THE APPROXIMATION OF FRACTIONAL POWERS OF A CLOSED OPERATOR

BY

Rhonda J. Hughes ${ }^{1}$

Abstract

This paper provides a unified approach to some perturbation problems recently considered by the author in joint work with S. Kantorovitz. The key result is that the semigroup of unbounded operators $\left\{J^{\alpha}\right\}$ formed by the fractional powers of a closed operator J can be approximated in a canonical way by a certain family of bounded semigroups.

1. Introduction

In [5] a general technique for establishing similarity of certain singular perturbations of unbounded operators was developed. For closed operators M and J acting in a Banach space X, perturbations of the form $M+i \eta J, n \in R$, were shown, under suitable conditions, to be similar to M (cf. [5, Theorem 3.3]). The proof in [5] involves embedding J in a semigroup $\left\{J^{\alpha}\right\}$ of unbounded operators which possesses a boundary group (of bounded operators); these boundary values then implement the similarity.

More precisely, similarity results are obtained when $J=J^{1}$, where $\left\{J^{\alpha}\right\}$ is a regular semigroup of unbounded operators; that is, there exists a sequence (or net) of semigroups of bounded operators $\left\{J_{N}^{\alpha}\right\}_{\alpha \in C^{+}}, N \in Z^{+}$, such that for each $\alpha \in C^{+}$,

$$
\text { Domain }\left(J^{\alpha}\right)=\left\{x \in X \mid \lim _{N \rightarrow \infty} J_{N}^{\alpha} x \text { exists in } X\right\}
$$

for each $N \in Z^{+},\left\{J_{N}^{\alpha}\right\}$ is holomorphic on C^{+}, of class $\left(C_{0}\right)$ on $(0, \infty)$, and has a boundary group $\left\{J_{N}^{i \eta}\right\}_{\eta \in R}$; and certain other technical conditions are satisfied. Then a boundary group $\left\{J^{i n}\right\}_{\eta \in R}$ is obtained as the limit, in the strong operator topology, of the groups $\left\{J_{N}^{i \eta}\right\}_{\eta \in R}$ as $N \rightarrow \infty$ (cf. [5, Theorem 2.2]).

In order to apply this theory to explicit examples, ad hoc methods were used to establish appropriate approximating semigroups. For example, in the case where M is the operation of multiplication by x, and J is the Volterra operator

[^0]acting in $L^{p}(0, \infty), 1<p<\infty$ (with maximal domains), $\left\{J^{\alpha}\right\}$ is the RiemannLiouville semigroup
$$
J^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t
$$
the restrictions of that semigroup to $L^{p}(0, N), N \in Z^{+}$, provide the approximating semigroups $\left\{J_{N}^{\alpha}\right\}$, where $J_{N}^{\alpha}=P_{N} J^{\alpha}$, and $P_{N} f(x)=\chi_{[0, N]}(x) f(x)$. The boundary group $\left\{J^{i \eta}\right\}$ is then the strong limit, as $N \rightarrow \infty$, of the boundary groups $\left\{J_{N}^{i n}\right\}$.

On the other hand, when $J f(x)=\int_{x}^{\infty} f(t) d t$ in $L^{p}(0, \infty)$, the holomorphic semigroups $\left\{W_{\varepsilon}^{x}\right\}_{\alpha \in C^{+}}, \varepsilon>0$, where

$$
W_{\varepsilon}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} e^{\varepsilon(x-t)}(t-x)^{\alpha-1} f(t) d t
$$

were used to approximate the Weyl fractional integrals

$$
J^{\alpha} f(x)=\int_{x}^{\infty}(t-x)^{\alpha-1} f(t) \frac{d t}{\Gamma(\alpha)}
$$

Thus the boundary group in this case is obtained as the limit, in the strong operator topology, of the boundary groups $\left\{W_{\varepsilon}^{i \eta}\right\}_{\eta \in R}$.

In [2] Fisher shows that the boundary group for the Riemann-Liouville semigroup acting in $L^{p}(0, \infty)$ is also the strong limit of the boundary groups of the semigroups $\left\{R_{\varepsilon}^{\alpha}\right\}$, as $\varepsilon \rightarrow 0^{+}$, where

$$
R_{\varepsilon}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} e^{\varepsilon(t-x)}(x-t)^{\alpha-1} f(t) d t
$$

This result, and the key observation that $R_{\varepsilon}^{1}=R(\varepsilon ;-D)$, where $D=J^{-1}$, suggest a unified approach to the approximation problem. It is the purpose of this paper to show that in a suitable general setting there is a canonical choice for $\left\{J^{\alpha}\right\}$ and the approximating semigroups: for certain closed operators J (which are one-to-one with inverse D), we take J^{α} to be the α th power of J as defined by Balakrishnan [1], and R_{ε}^{α} to be the abstract Bessel potential $R(\varepsilon ;-D)^{\alpha}$ (the α th power of R_{ε}^{1}). We then have (in Section 2):

Theorem A. Let $R_{\varepsilon}=R(\varepsilon ;-D)$ for $\varepsilon>0$. Then $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C+}, \varepsilon>0$, is an approximating family of semigroups for $\left\{J^{\alpha}\right\}_{\alpha \in C^{+}}$.

