THE APPROXIMATION OF FRACTIONAL POWERS OF A CLOSED OPERATOR

BY

RHONDA J. HUGHES¹

Abstract

This paper provides a unified approach to some perturbation problems recently considered by the author in joint work with S. Kantorovitz. The key result is that the semigroup of unbounded operators $\{J^a\}$ formed by the fractional powers of a closed operator J can be approximated in a canonical way by a certain family of bounded semigroups.

1. Introduction

In [5] a general technique for establishing similarity of certain singular perturbations of unbounded operators was developed. For closed operators Mand J acting in a Banach space X, perturbations of the form $M + i\eta J$, $n \in R$, were shown, under suitable conditions, to be similar to M (cf. [5, Theorem 3.3]). The proof in [5] involves embedding J in a semigroup $\{J^a\}$ of unbounded operators which possesses a boundary group (of bounded operators); these boundary values then implement the similarity.

More precisely, similarity results are obtained when $J = J^1$, where $\{J^{\alpha}\}$ is a *regular* semigroup of unbounded operators; that is, there exists a sequence (or net) of semigroups of bounded operators $\{J^{\alpha}_{N}\}_{\alpha \in C^+}$, $N \in Z^+$, such that for each $\alpha \in C^+$,

Domain
$$(J^{\alpha}) = \{x \in X \mid \lim_{N \to \infty} J_N^{\alpha} x \text{ exists in } X\};$$

for each $N \in Z^+$, $\{J_N^{\alpha}\}$ is holomorphic on C^+ , of class (C_0) on $(0, \infty)$, and has a boundary group $\{J_N^{i\eta}\}_{\eta \in R}$; and certain other technical conditions are satisfied. Then a boundary group $\{J^{i\eta}\}_{\eta \in R}$ is obtained as the limit, in the strong operator topology, of the groups $\{J_N^{i\eta}\}_{\eta \in R}$ as $N \to \infty$ (cf. [5, Theorem 2.2]).

In order to apply this theory to explicit examples, ad hoc methods were used to establish appropriate approximating semigroups. For example, in the case where M is the operation of multiplication by x, and J is the Volterra operator

 ${\rm \textcircled{O}}$ 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received June 6, 1978

¹ This research was partially supported by a National Science Foundation grant and by a fellowship at the Institute for Independent Study, Radcliffe College.

acting in $L^p(0, \infty)$, $1 (with maximal domains), <math>\{J^{\alpha}\}$ is the Riemann-Liouville semigroup

$$J^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)}\int_0^x (x-t)^{\alpha-1}f(t) dt;$$

the restrictions of that semigroup to $L^{p}(0, N)$, $N \in Z^{+}$, provide the approximating semigroups $\{J_{N}^{\alpha}\}$, where $J_{N}^{\alpha} = P_{N}J^{\alpha}$, and $P_{N}f(x) = \chi_{[0,N]}(x)f(x)$. The boundary group $\{J^{in}\}$ is then the strong limit, as $N \to \infty$, of the boundary groups $\{J_{N}^{in}\}$.

On the other hand, when $Jf(x) = \int_x^{\infty} f(t) dt$ in $L^p(0, \infty)$, the holomorphic semigroups $\{W_{\varepsilon}^{x}\}_{\alpha \in C^+}, \varepsilon > 0$, where

$$W_{\varepsilon}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_{x}^{\infty}e^{\varepsilon(x-t)}(t-x)^{\alpha-1}f(t) dt,$$

were used to approximate the Weyl fractional integrals

$$J^{\alpha}f(x) = \int_{x}^{\infty} (t-x)^{\alpha-1}f(t) \frac{dt}{\Gamma(\alpha)}.$$

Thus the boundary group in this case is obtained as the limit, in the strong operator topology, of the boundary groups $\{W_{\varepsilon}^{i\eta}\}_{\eta \in R}$.

In [2] Fisher shows that the boundary group for the Riemann-Liouville semigroup acting in $L^{p}(0, \infty)$ is also the strong limit of the boundary groups of the semigroups $\{R_{\varepsilon}^{\alpha}\}$, as $\varepsilon \to 0^{+}$, where

$$R_{\varepsilon}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_{0}^{x}e^{\varepsilon(t-x)}(x-t)^{\alpha-1}f(t) dt.$$

This result, and the key observation that $R_{\varepsilon}^1 = R(\varepsilon; -D)$, where $D = J^{-1}$, suggest a unified approach to the approximation problem. It is the purpose of this paper to show that in a suitable general setting there is a canonical choice for $\{J^{\alpha}\}$ and the approximating semigroups: for certain closed operators J(which are one-to-one with inverse D), we take J^{α} to be the α th power of J as defined by Balakrishnan [1], and R_{ε}^{α} to be the abstract Bessel potential $R(\varepsilon; -D)^{\alpha}$ (the α th power of R_{ε}^{1}). We then have (in Section 2):

THEOREM A. Let $R_{\varepsilon} = R(\varepsilon; -D)$ for $\varepsilon > 0$. Then $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}, \varepsilon > 0$, is an approximating family of semigroups for $\{J^{\alpha}\}_{\alpha \in C^+}$.

