cosu as 3/
T&{3£ u? . }<AT{ME+\/n<a4—1—as) }

a0 447 [ o, 0], 0 - e, 0] duds

16l <Tjta] =T
+ AT ff [ 9(ts, t2) | dtzdty .
[l sTtg|>T
By Lemma 9 (ii) we have

T ff lg(t, &) | dt dts

[81] ST 82157

(111) < AT ff ItzP( Xzi‘tll_*_ 3|t1l2>dt dis .

{1 ST tg|>T

2 3
SA()\+Z‘—*Z+A—;Tz).
€ €

Hence
Té
Ts 3[ T—coswu, _ .
L u?
a T NT ,NT
(112) SA{aGTe-l—(oq—l—a) \/n+ + — +?‘

+ AT ff lg(ts, L) ||f — ol dtrdts.

[l ST 2T
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By Lemma 9 (i) with £ = 3 we have
AT
) T ff lgl -5 = ol dndn < =5= Y [ 15 -elanan.

TEIAEL, YELANEL:

By (37) under Lemma 3,

4 nreeda?
(14) [f = o] < 7= Bultl + Ba] a[)e7 4D for 4] <4l = p)Vn ﬂ”)\/;‘
with
_ ® 2 -1 4 © .
ay LIva=lw<gopl @+
S(mstI)" ﬁaz=[”|x['dP=pz,

‘We now take
— 1=\
(116) T = 4 (‘i‘___l__f“_’) v'n,
8 as
the A coinciding with that in (114). Then
AQ - p”)\/n Al = ) — D¥/n

Bu 8as
8ayg 8ol
A0 = AV _ Al =1 —d)v/n
Bz (o — 1)Bs
(118)
Aa;—l—at’ Al — 1 — o
( o g : \/n o o D/ > T.

Hence (114) is true for || < T and |&]| < T. Using this fact on (113) we
obtain

T [[ lells~oldudn

LAl ST [42| ST

sl {(ou Zlul + aaltala} D gy, gy,

ei \/n
(119) :M\'/A n ((a. Y f’*) a= l a= " 1
= m: (eolea = 1) + Bafeu — 1)™%) o L
Aj @V — 1+ sl — 1))@—_-—1—1——3—)‘%
ATo}

< .
~ nVela — 1 — a3)™”*
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Substituting in (112), setting ¢ = (asT)"" and using (116) we obtain after some
easy reduction

Ty
Ts{?,fo 3—c°-s-l‘du—r}

u?

1 o i as u
=4 [1 t amoD " (n(aa -1- aﬁ)) + (n(ou -1 —af))]'
Ifn > (ax — 1 — al)"as, then the right-hand side of (120) is < A, and so,
arguing with (120), as we did with (70), we obtain

(120)

A A as 2
(121) Lu.b. IG(u) - <I>(u)| < = \—/; (m) )

Forn < (a — 1 — af)"as, however, the right-hand side of (121) > A(ay —
1 — o) 'as > A and (121) becomes a triviality. Hence Theorem 3 is proved.
3.3. To prove Theorem 4, we start again with the identity (103). We have

K.(u) — L(u) = {Gw) — Hw)} — {Gi(u) — Hi(u)}
— {K(w) — K.(w)} + {L(w) — L{w)},
(123) 0 < K@) — KJu) < ee(Y*) < Qe by Lemma 12,

(120 0 L) — L < ¢ [ [ 4*le, ) + |16 0)]) dedy < Gue.

(122)

Let us show that
(125) | Giw) — Hy(w) | < Qu/n**™".

1 & i—1 — .
The function X = \—/; > ( \—imz—-_—l) has the same structure as /n £ (with

Sl

(as — 1)} — 1) playing the role of £:); hence; by Theorem 1, there exists
an asymptotic expansion of the distribution function Gi(u). We shall see that
the terms of this asymptotic expansion are precisely Hy(x), whence (125) follows
from Theorem 1.

It is obvious that for the polynomial ¥(it; , i) in (35) ¥(2t, 0) coincides with
the polynomial y(it) in (34). Hence the terms of the asymptotic expansion
of Gy(u) are the inversion of ¢ ¥ {1 4 ¥(it, 0)} viz.

(126) 2(w) + 5 L do [: 2 46t 0) dt.
On the other hand, by (104),
a27) ) = o) + [ ds [ vy
and by (101) with &z = 0,

(128) [ ¢ dx [ vz, y) dy = € y(@t, 0).
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Inversion of (118) gives
(129) [r@way = o [ 1,0 at

which establishes the equality of Hi(x) and (126).
Using (122), (123), (124), (125) on (103) we get

[l T G + —H(u+z)}du=AkT<‘+a%)

(130)
+of [ [ 1o, 0|15, 0) — o, w1 + vGit, )| dnds.

If we expand
(131) H(u) = ff {w(z, y) + v, )} dedy
—ulgu

in powers of n~* up to and including the term n ¥ the remainder is obviously
AP Hence

(132) Huw) = @@ + x() + A/,
where ®(u) + x(u) is the group of terms of the Taylor expansion of (131) in
powers of n~* up to and including the term 2 %P From (130) and (132) we get

[ T (o + o) — @G+ 2) — x(u+ 2} d“]

u2
(133) )
< QT (é + n_w:-z)) + Al
where »
a8 I=7 [ [ o, &)1, 6 - o, 01+ ¥, i)} dade

jtalsT

We are going to prove that the function x(u) here defined satisfies all the
requirements of the function x(u) in Theorem 4. The structure of x(u) an-
nounced in Theorem 4 is easily verifiable. It remains to prove the inequalities
(15) and (16) satisfied by

| Gw) — ®(u) — x(w) |-

It is obvious that the function ®(u) + x(u) has all the properties of the
function Fy(«) in Lemma 8, having a bounded derivative | ®’'(4) + x'(») | < Q.
Hence, on taking z in (133) to be the number a in (51), the left-hand side of (133)
does not exceed