We point out that Theorem A also follows from a result of Hirsch (cf. [3, Theorem 10]); our proof uses different techniques and is elementary in that it involves only properties of fractional powers.

Under suitable conditions we can apply Theorem 2.2 in [5] to obtain the boundary group $\left\{J^{i n}\right\}$; in the setting of Theorem B, the hypotheses of [5, Theorem 2.2] may be weakened.

Theorem B. Let $-D$ be the infinitesimal generator of a semigroup $\left\{T_{t}\right\}_{t>0}$ of uniformly bounded operators. If for each $\varepsilon>0,\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C^{+}}$has a boundary group $\left\{R_{\varepsilon}^{i \eta}\right\}_{\eta \in R}$, and $\left\|R_{\varepsilon}^{i \eta}\right\| \leq M e^{v|\eta|}$, where M and v are independent of $\varepsilon>0$, then there exists a strongly continuous group $\left\{J^{i \eta}\right\}_{\eta \in R}$ of bounded operators satisfying (i)-(iv) of [5, Theorem 2.2]. In addition, $J^{\alpha} J^{i \eta}=J^{i \eta} J^{\alpha}$.

Proofs of the existence and uniform boundedness of the approximating boundary groups for the cases discussed above may be found in [5, Theorem 4.2] and [2, Corollary 3.4]; in the latter we see that Muckenhoupt's singular integrals provide a useful tool for verifying the hypotheses of Theorem B in explicit examples. The proof in [5] employs different techniques. Section 2 closes with a brief discussion of the infinitesimal generator of the boundary group $\left\{J^{i n}\right\}_{\eta \in R}$.

In Section 3 we discuss perturbations of the form $M+\alpha J$, where M is a certain closed operator and J satisfies the hypotheses of Theorem B. We have the following:

Theorem C. $M+\alpha J$ and $M+\beta J$ are similar if $\alpha, \beta \in C \backslash\{0\}$ and $\operatorname{Re} \alpha=$ $\operatorname{Re} \beta$; the similarity is implemented by $J^{i \mathrm{~m}(\alpha-\beta)}$. If $D(M) \subset D(J)$, then M and $M+i \eta J$ are similar for $\eta \in R$.

Perturbations of Heisenberg-Volterra type (cf. Kantorovitz [6]) also arise rather naturally in this setting; a preliminary result is discussed in Theorem D.

Throughout this paper, X will denote a Banach space, $D(J)$ the domain of the operator J, and $R(\varepsilon ; J)$ its resolvent. Theorems $2.2,3.3$ and 3.4 of [5] are required, but their contents will be made clear in the present discussion.

2. The approximating semigroups

Let J be a closed, densely-defined linear operator in X, with dense range. Suppose that $R^{+} \subset \rho(-J)$, the resolvent set of $-J$, and that the resolvent of $-J$ satisfies

$$
\begin{equation*}
\|\lambda R(\lambda ;-J)\| \leq M \quad \text { for } \lambda>0 \tag{1}
\end{equation*}
$$

Since J is closed and satisfies (1), we may embed J in a one-parameter family of closed operators $\left\{J^{\alpha}\right\}_{\alpha \in C+}$, where J^{α} is defined by Balakrishnan's fractional powers of closed operators (cf. [1]): for $\alpha \in C$ with $0<\operatorname{Re} \alpha<1$ and $x \in D(J)$,

$$
\begin{equation*}
J^{\alpha} x=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} R(\lambda ;-J) J x d \lambda \tag{2}
\end{equation*}
$$

for $n-1<\operatorname{Re} \alpha<n$ and $x \in D\left(J^{n}\right), J^{\alpha} x=J^{\alpha-n+1}(J)^{n-1} x$, and for $n-1<$ $\operatorname{Re} \alpha \leq n$ and $x \in D\left(J^{n+1}\right), J^{\alpha} x=J^{\alpha-n+1}(J)^{n-1} x$. Then the operators J^{α} are
closable, and we will also denote their closures by J^{α}. Moreover, in light of our hypotheses on J,

$$
\begin{aligned}
D\left(J^{\infty}\right)= & \bigcap_{n \in Z^{+}} D\left(J^{n}\right) \subset D \\
& =\left\{\begin{array}{l|l}
x \in \bigcap_{\alpha, \beta>0} D\left(J^{\alpha} J^{\beta}\right) & \begin{array}{l}
J^{\alpha} J^{\beta} x=J^{\alpha+\beta} x \\
J^{\alpha} x \text { strongly continuous for } \alpha>0 \\
J^{\alpha} x \rightarrow x \text { as } \alpha \rightarrow 0+
\end{array}
\end{array}\right\}
\end{aligned}
$$

by Lemmas 2.2, 2.4 and 2.5 in [1]. Thus $\left\{J^{\alpha}\right\}_{\alpha>0}$ is a semigroup of closed operators in the sense of the definition in [4], since $\overline{D\left(J^{\infty}\right)}=X$ (by [1, Lemma 3.1]).