We point out that Theorem A also follows from a result of Hirsch (cf. [3, Theorem 10]); our proof uses different techniques and is elementary in that it involves only properties of fractional powers.

Under suitable conditions we can apply Theorem 2.2 in [5] to obtain the boundary group $\{J^{i\eta}\}$; in the setting of Theorem B, the hypotheses of [5, Theorem 2.2] may be weakened.

THEOREM B. Let -D be the infinitesimal generator of a semigroup $\{T_t\}_{t>0}$ of uniformly bounded operators. If for each $\varepsilon > 0$, $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}$ has a boundary group $\{R_{\varepsilon}^{i\eta}\}_{\eta \in \mathbb{R}}$, and $\|R_{\varepsilon}^{i\eta}\| \leq Me^{\nu|\eta|}$, where M and ν are independent of $\varepsilon > 0$, then there exists a strongly continuous group $\{J^{i\eta}\}_{\eta \in \mathbb{R}}$ of bounded operators satisfying (i)-(iv) of [5, Theorem 2.2]. In addition, $J^{\alpha}J^{i\eta} = J^{i\eta}J^{\alpha}$.

Proofs of the existence and uniform boundedness of the approximating boundary groups for the cases discussed above may be found in [5, Theorem 4.2] and [2, Corollary 3.4]; in the latter we see that Muckenhoupt's singular integrals provide a useful tool for verifying the hypotheses of Theorem B in explicit examples. The proof in [5] employs different techniques. Section 2 closes with a brief discussion of the infinitesimal generator of the boundary group $\{J^{i\eta}\}_{n \in \mathbb{R}}$.

In Section 3 we discuss perturbations of the form $M + \alpha J$, where M is a certain closed operator and J satisfies the hypotheses of Theorem B. We have the following:

THEOREM C. $M + \alpha J$ and $M + \beta J$ are similar if $\alpha, \beta \in C \setminus \{0\}$ and Re $\alpha =$ Re β ; the similarity is implemented by $J^{i \ m \ (\alpha - \beta)}$. If $D(M) \subset D(J)$, then M and $M + i\eta J$ are similar for $\eta \in R$.

Perturbations of Heisenberg-Volterra type (cf. Kantorovitz [6]) also arise rather naturally in this setting; a preliminary result is discussed in Theorem D.

Throughout this paper, X will denote a Banach space, D(J) the domain of the operator J, and $R(\varepsilon; J)$ its resolvent. Theorems 2.2, 3.3 and 3.4 of [5] are required, but their contents will be made clear in the present discussion.

2. The approximating semigroups

Let J be a closed, densely-defined linear operator in X, with dense range. Suppose that $R^+ \subset \rho(-J)$, the resolvent set of -J, and that the resolvent of -J satisfies

(1)
$$\|\lambda R(\lambda; -J)\| \leq M \text{ for } \lambda > 0.$$

Since J is closed and satisfies (1), we may embed J in a one-parameter family of closed operators $\{J^{\alpha}\}_{\alpha \in C^+}$, where J^{α} is defined by Balakrishnan's fractional powers of closed operators (cf. [1]): for $\alpha \in C$ with $0 < \text{Re } \alpha < 1$ and $x \in D(J)$,

(2)
$$J^{\alpha}x = \frac{\sin \pi \alpha}{\pi} \int_0^{\infty} \lambda^{\alpha-1} R(\lambda; -J) Jx \ d\lambda;$$

for $n-1 < \operatorname{Re} \alpha < n$ and $x \in D(J^n)$, $J^{\alpha}x = J^{\alpha-n+1}(J)^{n-1}x$, and for $n-1 < \operatorname{Re} \alpha \le n$ and $x \in D(J^{n+1})$, $J^{\alpha}x = J^{\alpha-n+1}(J)^{n-1}x$. Then the operators J^{α} are

closable, and we will also denote their closures by J^{α} . Moreover, in light of our hypotheses on J,

$$D(J^{\infty}) = \bigcap_{n \in Z^{+}} D(J^{n}) \subset D$$
$$= \left\{ x \in \bigcap_{\alpha,\beta > 0} D(J^{\alpha}J^{\beta}) \mid \begin{array}{l} J^{\alpha}J^{\beta}x = J^{\alpha+\beta}x \\ J^{\alpha}x \text{ strongly continuous for } \alpha > 0 \\ J^{\alpha}x \to x \text{ as } \alpha \to 0 + \end{array} \right\}$$

by Lemmas 2.2, 2.4 and 2.5 in [1]. Thus $\{J^{\alpha}\}_{\alpha>0}$ is a semigroup of closed operators in the sense of the definition in [4], since $\overline{D(J^{\infty})} = X$ (by [1, Lemma 3.1]).