TS
Q.Ts (3 fo 1_;1;352& du— 1r), 5 = @lub.|Gw) — &) — x@)).
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Hence
) — cosu
(135) Té 3./0. Tdu—r < QTPlet+ “kz))""’Qk

In order to appraise I we recall (35) under Lemma 3 (replacing therein each
Bi: by the larger number BiBiz, and merging the latter into Q)

‘f(tl ’ t2) - ¢(t1 ’ tz){l + 'p(itl ’ it?)} l }(k—z) {z(l 2 lk

+ I & la(k—z)) }8

(136)

—1—p?) (t7+¢3)/8

for
(137) |t:] < Qev/n.

Put T = (Q\/n)’, with Q; here coinciding with that in (137) and then (136)
is valid for || < T and || < TV'. Write

=7 [ +7 [[ +r [[] -n+rn+n.

1t STV g <1 1811 S Tujeg)> T riicinl<T
|ta| <71

By Lemma 9 (i),

(138) L< B0 [ [l5 - ot + 0 duda,
whence, by (136)
m? kl)qe,slzk .[ [ (E (al*+ - + 16 Iw‘—z)))
(139) —(1—p%) ( ;:4.;:)(3 Qk T
-e

dtndtz S Wk .
By Lemma 9 (iii) we have

r<ar  [[ oo

le1] S Tulte]> 71

5 ., -
+ ,ﬁ% (5@, ) |+ o, )] 1+ v, i) |} drdss.
Obviously,
(140) lub. o, t)|1 + PG, it)| = ™%
12> TLA~2
On the assumption of non-singularity of P(z) we have, by Lemma 7,
h n
lub. [ft:, ) = lub ( )
(141) [¢2]> 71 /k—2 |76, ) 1221> Qe V'V ¢ n
= 1. 0. -L" ) = —HOk.
llzlll.Zka P (‘\/n b ¢
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Hence

1 1 ¢
I, < QTe ™ f/ |t2—l (\/n % + | :'.lllk) dtydt,

111
(142) {alsTtz>T ' 1 (m)(l )
— n - —nQk
Qs ( 1% 1 T gtk ) e .

For I; we have | &,| > T"' = Q«\/n, and so Lemma 7 is applicable to I; in the
same manner as to I, . Using Lemma 9 (i) on the factor | g(t:, &) | we get
Qk nle—ﬂak

Corabining (135), (138), (139), (142), (143) we obtain

12
/ nl/2

TS
1 — cosu 2 n
Ts (3 _{ — W~ "") < @ (n et o T eham
i~1 3/2(1—-1) 14
n n —nQ
+ Qk( 1/2k €3/2’G + ;3/—”‘) € k.
1
Putting ¢ = SFEDIETH We get, as the last term in (144) is < @,

75 -
1 —cosu 2 1 1
Ts <3 _{ —g = "") S Qt Qen (nk(k—l)/(2k+3) + nm—z)) :

If4a <k <6 wetakel = k — 2 and get

™1 —cosu 1
Ts (3 _/; Td“ —T) St nE—F)22E+3) 1)< .
Hence, by the argument following (70),

(144)

Lub.|Gw) — #@) — x@)| <& Q" n*fi';”,
.. _ 2k — 1)
giving (15). If K > 7, we take [ = h T3 and get

™1 —~cosu 1
T5(3o -—-?-;2—~du—'1l' SQI:""QI» 1+1m)50k-

Hence

Q
Lub.|6) — &) — x(w)| < B = &,
giving (16). Therefore Theorem 4 is proved.
6. Whenaq — 1 — af =0. Ifa, — 1 — a3 = 0, then there is unit probability
that §; assumes exactly two values:
P’{Ei=a}=2’, Pr{€5'=b}=% pt+g=



DISTRIBUTIONS OF MEAN AND VARIANCE 29

Let ¢; = 1 with probability p and {; = 0 with probability ¢. Then ¢ = b +
(@ — b¢i,n= (e —b)? 1% =(t: — £)®. Hence it is sufficient to consider the

varia.bler% D@ — =1 Letting Z¢; = r = np + / npg Xwe have m =

2
r— % = npg + (¢ — p)Vnpg X — pgX*’. We now consider two distinct cases:
Case (7). p = ¢q. Here

_ m — n/dq
F = Pr {lp —a|Vmg = z}
= Pri(X+ cvn) > 'n — 2|¢|Vnz}, ¢= g——?%

Thus F(z) = 1ifz > 3|c|+/n. Ifz < %|c|+/n, then
F@) = PriX < —en — (n — 2| ¢ | Vn2)t}
+ PriX 2 —cv/n + (@n — 2| c| vn2)'} = Fie) + F:(2).

To the random variable X Theorem 2 can be applied. Suppose that ¢ < 0;
then, by Tchebycheff’s inequality,

» 1 1
Fy(2) < PriX 2 —en} < %S W’"f
By Theorem 2,
Fi(z) = Pr{X < —en — (¢*n — 2|c¢]v/n2)}}
_ oz o’ + ¢)
VAP e
Hence A

) [P0 —e@|<a{TELy 2 L)
— z — .
=T \Vnpg T Valp —q| T a0 -9’
The same inequality holds also for ¢ > 0.
Case (#5). p = q = 1/2. Here n = (n — X*); hence
n—E 2 S S o
(146) Pr{n;Z 4 }—Pr{X Sz}—\/%'/;x e d;c+\/7—i.

There is no asymptotic expansion for the distribution function of 7. (See
(©), p- 83.)