We now consider the family $\left\{J^{\alpha}\right\}_{\alpha \in C^{+}}$, in order to determine a canonical approximating family of semigroups. By (1) and the fact that Ran (J) is dense, we have that for all $x \in X, \lim _{\lambda \rightarrow 0^{+}} \lambda R(\lambda ;-J) x=0$, and also that J is one-toone. Let D denote the inverse of J; of course, D is closed, densely-defined with dense range, $R^{+} \subset \rho(-D)$ and (1) holds with J replaced by D. Moreover, if for $\varepsilon>0, R_{\varepsilon}=R(\varepsilon ;-D)$, then $R^{+} \subset \rho\left(-R_{\varepsilon}\right)$ and, for $\lambda>0$,

$$
R\left(\lambda ;-R_{\varepsilon}\right)=\frac{1}{\lambda}-\frac{1}{\lambda^{2}} R\left(\frac{1+\lambda \varepsilon}{\lambda} ;-D\right)
$$

Therefore R_{ε} satisfies (1), so we may define, for $\alpha \in C^{+}, R_{\varepsilon}^{\alpha}=R(\varepsilon ;-D)^{\alpha}$, again using Balakrishnan's definition. Now R_{ε}^{α} is bounded, and by the abovementioned lemmas in [1], $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C+}$ is a holomorphic semigroup of class $\left(C_{0}\right)$ on $(0, \infty)$. In fact, since

$$
R\left(\lambda ;-R_{\varepsilon}\right) R_{\varepsilon} x=\frac{1}{\lambda} R\left(\frac{1+\lambda \varepsilon}{\lambda} ;-D\right) x \quad \text { for } \lambda>0, x \in X,
$$

the change of variables $\mu=(1+\lambda \varepsilon) / \lambda$ yields

$$
\begin{equation*}
R_{\varepsilon}^{\alpha} x=\frac{\sin \pi \alpha}{\pi} \int_{\varepsilon}^{\infty}(\mu-\varepsilon)^{-\alpha} R(\mu ;-D) x d \mu, \quad 0<\operatorname{Re} \alpha<1 \tag{3}
\end{equation*}
$$

In order to prove that $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C^{+}}$is an approximating family of semigroups (as $\varepsilon \rightarrow 0^{+}$) for $\left\{J^{\alpha}\right\}_{\alpha \in C^{+}}$, we shall need the following three lemmas.

Lemma 1. For each $\alpha \in C^{+}, D\left(J^{\infty}\right)$ is a core for J^{α}; that is, $J^{\alpha}=\overline{J^{\alpha} \mid D\left(J^{\infty}\right)}$.
Proof. We may assume that $0<\operatorname{Re} \alpha<1$. Since $J^{\alpha}=\overline{J^{\alpha} \mid D(J)}$, we must show that

$$
J^{\alpha} \mid D(J) \subset \overline{J^{\alpha} \mid D\left(J^{\infty}\right)}
$$

Let $x \in D(J)$; then $x=R(\lambda ;-J) y$ for some $y \in X$ and $\lambda>0$. Since $\overline{D\left(J^{\infty}\right)}=X$, $y=\lim _{n \rightarrow \infty} y_{n}$, where $\left\{y_{n}\right\} \subset D\left(J^{\infty}\right)$. Thus

$$
J^{\alpha} x=J^{\alpha} R(\lambda ;-J) y=\lim _{n \rightarrow \infty} J^{\alpha} R(\lambda ;-J) y_{n}
$$

since $J^{\alpha} R(\lambda ;-J)$ is bounded. But $\left\{R(\lambda ;-J) y_{n}\right\} \subset D\left(J^{\infty}\right)$, and $R(\lambda ;-J) y_{n} \rightarrow x$ as $n \rightarrow \infty$. Therefore $x \in D\left(J^{\alpha} \mid D\left(J^{\infty}\right)\right)$, and $J^{\alpha} x=\overline{J^{\alpha} \mid D\left(J^{\infty}\right)} x$.

Next we note that if $\lambda>0$, then $\lambda \in \rho\left(-\left(I-\varepsilon R_{\varepsilon}\right)\right)$, since
(4) $R\left(\lambda ;-\left(I-\varepsilon R_{\varepsilon}\right)\right)$

$$
=\frac{1}{\varepsilon} R\left(\frac{\lambda+1}{\varepsilon} ;-R_{\varepsilon}\right)=\frac{1}{\lambda+1}+\frac{\varepsilon}{(\lambda+1)^{2}} R\left(\frac{\lambda \varepsilon}{\lambda+1} ;-D\right) .
$$

Therefore $I-\varepsilon R_{\varepsilon}$ satisfies (1), because D does, and so we may define $\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha}$ using Balakrishnan's definition. We now prove:

Lemma 2. Let $\alpha \in C^{+}, \varepsilon>0$ and $x \in D\left(J^{\alpha}\right)$. Then

$$
\begin{equation*}
R_{\varepsilon}^{\alpha} x=\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x \tag{5}
\end{equation*}
$$