We now consider the family $\{J^{\alpha}\}_{\alpha \in C^+}$, in order to determine a canonical approximating family of semigroups. By (1) and the fact that Ran (J) is dense, we have that for all $x \in X$, $\lim_{\lambda \to 0^+} \lambda R(\lambda; -J)x = 0$, and also that J is one-to-one. Let D denote the inverse of J; of course, D is closed, densely-defined with dense range, $R^+ \subset \rho(-D)$ and (1) holds with J replaced by D. Moreover, if for $\varepsilon > 0$, $R_{\varepsilon} = R(\varepsilon; -D)$, then $R^+ \subset \rho(-R_{\varepsilon})$ and, for $\lambda > 0$,

$$R(\lambda; -R_{\varepsilon}) = \frac{1}{\lambda} - \frac{1}{\lambda^2} R\left(\frac{1+\lambda\varepsilon}{\lambda}; -D\right).$$

Therefore R_{ε} satisfies (1), so we may define, for $\alpha \in C^+$, $R_{\varepsilon}^{\alpha} = R(\varepsilon; -D)^{\alpha}$, again using Balakrishnan's definition. Now R_{ε}^{α} is bounded, and by the abovementioned lemmas in [1], $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}$ is a holomorphic semigroup of class (C_0) on $(0, \infty)$. In fact, since

$$R(\lambda; -R_{\varepsilon})R_{\varepsilon}x = \frac{1}{\lambda}R\left(\frac{1+\lambda\varepsilon}{\lambda}; -D\right)x \text{ for } \lambda > 0, x \in X,$$

the change of variables $\mu = (1 + \lambda \varepsilon)/\lambda$ yields

(3)
$$R_{\varepsilon}^{\alpha}x = \frac{\sin \pi\alpha}{\pi} \int_{\varepsilon}^{\infty} (\mu - \varepsilon)^{-\alpha} R(\mu; -D) x \ d\mu, \quad 0 < \operatorname{Re} \alpha < 1$$

In order to prove that $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}$ is an approximating family of semigroups (as $\varepsilon \to 0^+$) for $\{J^{\alpha}\}_{\alpha \in C^+}$, we shall need the following three lemmas.

LEMMA 1. For each $\alpha \in C^+$, $D(J^{\infty})$ is a core for J^{α} ; that is, $J^{\alpha} = \overline{J^{\alpha} | D(J^{\infty})}$.

Proof. We may assume that $0 < \text{Re } \alpha < 1$. Since $J^{\alpha} = \overline{J^{\alpha} | D(J)}$, we must show that

$$J^{\alpha} | D(J) \subset \overline{J^{\alpha} | D(J^{\infty})}.$$

Let $x \in D(J)$; then $x = R(\lambda; -J)y$ for some $y \in X$ and $\lambda > 0$. Since $\overline{D(J^{\infty})} = X$, $y = \lim_{n \to \infty} y_n$, where $\{y_n\} \subset D(J^{\infty})$. Thus

$$J^{\alpha}x = J^{\alpha}R(\lambda; -J)y = \lim_{n \to \infty} J^{\alpha}R(\lambda; -J)y_n,$$

since $J^{\alpha}R(\lambda; -J)$ is bounded. But $\{R(\lambda; -J)y_n\} \subset \underline{D}(J^{\infty})$, and $R(\lambda; -J)y_n \to x$ as $n \to \infty$. Therefore $x \in \underline{D}(J^{\alpha} | \underline{D}(J^{\infty}))$, and $J^{\alpha}x = J^{\alpha} | \underline{D}(J^{\infty})x$. Next we note that if $\lambda > 0$, then $\lambda \in \rho(-(I - \varepsilon R_{\varepsilon}))$, since

(4)
$$R(\lambda; -(I - \varepsilon R_{\varepsilon}))$$

= $\frac{1}{\varepsilon} R\left(\frac{\lambda + 1}{\varepsilon}; -R_{\varepsilon}\right) = \frac{1}{\lambda + 1} + \frac{\varepsilon}{(\lambda + 1)^2} R\left(\frac{\lambda \varepsilon}{\lambda + 1}; -D\right).$

Therefore $I - \varepsilon R_{\varepsilon}$ satisfies (1), because D does, and so we may define $(I - \varepsilon R_{\varepsilon})^{\alpha}$ using Balakrishnan's definition. We now prove:

LEMMA 2. Let
$$\alpha \in C^+$$
, $\varepsilon > 0$ and $x \in D(J^{\alpha})$. Then
(5) $R_{\varepsilon}^{\alpha} x = (I - \varepsilon R_{\varepsilon})^{\alpha} J^{\alpha} x.$

