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THE APPROXIMATION OF FRACTIONAL POWERS OF
A CLOSED OPERATOR

BY

RHONDA J. HUGHES

Abstract

This paper provides a unified approach to some perturbation problems re-
cently considered by the author in joint work with S. Kantorovitz. The key
result is that the semigroup of unbounded operators {J’} formed by the frac-
tional powers of a dosed operator J can be approximated in a canonical way
by a certain family of bounded semigroups.

1. Introduction

In [5] a general technique for establishing similarity of certain singular per-
turbations of unbounded operators was developed. For closed operators M
and J acting in a Banach space X, perturbations of the form M + irlJ, n R,
were shown, under suitable conditions, to be similar to M (cf. [5, Theorem 3.3]).
The proof in [5] involves embedding J in a semigroup {J’} of unbounded
operators which possesses a boundary group (of bounded operators); these
boundary values then implement the similarity.
More precisely, similarity results are obtained when J jx, where {J} is a

reoular semigroup of unbounded operators; that is, there exists a sequence (or
net) of sernigroups of bounded operators {Jv}, c+, N Z+, such that for each

C +,

Domain(J") {x + X lim Jx exists in X};
N---}

for each N + Z +, {Jv} is holomorphic on C +, of class (Co) on (0, oo), and has
a boundary group {J}, R ;and certain other technical conditions are satisfied.
Then a boundary group {J"}, R is obtained as the limit, in the strong operator
topology, of the groups {J},R as N (cf. [5, Theorem 2.2]).

In order to apply this theory to explicit examples, ad hoc methods were used
to establish appropriate approximating semigroups. For example, in the case
where M is the operation of multiplication by x, and J is the Volterra operator
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334 RHONDA J. HUGHES

acting in LP(O, ), 1 < p < oo (with maximal domains), {J} is the Riemann-
Liouville semigroup

1 fo (x t) if(t) dt"

the restrictions of that semigroup to L’(O, N), N Z+, provide the approximat-
ing semigroups {J}, where J PJ, and Ps f(x) Z[o,](x)(x). The boun-
dary group {J} is then the strong limit, as N , of the boundary groups
{g).
On thc other had, wh Jl(s)= ? l(r)r in (0, ), the holomorphi

semigroups }: c +, > O, where

f(x)= f e’-t’(t x If(t) dt,

wre used to approximate the WCyl fractional integrals

dt
J:i() (t- ):-V(t) F()"

Thus the boundary troup i this as is obtained s the limit, in the strong
operator topoloty, of th boundary groups {} .

In [2] Fisher shows tha the boundary group for the RiCmann-Liouvill
smilroup atint in LP(0, ) is also the strong limit of the boundary groups of

Rthe semigroups }, as 0 where

1 o "’-( t):-’f(t) t.f()=

This result, and the key oscrvation that R R(; -D), where J-,
sultCst a unified approach to the approximation problem. It is th purpose of
this paper to show that in a suitable tneral setting there is a anonial hoie
for {} ad the approximatit semilroups: for Certain dosed operators J
(whiCh are on-to-on with inverse ), w take J: to be the th power of J as
defined hy Balakrishnan [1], and R to be the abstract Bssel potential
@; -D): (the th power of 7). We the. h. (i. Stio. 2):

THEOREM A. Let R R(e; --D) for e > O. Then {R}c+, e > 0, is an
approximating family of semigroups for {J} c

We point out that Theorem A also follows from a result of Hirsch (cf. [3,
Theorem 10]); our proof uses different techniques and is elementary in that it
involves only properties of fractional powers.
Under suitable conditions we can apply Theorem 2.2 in [5] to obtain the

boundary group {J}; in the setting of Theorem B, the hypotheses of [5,
Theorem 2.2] may be weakened.
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THEOREM B. Let D be the infinitesimal generator ofa semigroup {T} o of
uniformly bounded operators. Iffor each e > 0, {R}, c has a boundary group

<_ Me where M and v ae independent ore > O, then there
exists a strongly continuous group {Ji}eg of bounded operators satisfying
(i)-(iv) of[5, Theorem 2.2]. In addition,

Proofs of the existence and uniform boundedness of the approximating
boundary groups for the cases discussed above may be found in [5, Theorem
4.2] and [2, Corollary 3.4]; in the latter we see that Muckenhoupt’s singular
integrals provide a useful tool for verifying the hypotheses of Theorem B in
explicit examples. The proof in [5] employs different techniques. Section 2
closes with a brief discussion of the infinitesimal generator of the boundary
group {ji.}. 1"

In Section 3 we discuss perturbations of the form M + J, where M is a
certain closed operator and J satisfies the hypotheses of Theorem B. We have
the following:

THEOREM C. M + J and M + flJ are similar if , fl C\{0} and Re
Re fl" the similarity is implemented by jimt,-). If D(M)c D(J), then M and
M + iqJ are similar for r R.