Proof. Fix $x \in D\left(J^{\infty}\right)$, and suppose $0<\operatorname{Re} \alpha<1$. Then

$$
J^{\alpha} x=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \mu^{-\alpha} R(\mu ;-D) x d \mu
$$

using (4) and the first resolvent equation, we have

$$
\begin{aligned}
(I- & \left.\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x \\
= & \left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{\infty} \lambda^{\alpha-1} R\left(\lambda ;-\left(I-\varepsilon R_{\varepsilon}\right)\right) \\
& \times\left(I-\varepsilon R_{\varepsilon}\right) \int_{0}^{\infty} \mu^{-\alpha} R(\mu ;-D) x d \mu d \lambda \\
(6)= & J^{\alpha} x-\varepsilon\left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{\infty} \frac{\lambda^{\alpha}}{(\lambda+1)^{2}} R\left(\frac{\lambda \varepsilon}{\lambda+1} ;-D\right) \int_{0}^{\infty} \mu^{-\alpha} R(\mu ;-D) x d \mu d \lambda \\
= & J^{\alpha} x-\varepsilon\left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\lambda+1} \int_{0}^{\infty} \frac{\mu^{-\alpha}}{\mu(\lambda+1)-\lambda \varepsilon} \\
& \times\left[R\left(\frac{\lambda \varepsilon}{\lambda+1} ;-D\right)-R(\mu ;-D)\right] x d \mu d \lambda .
\end{aligned}
$$

We now use an argument similar to that in [8, Proposition 4.9], to which we refer for notation. Let $\varepsilon>0, R>0$ and ϕ be an angle such that $\tan \phi<1 / M$, where M is the constant in (1). Let C be the closed contour formed by the straight lines from 0 to R, R to $R+i \varepsilon, R+i \varepsilon$ to $(\varepsilon / \tan \phi)+i \varepsilon$, and $(\varepsilon / \tan \phi)+i \varepsilon$ to 0 . Since $\rho(-D)$ contains the sector $|\arg \lambda|<\operatorname{Tan}^{-1}(1 / M)$ (cf. [1, Lemma 6.1]), the integral in (6) with respect to λ, taken around C, is zero. Using the fact that

$$
\sup _{|\operatorname{larg} \lambda|=\theta}\|\lambda R(\lambda ;-D)\|<\infty \quad \text { for }|\theta|<\operatorname{Tan}^{-1}(1 / M)
$$

[1, Lemma 6.1], it follows that the integral with respect to λ in (6) is the limit, as $\varepsilon \rightarrow 0$, of integrals in which the path for λ is a line parallel to and height ε above the x-axis, from $\operatorname{Re} \lambda=\varepsilon / \tan \phi$ to ∞. Similarly, the integral with respect to μ is the limit of integrals along paths parallel to and slightly below the x-axis. Calculating residues, we have

$$
\begin{aligned}
\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x= & J^{\alpha} x-\varepsilon\left(\frac{\sin \pi \alpha}{\pi}\right) \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\lambda+1}\left(\frac{(-\lambda-i 0) \varepsilon}{\lambda+i 0+1}\right)^{-\alpha} R\left(\frac{\lambda \varepsilon}{\lambda+1} ;-D\right) x d \lambda \\
& +\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \mu^{-\alpha}\left[-1+\left(\frac{\mu-i 0}{\mu-i 0-\varepsilon}\right)^{\alpha}\right] R(\mu ;-D) x d \mu \\
= & -\varepsilon\left(\frac{\sin \pi \alpha}{\pi}\right) e^{\pi i \alpha} \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\lambda+1}\left(\frac{\lambda \varepsilon}{\lambda+1}\right)^{-\alpha} R\left(\frac{\lambda \varepsilon}{\lambda+1} ;-D\right) x d \lambda \\
& +\left(\frac{\sin \pi \alpha}{\pi}\right) e^{\pi i \alpha} \int_{0}^{\varepsilon}(\varepsilon-\mu)^{-\alpha} R(\mu ;-D) x d \mu \\
& +\frac{\sin \pi \alpha}{\pi} \int_{\varepsilon}^{\infty}(\mu-\varepsilon)^{-\alpha} R(\mu ;-D) x d \mu .
\end{aligned}
$$

We make the change of variables $\mu=\lambda \varepsilon /(\lambda+1)$ in the first integral on the right-hand side, and obtain

$$
\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x=\frac{\sin \pi \alpha}{\pi} \int_{\varepsilon}^{\infty}(\mu-\varepsilon)^{-\alpha} R(\mu ;-D) x d \mu=R_{\varepsilon}^{\alpha} x
$$

by (3).
We have shown that (5) holds for all $x \in D\left(J^{\infty}\right), \alpha \in C^{+}$with $0<\operatorname{Re} \alpha<1$. Since both sides of (5) are holomorphic functions of $\alpha \in C^{+}$for $x \in D\left(J^{\infty}\right)$, the equality holds for all $\alpha \in C^{+}$and $x \in D\left(J^{\infty}\right)$. Now if $x \in D\left(J^{\alpha}\right)$ for $\alpha \in C^{+}$, we use Lemma 1 and the fact that R_{ε}^{α} and $\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha}$ are bounded operators to obtain the desired result.