Proof. Fix $x \in D(J^{\infty})$, and suppose $0 < \text{Re } \alpha < 1$. Then

$$J^{\alpha}x = \frac{\sin \pi \alpha}{\pi} \int_0^\infty \mu^{-\alpha} R(\mu; -D) x \ d\mu;$$

using (4) and the first resolvent equation, we have

$$(I - \varepsilon R_{\varepsilon})^{\alpha} J^{\alpha} x$$

$$= \left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{\infty} \lambda^{\alpha - 1} R(\lambda; -(I - \varepsilon R_{\varepsilon}))$$

$$\times (I - \varepsilon R_{\varepsilon}) \int_{0}^{\infty} \mu^{-\alpha} R(\mu; -D) x \, d\mu \, d\lambda$$

$$^{(6)} = J^{\alpha} x - \varepsilon \left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{\infty} \frac{\lambda^{\alpha}}{(\lambda + 1)^{2}} R\left(\frac{\lambda \varepsilon}{\lambda + 1}; -D\right) \int_{0}^{\infty} \mu^{-\alpha} R(\mu; -D) x \, d\mu \, d\lambda$$

$$= J^{\alpha} x - \varepsilon \left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\lambda + 1} \int_{0}^{\infty} \frac{\mu^{-\alpha}}{\mu(\lambda + 1) - \lambda \varepsilon}$$

$$\times \left[R\left(\frac{\lambda \varepsilon}{\lambda + 1}; -D\right) - R(\mu; -D) \right] x \, d\mu \, d\lambda.$$

We now use an argument similar to that in [8, Proposition 4.9], to which we refer for notation. Let $\varepsilon > 0$, R > 0 and ϕ be an angle such that $\tan \phi < 1/M$, where M is the constant in (1). Let C be the closed contour formed by the straight lines from 0 to R, R to $R + i\varepsilon$, $R + i\varepsilon$ to $(\varepsilon/\tan \phi) + i\varepsilon$, and $(\varepsilon/\tan \phi) + i\varepsilon$ to 0. Since $\rho(-D)$ contains the sector $|\arg \lambda| < \operatorname{Tan}^{-1}(1/M)$ (cf. [1, Lemma 6.1]), the integral in (6) with respect to λ , taken around C, is zero. Using the fact that

$$\sup_{|\arg \lambda|=\theta} \|\lambda R(\lambda; -D)\| < \infty \quad \text{for } |\theta| < \operatorname{Tan}^{-1} (1/M)$$

[1, Lemma 6.1], it follows that the integral with respect to λ in (6) is the limit, as $\varepsilon \to 0$, of integrals in which the path for λ is a line parallel to and height ε above the x-axis, from Re $\lambda = \varepsilon/\tan \phi$ to ∞ . Similarly, the integral with respect to μ is the limit of integrals along paths parallel to and slightly below the x-axis. Calculating residues, we have

$$(I - \varepsilon R_{\varepsilon})^{\alpha} J^{\alpha} x = J^{\alpha} x - \varepsilon \left(\frac{\sin \pi \alpha}{\pi}\right) \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\lambda + 1} \left(\frac{(-\lambda - i0)\varepsilon}{\lambda + i0 + 1}\right)^{-\alpha} R\left(\frac{\lambda\varepsilon}{\lambda + 1}; -D\right) x \, d\lambda$$
$$+ \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \mu^{-\alpha} \left[-1 + \left(\frac{\mu - i0}{\mu - i0 - \varepsilon}\right)^{\alpha}\right] R(\mu; -D) x \, d\mu$$
$$= -\varepsilon \left(\frac{\sin \pi \alpha}{\pi}\right) e^{\pi i \alpha} \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\lambda + 1} \left(\frac{\lambda\varepsilon}{\lambda + 1}\right)^{-\alpha} R\left(\frac{\lambda\varepsilon}{\lambda + 1}; -D\right) x \, d\lambda$$
$$+ \left(\frac{\sin \pi \alpha}{\pi}\right) e^{\pi i \alpha} \int_{0}^{\varepsilon} (\varepsilon - \mu)^{-\alpha} R(\mu; -D) x \, d\mu$$
$$+ \frac{\sin \pi \alpha}{\pi} \int_{\varepsilon}^{\infty} (\mu - \varepsilon)^{-\alpha} R(\mu; -D) x \, d\mu.$$

We make the change of variables $\mu = \lambda \varepsilon / (\lambda + 1)$ in the first integral on the right-hand side, and obtain

$$(I-\varepsilon R_{\varepsilon})^{\alpha}J^{\alpha}x=\frac{\sin \pi\alpha}{\pi}\int_{\varepsilon}^{\infty}(\mu-\varepsilon)^{-\alpha}R(\mu; -D)x\ d\mu=R_{\varepsilon}^{\alpha}x,$$

by (3).

We have shown that (5) holds for all $x \in D(J^{\infty})$, $\alpha \in C^+$ with $0 < \text{Re } \alpha < 1$. Since both sides of (5) are holomorphic functions of $\alpha \in C^+$ for $x \in D(J^{\infty})$, the equality holds for all $\alpha \in C^+$ and $x \in D(J^{\infty})$. Now if $x \in D(J^{\alpha})$ for $\alpha \in C^+$, we use Lemma 1 and the fact that R_{ε}^{α} and $(I - \varepsilon R_{\varepsilon})^{\alpha}$ are bounded operators to obtain the desired result.

LEMMA 3. For each
$$\alpha \in C^+$$
 and $\varepsilon > 0$, $R_{\varepsilon}^{\alpha} = J^{\alpha}(I - \varepsilon R_{\varepsilon})^{\alpha} \supset (I - \varepsilon R_{\varepsilon})^{\alpha} J^{\alpha}$.