Perturbations of Heisenberg-Volterra type (cf. Kantorovitz [6]) also arise
rather naturally in this setting; a preliminary result is discussed in Theorem D.
Throughout this paper, X will denote a Banach space, D(J) the domain of

the operator J, and R(e; J) its resolvent. Theorems 2.2, 3.3 and 3.4 of [5] are
required, but their contents will be made clear in the present discussion.

2. The approximating semigroups

Let J be a closed, densely-defined linear operator in X, with dense range.
Suppose that R + p(- J), the resolvent set of -J, and that the resolvent of
J satisfies

(1) II R( ; -J)ll M for ,2 > 0.

Since J is closed and satisfies (1), we may embed J in a one-parameter family
of closed operators {J’}, c /, where J" is defined by Balakrishnan’s fractional
powers of closed operators (of. [1]): for C with 0 < Re < 1 and x O(J),

(2) J’x sinrtr ff 2"- 1R(2; -J)Jx d2;

for n 1 < Re < n and x D(J"), J’x J’-"+ l(j)n-IX, and for n 1 <
Re < n and x D(J"+ 1), J’x J’-"+ (J)"-x. Then the operators J" are
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closable, and we will also denote their closures by J. Moreover, in light of our
hypotheses on J,

O(J) O(J)o
nZ+

x O(JJ)
,/>0

JJ#x J+#x
Jx strongly continuous for > 0
Jx x as a - 0+

by Lemmas 2.2, 2.4 and 2.5 in [1]. Thus {J}>o is a semigroup of closed
operators in the sense of the definition in [4], since D(J) X (by [1, Lemma
3.1]).
We now consider the family {J}c/, in order to determine a canonical

approximating family of semigroups. By (1) and the fact that Ran (J) is dense,
we have that for all x X, lim_.o/ 2R(2; -J)x 0, and also that J is one-to-
one. Let D denote the inverse of J; of course, D is closed, densely-defined with
dense range, R / p(-D) and (1) holds with J replaced by D. Moreover, if for
> 0, R R(e; -D), then R + c p(-R) and, for 2 > 0,

1 1 (l/2e);-D.

Therefore R satisfies (1), so we may define, for a C +, R R(e; -D), again
using Balakrishnan’s ,definition. Now R is bounded, and by the above-
mentioned lemmas in [1], {R} c+ is a holomorphic semigroup of class (Co)on
(0, c). In fact, since

1 (l+2e)R(2; -R)Rx=-R 2
-D x for2>0, xX,

the change of variables/ (1 + 2e)/2 yields

sin
(3) Rx f (/ )-R(/; -D)x d/, 0 < Re a 1

In order to prove that {R}c is an approximating family of semigroups (as
e 0 /) for {J} c /, we shall needthe following three lemmas.

LEMMA 1. For each C +, D(J) is a core for J; that is, J= JID(J).

Proof. We may assume that 0 < Re a < 1. Since J JID(J), we must
show that

J O(J) J D(J).
Let x D(J); then x R(2; -J)y for some y X and 2 > 0. Since D(J) X,
y limn-oo Yn, where {Yn} C D(J). Thus

Jx JR(2; -J)y lim JR(2; -J)y,,
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since JR(2; -J)is bounded. But {R(2; -J)Yn} c .D(J(R)), and R(2; -J)yn x
as n 00. Therefore x D(JI D(J)), and Jx JI D(J)x.
Next we note that if 2 > 0, then 2 p(-(I eR)), since

(4) g(2;-(I-eg))

-e e 2+ 1 - (2+ 1)2R 2+ 1’

Therefore I eR satisfies (1), because D does, and so we may define (I eR)
using Balakrishnan’s definition. We now prove:

LEMMA 2. Let a C +, > 0 and x D(J). Then

Rx (I eR)Jx.

Proof. Fix x D(J), and suppose 0 < Re a < 1. Then

Jx
sin fo /-R(/; -D)x dl;

using (4)and the first resolvent equation, we have

(I eR)Jx
si o 2

2_IR(2;_(I_eR))

x (I eR) f /-R(/; -D)x dl d2
0

(6) si 2 ,a ’/
D /-R(/’, D)x d/ d2j0.