Lemma 3. For each $\alpha \in C^{+}$and $\varepsilon>0, R_{\varepsilon}^{\alpha}=J^{\alpha}\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} \supset\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha}$.
Proof. Let $x \in D\left(J^{\infty}\right)$, and suppose that $0<\operatorname{Re} \alpha<1$. Then

$$
\begin{align*}
\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x & =\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} R\left(\lambda ;-\left(I-\varepsilon R_{\varepsilon}\right)\right)\left(I-\varepsilon R_{\varepsilon}\right) x d \lambda \tag{7}\\
& =x-\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\lambda^{\alpha-1}}{\lambda+1} R\left(\frac{\lambda+1}{\lambda \varepsilon} ;-J\right) J x d \lambda
\end{align*}
$$

by the first resolvent equation. The right-hand side of (7) certainly belongs to $D\left(J^{\infty}\right)$, and

$$
\begin{equation*}
J^{\alpha}\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x=\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x \tag{8}
\end{equation*}
$$

because J^{α} commutes with the integrand in (7). Since, for $x \in D\left(J^{\infty}\right)$, both sides of (8) are holomorphic functions of $\alpha \in C^{+}$, (8) holds for all $\alpha \in C^{+}$.

Now let $x \in D\left(J^{\alpha}\right)$, for $\alpha \in C^{+}$. By Lemma 1, there exists a sequence $\left\{x_{n}\right\} \subset$ $D\left(J^{\infty}\right)$ such that $x_{n} \rightarrow x$, and $J^{\alpha} x_{n} \rightarrow J^{\alpha} x$. Thus $\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x_{n} \rightarrow\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x$, $\left\{\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x_{n}\right\} \subset D\left(J^{\infty}\right)$, and

$$
J^{\alpha}\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x_{n}=\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x_{n} \rightarrow\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} J^{\alpha} x .
$$

Because J^{α} is closed, the inclusion in the statement of the lemma follows. That $R_{\varepsilon}^{\alpha}=J^{\alpha}\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha}$ follows immediately from Lemma 2 , since $D\left(J^{\alpha}\right)$ is dense and both operators are bounded.

We now have:
Theorem A. For each $\alpha \in C^{+}$,

$$
\text { Domain }\left(J^{\alpha}\right)=\left\{x \in X \mid \lim _{\varepsilon \rightarrow 0^{+}} R_{\varepsilon}^{\alpha} x \text { exists in } X\right\}
$$

for $x \in D\left(J^{\alpha}\right), J^{\alpha} x=\lim _{\varepsilon \rightarrow 0^{+}} R_{\varepsilon}^{\alpha} x$.
Proof. Fix $\alpha \in C^{+}$, and let $x \in D\left(J^{\alpha}\right)$; then $\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x \rightarrow x$ as $\varepsilon \rightarrow 0^{+}$, for all $x \in X$. Indeed, $\varepsilon R_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$in the strong operator topology, so we see from (4) that

$$
R\left(\lambda ;-\left(I-\varepsilon R_{\varepsilon}\right)\right) x \rightarrow \frac{x}{\lambda+1} \text { as } \varepsilon \rightarrow 0^{+} \quad \text { for all } x \in X
$$

Moreover, $\left\|I-\varepsilon R_{\varepsilon}\right\| \leq K$, where K is a constant which does not depend on ε. Therefore, for each $x \in X$,

$$
R\left(\lambda ;-\left(I-\varepsilon R_{\varepsilon}\right)\right)\left(I-\varepsilon R_{\varepsilon}\right) x \rightarrow \frac{1}{\lambda+1} x \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

In addition, the integrand in the first integral in (7) is $O\left(\lambda^{\operatorname{Re} \alpha-1}\right)$ as $\lambda \rightarrow 0^{+}$, and is $O\left(\lambda^{\operatorname{Re} \alpha-2}\right)$ as $\lambda \rightarrow \infty$. Therefore it follows from the dominated convergence theorem that

$$
\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x \rightarrow \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\lambda^{\alpha-1}}{\lambda+1} x d \lambda=x
$$

as claimed.
It now follows immediately from (5) that $J^{\alpha} x=\lim _{\varepsilon \rightarrow 0^{+}} R_{\varepsilon}^{\alpha} x$. On the other hand, suppose that $\lim _{\varepsilon \rightarrow 0^{+}} R_{\varepsilon}^{\alpha} x$ exists. Then by Lemma 3, $\lim _{\varepsilon \rightarrow 0^{+}} J^{\alpha}\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x$ exists. Since $\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x \rightarrow x$, and $\left(I-\varepsilon R_{\varepsilon}\right)^{\alpha} x \in D\left(J^{\alpha}\right)$ by Lemma 3, we have that $x \in D\left(J^{\alpha}\right)$, and $J^{\alpha} x=\lim _{\varepsilon \rightarrow 0^{+}} R_{\varepsilon}^{\alpha} x$, since J^{α} is closed.

In special cases we can now apply Theorem 2.2 in [5] to obtain the boundary group $\left\{J^{i n}\right\}_{\eta \in R}$. Note that if $-D$ is the infinitesimal generator of a strongly
continuous semigroup $\left\{T_{t}\right\}_{t>0}$ such that $\left\|T_{t}\right\| \leq L$ for all $t>0$, then we have the representation

$$
\begin{equation*}
R_{\varepsilon}^{\alpha} x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\varepsilon t} t^{\alpha-1} T_{t} x d t, \quad x \in X, \alpha \in C^{+} \tag{9}
\end{equation*}
$$

which may be obtained by a direct computation (cf. [2, p. 426]); the regularity requirement of Theorem 2.2 in [5] may now be weakened.