Proof. Let $x \in D(J^{\infty})$, and suppose that $0 < \text{Re } \alpha < 1$. Then

(7)
$$(I - \varepsilon R_{\varepsilon})^{\alpha} x = \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{\alpha - 1} R(\lambda; -(I - \varepsilon R_{\varepsilon}))(I - \varepsilon R_{\varepsilon}) x \, d\lambda$$

$$= x - \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\lambda^{\alpha - 1}}{\lambda + 1} R\left(\frac{\lambda + 1}{\lambda \varepsilon}; -J\right) J x \, d\lambda,$$

by the first resolvent equation. The right-hand side of (7) certainly belongs to $D(J^{\infty})$, and

(8)
$$J^{\alpha}(I-\varepsilon R_{\varepsilon})^{\alpha}x=(I-\varepsilon R_{\varepsilon})^{\alpha}J^{\alpha}x,$$

because J^{α} commutes with the integrand in (7). Since, for $x \in D(J^{\infty})$, both sides of (8) are holomorphic functions of $\alpha \in C^+$, (8) holds for all $\alpha \in C^+$.

Now let $x \in D(J^{\alpha})$, for $\alpha \in C^+$. By Lemma 1, there exists a sequence $\{x_n\} \subset D(J^{\infty})$ such that $x_n \to x$, and $J^{\alpha}x_n \to J^{\alpha}x$. Thus $(I - \varepsilon R_{\varepsilon})^{\alpha}x_n \to (I - \varepsilon R_{\varepsilon})^{\alpha}x$, $\{(I - \varepsilon R_{\varepsilon})^{\alpha}x_n\} \subset D(J^{\infty})$, and

$$J^{\alpha}(I-\varepsilon R_{\varepsilon})^{\alpha} x_{n} = (I-\varepsilon R_{\varepsilon})^{\alpha} J^{\alpha} x_{n} \to (I-\varepsilon R_{\varepsilon})^{\alpha} J^{\alpha} x_{n}$$

Because J^{α} is closed, the inclusion in the statement of the lemma follows. That $R_{\varepsilon}^{\alpha} = J^{\alpha}(I - \varepsilon R_{\varepsilon})^{\alpha}$ follows immediately from Lemma 2, since $D(J^{\alpha})$ is dense and both operators are bounded.

We now have:

THEOREM A. For each $\alpha \in C^+$, Domain $(J^{\alpha}) = \{x \in X \mid \lim_{\epsilon \to 0^+} R^{\alpha}_{\epsilon} x \text{ exists in } X\};$

for $x \in D(J^{\alpha})$, $J^{\alpha}x = \lim_{\varepsilon \to 0^+} R^{\alpha}_{\varepsilon}x$.

Proof. Fix $\alpha \in C^+$, and let $x \in D(J^{\alpha})$; then $(I - \varepsilon R_{\varepsilon})^{\alpha} x \to x$ as $\varepsilon \to 0^+$, for all $x \in X$. Indeed, $\varepsilon R_{\varepsilon} \to 0$ as $\varepsilon \to 0^+$ in the strong operator topology, so we see from (4) that

$$R(\lambda; -(I - \varepsilon R_{\varepsilon}))x \to \frac{x}{\lambda + 1}$$
 as $\varepsilon \to 0^+$ for all $x \in X$.

Moreover, $||I - \varepsilon R_{\varepsilon}|| \le K$, where K is a constant which does not depend on ε . Therefore, for each $x \in X$,

$$R(\lambda; -(I - \varepsilon R_{\varepsilon}))(I - \varepsilon R_{\varepsilon})x \to \frac{1}{\lambda + 1}x \text{ as } \varepsilon \to 0^+.$$

In addition, the integrand in the first integral in (7) is $O(\lambda^{\operatorname{Re} \alpha - 1})$ as $\lambda \to 0^+$, and is $O(\lambda^{\operatorname{Re} \alpha - 2})$ as $\lambda \to \infty$. Therefore it follows from the dominated convergence theorem that

$$(I - \varepsilon R_{\varepsilon})^{\alpha} x \to \frac{\sin \pi \alpha}{\pi} \int_0^{\infty} \frac{\lambda^{\alpha - 1}}{\lambda + 1} x \ d\lambda = x,$$

as claimed.

It now follows immediately from (5) that $J^{\alpha}x = \lim_{\varepsilon \to 0^+} R^{\alpha}_{\varepsilon}x$. On the other hand, suppose that $\lim_{\varepsilon \to 0^+} R^{\alpha}_{\varepsilon}x$ exists. Then by Lemma 3, $\lim_{\varepsilon \to 0^+} J^{\alpha}(I - \varepsilon R_{\varepsilon})^{\alpha}x$ exists. Since $(I - \varepsilon R_{\varepsilon})^{\alpha}x \to x$, and $(I - \varepsilon R_{\varepsilon})^{\alpha}x \in D(J^{\alpha})$ by Lemma 3, we have that $x \in D(J^{\alpha})$, and $J^{\alpha}x = \lim_{\varepsilon \to 0^+} R^{\alpha}_{\varepsilon}x$, since J^{α} is closed.