(2+1)R 2+1’

=Jx-e
2+1 (2+1)-2e

x R
2+1,

We now use an argument similar to that in [8, Proposition 4.9], to which we
refer for notation. Let e > 0, R > 0 and be an angle such that tan 4 < l/M,
where M is the constant in (1). Let C be the closed contour formed by the
straight lines from 0 to R, R to R+ie, R+ie to (e/tan4)+ie, and
(/tan )+ ie to 0. Since 0(-) contains the sector larg 21 < Tan- (l/M)
(cf. [1, Lemma 6.1]), the integral in (6) with respect to X, taken around C, is zero.
Using the Nct that

sup 112R(2;-O)l < for 10l < Tan-’ (l/M)
larg 21 =0
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[1, Lemma 6.1], it follows that the integral with respect to 2 in (6) is the limit, as
e 0, of integrals in which the path for 2 is a line parallel to and height e above
the x-axis, from Re 2 e/tan b to . Similarly, the integral with respect to/t is
the limit of integrals along paths parallel to and slightly below the x-axis.
Calculating residues, we have

(I-eR’:)Jx=Jx-e .. --i- 2+i0+11
R 2+1’-D xd2

(p--iO)+ p---1+
p_ iO_ e R(p; -O)x dp

2 2
1 2 1

D x d2ei R
2

2+ 1 2+ +

+ e’ (e ,)-R(,; -O)x d.

sin x

We make the change of variables # 2e/(2 + 1) in the first integral on the
right-hand side, and obtain

(I eR)Jx- sinzrzrz (p_ e)_R(p; -D)x dp= Rx,

by (3).
We have shown that (5) holds for all x D(J), a C + with 0 < Re a < 1.

Since both sides of (5) are holomorphic functions of a C + for x D(J), the
equality holds for all a C + and x D(J). Now if x D(J) for a C +, we
use Lemma 1 and the fact that R and (I- eR) are bounded operators to
obtain the desired result.

LEMMA 3. For each x C + and e > O, R. J’(I eR) (I eR)J.
Proof Let x D(J), and suppose that 0 < Re a < 1. Then

sin
(7) (I eR)x- | 2 1R(; -(I eR,))(I eR,)x d2

o

sinrtaf; 2"-1 ( + 1 )x
2e ’- J Jx d2,

rt 2+iR .2

by the first resolvent equation. The right-hand side of (7)certainly belongs to
D(J), and

(8) J(I- eR,)x (I-
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because J commutes with the integrand in (7). Since, for x D(J), both sides
of (8) are holomorphic functions of C /, (8) holds for all C /.
Now let x D(J), for 0 C /. By Lemma 1, there exists a sequence {xn} c

D(J(R)) such that x--x, and Jx,-o Jx. Thus (I- eR)x,--, (I- eR)x,
{(I- eR)x} D(J(R)), and

J(I- eR)xn (I eR)=Jx (I eR)=J=x.

Because J is closed, the inclusion in the statement of the lemma follows. That
R. J(I eR) follows immediately from Lemma 2, since D(J) is dense and
both operators are bounded.
We now have:

THEOREM A. For each C /,

Domain(J) {x X lim Rx exists in X};
e,-O

for x D(J), Jx lim_.o/ Rx.

Proof Fix e e C +, and let x e D(J); then (I eR)x x as e 0 +, for all
x e X. Indeed, eR 0 as e --. 0 + in the strong operator topology, so we see
from (4) that

ase0+ for allxeX.

Moreover, III eR K, where K is a constant which does not depend on e.
Therefore, for each x e X,

R(2; -(I eR))(I eR)x-x as e--,0 +.

In addition, the integrand in the first integral in (7) is O(2Re 1) as 2 --, 0 +, and
is O(2R "-2) as 2 -0 oe. Therefore it follows from the dominated convergence
theorem that

(I eR)x
sin re f? 2

t 2+] xd2=x,

as claimed.
It now follows immediately from (5) that Jx lim_o+ Rx. On the other

hand, suppose that lim_,o+ Rx exists. Then by Lemma 3,
lim_.o+ J(I eR)x exists. Since (I eR)x --} x, and (I eR)x D(J) by
Lemma 3, we have that x D(J), and Jx lim_.o+ Rx, since J is closed.

In special cases we can now apply Theorem 2.2 in [5] to obtain the boundary
group {J"}, R- Note that if -D is the infinitesimal generator of a strongly
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continuous semigroup {T},> o such that T < L for all t > 0, then we have the
representation

1 f "t-Ttxdt, xX,C+(9) Rx e-

which may be obtained by a direct computation (cf. [2, p. 426]); the regularity
requirement of Theorem 2.2 in [5] may now be weakened.

THEOREM B. Let -D be the infinitesimal 9enerator ofa strongly continuous
semigroup {Tt}t > o ofuniformly bounded operators, and let {g},c +, e > O, be the
approximatin9 family of semioroups obtained in Theorem A. Iffor each e > 0
{g}c+ has a boundary 9roup {g"},g, and I[g"ll <_ Me11, where M and v are
constants independent of e > 0, then there exists a stronoly continuous 9roup of
bounded linear operators {ji,}, R on X such that:

(i)
(ii)
(iii)
(iv)

jinx lim_0+ R"x, x X, q R;

ji.j jji. j+% > O, r R, as operators in X; aM
if x e D(J), then jinx limo J+ iqx.