Theorem B. Let $-D$ be the infinitesimal generator of a strongly continuous semigroup $\left\{T_{t}\right\}_{t>0}$ of uniformly bounded operators, and let $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C+}, \varepsilon>0$, be the approximating family of semigroups obtained in Theorem A. If for each $\varepsilon>0$ $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C^{+}}$has a boundary group $\left\{R_{\varepsilon}^{i \eta}\right\}_{\eta \in R}$, and $\left\|R_{\varepsilon}^{i \eta}\right\| \leq M e^{v|\eta|}$, where M and v are constants independent of $\varepsilon>0$, then there exists a strongly continuous group of bounded linear operators $\left\{J^{i n}\right\}_{\eta \in R}$ on X such that:
(i) $J^{i \eta} x=\lim _{\varepsilon \rightarrow 0^{+}} R_{\varepsilon}^{i \eta} x, x \in X, \eta \in R$;
(ii) $\left\|J^{i \eta}\right\| \leq M e^{v|\eta|}$;
(iii) $J^{i \eta} J^{\alpha}=J^{\alpha} J^{i \eta}=J^{\alpha+i \eta}, \alpha>0, \eta \in R$, as operators in X; and
(iv) if $x \in D\left(J^{\infty}\right)$, then $J^{i n} x=\lim _{\xi \rightarrow 0^{+}} J^{\xi+i \eta} x$.

Proof. First we show that $\left\{J^{\alpha}\right\}_{\alpha \in C+}$ is a regular semigroup in the sense of Definition 2.1 in [5]. Since each of the approximating semigroups $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C^{+}}$has boundary values on the imaginary axis, we need only check that the following holds: if $\gamma_{\varepsilon}(s)$ is the Nörlund function of $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C^{+}}$, and $\left(\alpha_{0, \varepsilon}, \alpha_{1, \varepsilon}\right)$ is the largest interval such that the equation $\gamma_{\varepsilon}(s)=\pi / 2 \alpha$ has a unique solution $s_{\varepsilon}=s_{0, \varepsilon}(\alpha)$ when $0 \leq \alpha_{0, \varepsilon}<\alpha<\alpha_{1, \varepsilon} \leq \infty$, then $\alpha_{1, \varepsilon}>1$. However, it follows from Stirling's formula that $\gamma_{\varepsilon}(s) \leq \pi / 2$ for each $\varepsilon>0$. Therefore $\alpha_{1, \varepsilon}>1$.

Next, we observe that the set

$$
\tilde{D}=\left\{\begin{array}{l|l}
x \in \bigcap_{\alpha, \beta \in C^{+}} D\left(J^{\alpha} J^{\beta}\right) & \begin{array}{c}
J^{\alpha} J^{\beta} x=J^{\alpha+\beta} x, \alpha, \beta>0 \\
J^{\alpha} x \text { strongly continuous, } \alpha>0 \\
J^{\alpha} x \rightarrow x \text { as } \alpha \rightarrow 0^{+}
\end{array}
\end{array}\right\}
$$

contains $D\left(J^{\infty}\right)$, so \tilde{D} is dense in X. Therefore, by Theorem 2.2 in [5], (i), (ii), (iv) and the fact that $J^{i \eta} J^{\alpha}=J^{\alpha+i \eta}$ hold. To complete the proof, we show that for each $\varepsilon>0$, and $\alpha, \zeta \in C^{+}$,

$$
\begin{equation*}
R_{\varepsilon}^{\zeta} J^{\alpha} \subset J^{\alpha} R_{\varepsilon}^{\zeta} \tag{10}
\end{equation*}
$$

in fact, equality holds in (10) if either α or ζ is purely imaginary. Now if $\alpha, \zeta \in C^{+}$, and $x \in D\left(J^{\infty}\right)$, it is easy to see that $R_{\varepsilon}^{\zeta} x \in D\left(J^{\infty}\right)$ and $J^{\alpha} R_{\varepsilon}^{\zeta} x=R_{\varepsilon}^{\zeta} J^{\alpha} x$. Using Lemma 1, we obtain (10) in the usual manner.

If $\operatorname{Re} \alpha=0$ (say $\alpha=i \eta$), then for $x \in D\left(J^{\infty}\right), J^{i \eta} x=\lim _{\xi \rightarrow 0^{+}} J^{\xi+i \eta} x$, so that

$$
R_{\varepsilon}^{\zeta} J^{i \eta} x=\lim _{\xi \rightarrow 0^{+}} R_{\varepsilon}^{\zeta} J^{\xi+i \eta} x=\lim _{\xi \rightarrow 0^{+}} J^{\xi+i \eta} R_{\varepsilon}^{\zeta} x=J^{i \eta} R_{\varepsilon}^{\zeta} x \quad \text { for } \zeta \in C^{+}
$$

by (10). Since both sides of (10) are bounded, and $D\left(J^{\infty}\right)$ is dense, equality holds in (10) if $\operatorname{Re} \alpha=0, \zeta \in \overline{C^{+}}$. A similar argument yields equality in (10) for $\operatorname{Re} \zeta=0, \alpha \in C^{+}$. Finally, we use (i) to obtain $J^{i \eta} J^{\alpha}=J^{\alpha} J^{i \eta}$ for $\alpha>0, \eta \in R$. We omit the easy details.