In special cases we can now apply Theorem 2.2 in [5] to obtain the boundary group $\{J^{i\eta}\}_{\eta \in \mathbb{R}}$. Note that if -D is the infinitesimal generator of a strongly

continuous semigroup $\{T_t\}_{t>0}$ such that $||T_t|| \le L$ for all t > 0, then we have the representation

(9)
$$R_{\varepsilon}^{\alpha}x = \frac{1}{\Gamma(\alpha)}\int_{0}^{\infty} e^{-\varepsilon t}t^{\alpha-1}T_{t}x \ dt, \quad x \in X, \ \alpha \in C^{+},$$

which may be obtained by a direct computation (cf. [2, p. 426]); the regularity requirement of Theorem 2.2 in [5] may now be weakened.

THEOREM B. Let -D be the infinitesimal generator of a strongly continuous semigroup $\{T_t\}_{t>0}$ of uniformly bounded operators, and let $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}, \varepsilon > 0$, be the approximating family of semigroups obtained in Theorem A. If for each $\varepsilon > 0$ $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}$ has a boundary group $\{R_{\varepsilon}^{i\eta}\}_{\eta \in R}$, and $\|R_{\varepsilon}^{i\eta}\| \leq Me^{v|\eta|}$, where M and v are constants independent of $\varepsilon > 0$, then there exists a strongly continuous group of bounded linear operators $\{J^{i\eta}\}_{\eta \in R}$ on X such that:

- (i) $J^{i\eta}x = \lim_{\varepsilon \to 0^+} R^{i\eta}_{\varepsilon}x, x \in X, \eta \in R;$ (ii) $\|J^{i\eta}\| \le M e^{\nu|\eta|};$ (iii) $J^{i\eta}J^{\alpha} = J^{\alpha}J^{i\eta} = J^{\alpha+i\eta}, \alpha > 0, \eta \in R, as operators in X; and$
- (iv) if $x \in D(J^{\infty})$, then $J^{i\eta}x = \lim_{\xi \to 0^+} J^{\xi + i\eta}x$.

Proof. First we show that $\{J^{\alpha}\}_{\alpha \in C^+}$ is a regular semigroup in the sense of Definition 2.1 in [5]. Since each of the approximating semigroups $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^{+}}$ has boundary values on the imaginary axis, we need only check that the following holds: if $\gamma_{\varepsilon}(s)$ is the Nörlund function of $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}$, and $(\alpha_{0,\varepsilon}, \alpha_{1,\varepsilon})$ is the largest interval such that the equation $\gamma_{\varepsilon}(s) = \pi/2\alpha$ has a unique solution $s_{\varepsilon} = s_{0,\varepsilon}(\alpha)$ when $0 \le \alpha_{0,\varepsilon} < \alpha < \alpha_{1,\varepsilon} \le \infty$, then $\alpha_{1,\varepsilon} > 1$. However, it follows from Stirling's formula that $\gamma_{\varepsilon}(s) \leq \pi/2$ for each $\varepsilon > 0$. Therefore $\alpha_{1,\varepsilon} > 1$.

Next, we observe that the set

$$\tilde{D} = \left\{ x \in \bigcap_{\alpha,\beta \in C^+} D(J^{\alpha}J^{\beta}) \middle| \begin{array}{c} J^{\alpha}J^{\beta}x = J^{\alpha+\beta}x, \alpha, \beta > 0\\ J^{\alpha}x \text{ strongly continuous, } \alpha > 0\\ J^{\alpha}x \to x \text{ as } \alpha \to 0^+ \end{array} \right\}$$

contains $D(J^{\infty})$, so \tilde{D} is dense in X. Therefore, by Theorem 2.2 in [5], (i), (ii), (iv) and the fact that $J^{i\eta}J^{\alpha} = J^{\alpha+i\eta}$ hold. To complete the proof, we show that for each $\varepsilon > 0$, and $\alpha, \zeta \in C^+$,

(10)
$$R_{\varepsilon}^{\zeta} J^{\alpha} \subset J^{\alpha} R_{\varepsilon}^{\zeta};$$

in fact, equality holds in (10) if either α or ζ is purely imaginary. Now if $\alpha, \zeta \in C^+$, and $x \in D(J^{\infty})$, it is easy to see that $R_{\varepsilon}^{\zeta} x \in D(J^{\infty})$ and $J^{\alpha} R_{\varepsilon}^{\zeta} x = R_{\varepsilon}^{\zeta} J^{\alpha} x$. Using Lemma 1, we obtain (10) in the usual manner.