In particular, if J is the Volterra operator acting in $L^{p}(0, \infty), 1<p<\infty$, with maximal domain, then for $f \in L^{p}(0, \infty)$,

$$
R_{\varepsilon}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} e^{\varepsilon(t-x)}(x-t)^{\alpha-1} f(t) d t, \quad x \in(0, \infty)
$$

Since we showed in [5, Theorem 4.2] that $\left\{R_{\varepsilon}^{\alpha}\right\}_{\alpha \in C^{+}}$satisfies the requirements of Theorem B, we obtain as a special case the result of Fisher discussed in the introduction. (We emphasize that Balakrishnan's definition of fractional power gives precisely the Riemann-Liouville fractional integral

$$
J^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t
$$

with maximal domain in $L^{p}(0, \infty)$. Indeed, if $f \in D(J)$ and $0<\operatorname{Re} \alpha<1$, it is easy to see that the two coincide. Since each operator is equal to the closure of its restriction to $D(J)$, the rest follows by a familiar argument.)

In the event that $-D$ generates a semigroup as described above, we can obtain information about the infinitesimal generator of the group $\left\{J^{i \eta}\right\}_{\eta \in R}$.

Corollary. Let A denote the infinitesimal generator of $\left\{J^{i \eta}\right\}_{\eta \in R}$. Then A is the limit, in the strong generalized sense (cf. [7, VIII, Section 1]), of the operators A_{ε}, where A_{ε} is the infinitesimal generator of $\left\{R_{\varepsilon}^{i \eta}\right\}_{\eta \in R}$. Moreover, $x \in D\left(A_{\varepsilon}\right)$ if and only if

$$
x^{*}=\int_{0}^{\infty} e^{-\varepsilon t} \log t T_{t} x d t
$$

is in $\operatorname{Domain}(D)$, and for $x \in D\left(A_{\varepsilon}\right)$,

$$
A_{\varepsilon} x=-i\left[C x+(\varepsilon I+D) x^{*}\right],
$$

where C is Euler's constant.
Proof. The statement regarding the A_{ε} 's is proved in [3, Theorem 4 and Corollary 3.7]. That A is the strong generalized limit of the A_{ε} 's follows from Theorem IX.2.16 in [7], because of (i) and (ii) in Theorem A.

3. Similarity

Now suppose that M is a closed linear operator acting in X with Domain $D(M)$, that J satisfies the hypotheses of Theorem B, and that for each $\varepsilon>0$, the following hold:
(i) A is a non-zero bounded operator on X which commutes with M and R_{ε};
(ii) $R_{\varepsilon}^{s+i t} D(M) \subset D(M)$ for $s+i t$ in some rectangle $0 \leq s \leq a,|t| \leq a$, where a is a constant which may depend on ε;
(iii) R_{ε} is M-Volterra with respect to A; that is, $R_{\varepsilon} D(M) \subset D(M)$ and $\left[R_{\varepsilon}, M\right] \subset A R_{\varepsilon}^{2}$.

If we define $T_{\alpha}=M+\alpha A J$ for $\alpha \in C$, with Domain $D\left(T_{\alpha}\right)=D(M) \cap D(J)$, then an application of Theorems 3.3 and 3.4 in [5] gives:

Theorem C. If $\alpha, \beta \in C \backslash\{0\}$, and $\operatorname{Re} \alpha=\operatorname{Re} \beta$, then T_{α} is similar to T_{β}, with $J^{i \mathrm{~m}(\alpha-\beta)}$ implementing the similarity. Also, if $D(M) \subset D(J)$, then M and $T_{i n}$ are similar, for $\eta \in R$.

We point out that in general the perturbations under consideration are not Kato perturbations (cf. [9, p. 190]). For example, if $M f(x)=x f(x)$ and $J f(x)=\int_{x}^{\infty} f(t) d t$ as discussed in the introduction, then $D(M) \subset D(J)$ (cf. [5, Lemma 4.9]). However, if $f \in D(M)$, then $\|J f\|_{p} \leq|\eta| p\|M f\|_{p}$, since $J f=W_{1,0}^{-1}(M f)$, where

$$
W_{\alpha, \mu}^{(v)} f(x)=\frac{1}{\Gamma(\alpha)} x^{\mu-v-\alpha} \int_{x}^{\infty} t^{\nu}(t-x)^{\alpha-1} f(t) d t
$$

by Theorem 4.5 .11 in [9], $\left\|W_{1,0}^{-1}\right\|_{p} \leq p$. Thus $M+i \eta J$ is a Kato perturbation if $|\eta|<1 / p$.

In [5] we restricted our attention to operators which satisfy the commutation relation in (iii) above. However, it is natural to assume that the operators M and R_{ε} satisfy a Heisenberg-Volterra commutation relation as discussed in [6]. That is, let M be a closed operator, and suppose that for each $\varepsilon>0$,

$$
\begin{equation*}
R_{\varepsilon} D(M) \subset D(M) \quad \text { and } \quad\left[R_{\varepsilon}, M\right] \subset C_{\varepsilon} \tag{11}
\end{equation*}
$$

where C_{ε} is a bounded operator which commutes with R_{ε}. Then by the theorem in [6], $M+g^{\prime}\left(R_{\varepsilon}\right) C_{\varepsilon}$ is similar to M, where g is any function holomorphic in a neighborhood of $\sigma\left(R_{\varepsilon}\right)$, and the similarity is implemented by $e^{g\left(R_{\varepsilon}\right)}$.

Now assume that $\lim _{\varepsilon \rightarrow 0^{+}} C_{\varepsilon} x=C x$ exists for all $x \in X$, and that $-D$ generates a strongly continuous semigroup $\left\{T_{t}\right\}_{t>0}$ such that $\left\|T_{t}\right\| \leq L$. Then for $\varepsilon>0, \varepsilon \in \rho(-J)$, and $x \in \operatorname{Domain}(D)$ if and only if $\lim _{\varepsilon \rightarrow 0^{+}} R(\varepsilon ;-J) x$ exists in X. Indeed, the operator D has all the properties required of J, so Theorem A holds with the roles of J and D reversed. If we set $S_{\varepsilon}=R(\varepsilon ;-J)$, and assume that (11) holds with R_{ε} replaced by S_{ε}, we obtain from the theorem in [6] that

$$
\begin{equation*}
M e^{-t S_{\varepsilon}} x=e^{-t S_{\varepsilon}}\left(M-t C_{\varepsilon}\right) x \quad \text { for } x \in D(M) \tag{12}
\end{equation*}
$$

But for $t>0, e^{-t S_{\varepsilon}} x \rightarrow T_{t} x$, for all $x \in X$, by a classical result. If we let $\varepsilon \rightarrow 0^{+}$in (12), we obtain $T_{t} x \in D(M)$, for $\left\|e^{-t S_{e}}\right\| \leq K$ uniformly in $\varepsilon>0$, and M is closed; also, $M T_{t} x=T_{t}(M-t C) x$. We have proved the following:

Theorem D. Let $-D$ be the infinitesimal generator of a strongly continuous semigroup $\left\{T_{t}\right\}_{t>0}$ of uniformly bounded operators, and let $S_{\varepsilon}=R(\varepsilon ;-J)$, where $J=D^{-1}$ and $\varepsilon>0$. Suppose that $S_{\varepsilon} D(M) \subset D(M)$ and $\left[S_{\varepsilon}, M\right] \subset C_{\varepsilon}$, where C_{ε} is bounded for each $\varepsilon>0$, and that $\lim _{\varepsilon \rightarrow 0^{+}} C_{\varepsilon} x=C x$ for all $x \in X$. Then for each $t>0, T_{t}(M-t C) \subset M T_{t}$.

Remark. If D satisfies the hypotheses of Theorem D , and $R_{\varepsilon}=R(\varepsilon ;-D)$ is M-Volterra with respect to A, then it is easy to see that $S_{\varepsilon}=R(\varepsilon ;-J)$ satisfies the following:

$$
S_{\varepsilon} D(M) \subset D(M) \text { and }\left[S_{\varepsilon}, M\right] \subset-A\left(J S_{\varepsilon}\right)^{2} \quad \text { for each } \varepsilon>0
$$

Therefore, if we take $C_{\varepsilon}=J S_{\varepsilon}$ in Theorem D, we obtain $T_{t}(M+t A) \subset M T_{t}$, $t>0$.

References

1. A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., vol. 10 (1960), pp. 419-437.
2. M. J. Fisher, Purely imaginary powers of certain differential operators, I, Amer. J. Math., vol. 93 (1971), pp. 452-478.
3. F. Hirsch, Familles d'opérateurs potentiels, Ann. Inst. Fourier (Grenoble), vol. 25, Fasc. 3 (1975), pp. 263-288.
4. R. J. Hughes, Semigroups of unbounded linear operators in Banach space, Trans. Amer. Math. Soc., vol. 230 (1977), pp. 113-145.
5. R. J. Hughes and S. Kantorovitz, Boundary values of holomorphic semigroups of unbounded operators and similarity of certain perturbations, J. Functional Analysis, vol. 29 (1978), pp. 253-273.
6. S. Kantorovitz, Commutation de Heisenberg-Volterra et similarité de certaines perturbations, C. R. Acad. Sci., Paris, vol. 276 (1973), pp. 1501-1504.
7. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
8. H. Komatsu, Fractional powers of operators, Pacific J. Math., vol. 19 (1966), pp. 285-346.
9. G. O. Okikiolu, Aspects of the theory of bounded integral operators in L^{p}-spaces, Academic Press, London, 1971.

Tufts University
Medford, Massachusetts

[^0]: Received June 6, 1978
 ${ }^{1}$ This research was partially supported by a National Science Foundation grant and by a fellowship at the Institute for Independent Study, Radcliffe College.