If Re $\alpha = 0$ (say $\alpha = i\eta$), then for $x \in D(J^{\infty})$, $J^{i\eta}x = \lim_{\xi \to 0^+} J^{\xi + i\eta}x$, so that

$$R_{\varepsilon}^{\zeta}J^{i\eta}x = \lim_{\xi \to 0^+} R_{\varepsilon}^{\zeta}J^{\xi+i\eta}x = \lim_{\xi \to 0^+} J^{\xi+i\eta}R_{\varepsilon}^{\zeta}x = J^{i\eta}R_{\varepsilon}^{\zeta}x \quad \text{for } \zeta \in C^+,$$

by (10). Since both sides of (10) are bounded, and $D(J^{\infty})$ is dense, equality holds in (10) if Re $\alpha = 0$, $\zeta \in \overline{C^+}$. A similar argument yields equality in (10) for Re $\zeta = 0, \alpha \in C^+$. Finally, we use (i) to obtain $J^{i\eta}J^{\alpha} = J^{\alpha}J^{i\eta}$ for $\alpha > 0, \eta \in R$. We omit the easy details.

In particular, if J is the Volterra operator acting in $L^p(0, \infty)$, $1 , with maximal domain, then for <math>f \in L^p(0, \infty)$,

$$R_{\varepsilon}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_{0}^{x}e^{\varepsilon(t-x)}(x-t)^{\alpha-1}f(t) dt, \quad x\in(0,\infty).$$

Since we showed in [5, Theorem 4.2] that $\{R_{\varepsilon}^{\alpha}\}_{\alpha \in C^+}$ satisfies the requirements of Theorem B, we obtain as a special case the result of Fisher discussed in the introduction. (We emphasize that Balakrishnan's definition of fractional power gives precisely the Riemann-Liouville fractional integral

$$J^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)}\int_0^x (x-t)^{\alpha-1}f(t) dt,$$

with maximal domain in $L^{p}(0, \infty)$. Indeed, if $f \in D(J)$ and $0 < \text{Re } \alpha < 1$, it is easy to see that the two coincide. Since each operator is equal to the closure of its restriction to D(J), the rest follows by a familiar argument.)

In the event that -D generates a semigroup as described above, we can obtain information about the infinitesimal generator of the group $\{J^{i\eta}\}_{\eta \in R}$.

COROLLARY. Let A denote the infinitesimal generator of $\{J^{i\eta}\}_{\eta \in \mathbb{R}}$. Then A is the limit, in the strong generalized sense (cf. [7, VIII, Section 1]), of the operators A_{ε} , where A_{ε} is the infinitesimal generator of $\{R^{i\eta}_{\varepsilon}\}_{\eta \in \mathbb{R}}$. Moreover, $x \in D(A_{\varepsilon})$ if and only if

$$x^* = \int_0^\infty e^{-\varepsilon t} \log t T_t x \, dt$$

is in Domain(D), and for $x \in D(A_{\varepsilon})$,

$$A_{\varepsilon}x = -i[Cx + (\varepsilon I + D)x^*],$$

where C is Euler's constant.

Proof. The statement regarding the A_{ε} 's is proved in [3, Theorem 4 and Corollary 3.7]. That A is the strong generalized limit of the A_{ε} 's follows from Theorem IX.2.16 in [7], because of (i) and (ii) in Theorem A.

3. Similarity

Now suppose that M is a closed linear operator acting in X with Domain D(M), that J satisfies the hypotheses of Theorem B, and that for each $\varepsilon > 0$, the following hold:

(i) A is a non-zero bounded operator on X which commutes with M and R_{ε} ;

(ii) $R_{\varepsilon}^{s+it}D(M) \subset D(M)$ for s+it in some rectangle $0 \le s \le a$, $|t| \le a$, where a is a constant which may depend on ε ;

(iii) R_{ε} is M-Volterra with respect to A; that is, $R_{\varepsilon}D(M) \subset D(M)$ and $[R_{\varepsilon}, M] \subset AR_{\varepsilon}^{2}$.

If we define $T_{\alpha} = M + \alpha AJ$ for $\alpha \in C$, with Domain $D(T_{\alpha}) = D(M) \cap D(J)$, then an application of Theorems 3.3 and 3.4 in [5] gives:

THEOREM C. If α , $\beta \in C \setminus \{0\}$, and Re α = Re β , then T_{α} is similar to T_{β} , with $J^{i \operatorname{m} (\alpha - \beta)}$ implementing the similarity. Also, if $D(M) \subset D(J)$, then M and $T_{i\eta}$ are similar, for $\eta \in R$.

We point out that in general the perturbations under consideration are not Kato perturbations (cf. [9, p. 190]). For example, if Mf(x) = xf(x) and $Jf(x) = \int_x^{\infty} f(t) dt$ as discussed in the introduction, then $D(M) \subset D(J)$ (cf. [5, Lemma 4.9]). However, if $f \in D(M)$, then $\|Jf\|_p \le \|\eta\|p\|Mf\|_p$, since $Jf = W_{1,0}^{-1}(Mf)$, where

$$W_{\alpha,\mu}^{(\nu)} f(x) = \frac{1}{\Gamma(\alpha)} x^{\mu-\nu-\alpha} \int_{x}^{\infty} t^{\nu}(t-x)^{\alpha-1} f(t) dt;$$

by Theorem 4.5.11 in [9], $||W_{1,0}^{-1}||_p \le p$. Thus $M + i\eta J$ is a Kato perturbation if $|\eta| < 1/p$.

In [5] we restricted our attention to operators which satisfy the commutation relation in (iii) above. However, it is natural to assume that the operators M and R_{ε} satisfy a Heisenberg-Volterra commutation relation as discussed in [6]. That is, let M be a closed operator, and suppose that for each $\varepsilon > 0$,

(11)
$$R_{\varepsilon}D(M) \subset D(M) \text{ and } [R_{\varepsilon}, M] \subset C_{\varepsilon},$$

where C_{ε} is a bounded operator which commutes with R_{ε} . Then by the theorem in [6], $M + g'(R_{\varepsilon})C_{\varepsilon}$ is similar to M, where g is any function holomorphic in a neighborhood of $\sigma(R_{\varepsilon})$, and the similarity is implemented by $e^{g(R_{\varepsilon})}$.

Now assume that $\lim_{\varepsilon \to 0^+} C_{\varepsilon} x = Cx$ exists for all $x \in X$, and that -D generates a strongly continuous semigroup $\{T_t\}_{t>0}$ such that $||T_t|| \le L$. Then for $\varepsilon > 0, \varepsilon \in \rho(-J)$, and $x \in \text{Domain}(D)$ if and only if $\lim_{\varepsilon \to 0^+} R(\varepsilon; -J)x$ exists in X. Indeed, the operator D has all the properties required of J, so Theorem A holds with the roles of J and D reversed. If we set $S_{\varepsilon} = R(\varepsilon; -J)$, and assume that (11) holds with R_{ε} replaced by S_{ε} , we obtain from the theorem in [6] that

(12)
$$Me^{-tS_{\varepsilon}}x = e^{-tS_{\varepsilon}}(M - tC_{\varepsilon})x \text{ for } x \in D(M).$$

But for t > 0, $e^{-tS_{\varepsilon}}x \to T_{t}x$, for all $x \in X$, by a classical result. If we let $\varepsilon \to 0^{+}$ in (12), we obtain $T_{t}x \in D(M)$, for $||e^{-tS_{\varepsilon}}|| \le K$ uniformly in $\varepsilon > 0$, and M is closed; also, $MT_{t}x = T_{t}(M - tC)x$. We have proved the following:

THEOREM D. Let -D be the infinitesimal generator of a strongly continuous semigroup $\{T_t\}_{t>0}$ of uniformly bounded operators, and let $S_{\varepsilon} = R(\varepsilon; -J)$, where $J = D^{-1}$ and $\varepsilon > 0$. Suppose that $S_{\varepsilon}D(M) \subset D(M)$ and $[S_{\varepsilon}, M] \subset C_{\varepsilon}$, where C_{ε} is bounded for each $\varepsilon > 0$, and that $\lim_{\varepsilon \to 0^+} C_{\varepsilon} x = Cx$ for all $x \in X$. Then for each t > 0, $T_t(M - tC) \subset MT_t$.

Remark. If D satisfies the hypotheses of Theorem D, and $R_{\varepsilon} = R(\varepsilon; -D)$ is M-Volterra with respect to A, then it is easy to see that $S_{\varepsilon} = R(\varepsilon; -J)$ satisfies the following:

$$S_{\varepsilon}D(M) \subset D(M)$$
 and $[S_{\varepsilon}, M] \subset -A(JS_{\varepsilon})^2$ for each $\varepsilon > 0$.

Therefore, if we take $C_{\varepsilon} = JS_{\varepsilon}$ in Theorem D, we obtain $T_t(M + tA) \subset MT_t$, t > 0.

References

- 1. A. V. BALAKRISHNAN, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., vol. 10 (1960), pp. 419–437.
- 2. M. J. FISHER, Purely imaginary powers of certain differential operators, I, Amer. J. Math., vol. 93 (1971), pp. 452–478.
- 3. F. HIRSCH, Familles d'opérateurs potentiels, Ann. Inst. Fourier (Grenoble), vol. 25, Fasc. 3 (1975), pp. 263–288.
- 4. R. J. HUGHES, Semigroups of unbounded linear operators in Banach space, Trans. Amer. Math. Soc., vol. 230 (1977), pp. 113-145.
- R. J. HUGHES and S. KANTOROVITZ, Boundary values of holomorphic semigroups of unbounded operators and similarity of certain perturbations, J. Functional Analysis, vol. 29 (1978), pp. 253-273.
- S. KANTOROVITZ, Commutation de Heisenberg-Volterra et similarité de certaines perturbations, C. R. Acad. Sci., Paris, vol. 276 (1973), pp. 1501–1504.
- 7. T. KATO, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
- 8. H. KOMATSU, Fractional powers of operators, Pacific J. Math., vol. 19 (1966), pp. 285-346.
- 9. G. O. OKIKIOLU, Aspects of the theory of bounded integral operators in L-spaces, Academic Press, London, 1971.

TUFTS UNIVERSITY MEDFORD, MASSACHUSETTS