Proof First we show that {J’}, c+ is a regular semigroup in the sense of
Definition 2.1 in [5]. Since each of the approximating semigroups {R},c has
boundary values on the imaginary axis, we need only check that the following
holds: if y,(s) is the N6rlund function of {R},c+, and (o,, 1,)is the largest
interval such that the equation y,(s)= n/2t has a unique solution s, So,()
when 0 < o, < < 1,, < , then a, > 1. However, it follows from Stirling’s
formula that (s) < n/2 for each e > 0. Therefore a,, > 1.

Next, we observe that the set

X N D(JJl), C+

JJax J+Ox, , fl > 0
Jx strongly continuous, > 0

J’x--.x as -0+

contains D(J), so/ is dense in X. Therefore, by Theorem 2.2 in [5], (i), (ii), (iv)
and the fact that ji,j,= j,+i, hold. To complete the proof, we show that for
each e > 0, and , ( C /,

(10) RJ c JR;

in fact, equality holds in (10) ifeither or ( is purely imaginary. Now if, ( e C +,
and x D(J), it is easy to see that Rx e D(J) and J’gx RJ’x. Using
Lemma 1, we obtain (10) in the usual manner.

If Re 0 (say iq), then for x D(J), J"x limo+ J+"x, so that

RJx lim RJ+x lim J+Rx Jgx for ( e C +,
0+ 0+
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by (10). Since both sides oleO) are bounded, and D(J)is dense, equality holds
in (10) if Re O, (e C+. A similar argument yields equality in (10) for
Re ( O, C +. Finally, we use (i) to obtain J"J JJ" for > O, r/ R. We
omit the easy details.

In particular, ifJ is the Volterra operator acting in LP(O, oo), 1 < p < oo, with
maximal domain, then for f LP(O, oo),

1 fo e{’-)(x t)- f(t) at,R f(x)=

Since we showed in [5, Theorem 4.2] that {R} c satisfies the requirements of
Theorem B, we obtain as a special case the result of Fisher discussed in the
introduction. (We emphasize that Balakrishnan’s definition of fractional power
gives precisely the Riemann-Liouville fractional integral

1 f (x- t)"-if(t) at,
o

with maximal domain in LP(0, oo). Indeed, iff D(J) and 0 < Re < 1, it is
easy to see that the two coincide. Since each operator is equal to the closure of
its restriction to D(J), the rest follows by a familiar argument.)

In the event that -D generates a semigroup as described above, we can
obtain information about the infinitesimal generator of the group {J"}, s.

COROLLARY. Let A denote the infinitesimal generator of {ji,}n R. Then A is
the limit, in the strong generalized sense (cf. [7, VIII, Section 1]), ofthe operators
As, where As is the infinitesimal generator of{g} g. Moreover, x D(As) ifand
only if

x* fo e- st log t Tt x dt

is in Domain(D), and for x D(As),

Asx -i[Cx + (el + O)x*],
where C is Euler’s constant.

Proofi The statement regarding the As’s is proved in [3, Theorem 4 and
Corollary 3.7]. That A is the strong generalized limit of the As’s follows from
Theorem IX.2.16 in [7], because of (i)and (ii)in Theorem A.

3. Similarity

Now suppose that M is a closed linear operator acting in X with
Domain D(M), that J satisfies the hypotheses of Theorem B, and that for each
e > 0, the following hold:
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(i) A is a non-zero bounded operator on X which commutes with M
and R;

(ii) R+itD(M)c D(M) for s + it in some rectangle 0 g s g a, tl _< a,
where a is a constant which may depend on e;

(iii) R is M-Volterra with respect to A; that is, RD(M) D(M) and
[g, M] AR2.

If we define T M + AJ for 0 C, with Domain D(T,)= D(M) D(J),
then an application of Theorems 3.3 and 3.4 in [5] gives:

THEOREM C. If, fl C\{0}, and Re g Re fl, then T is similar to TIj, with
j,m-a) implementint the similarity. Also, ifD(M) D(J), then M and Tnare
similar, for r R.

We point out that in general the perturbations under consideration are not
Kato perturbations (of. [9, p. 190]). For example, if Mf(x)= xf(x) and
Jf(x) f(t)at as discussed in the introduction, then D(M) D(J) (el. [5,
Lemma 4.9]). However, if fD(M), then IIJfll< I lpll fll , sin e
Jf W,(Mf), where

1
x-- f t(t x)-f(t) dr"V, f(x)

by Theorem 4.5.11 in [9], Wr,o’ -< p, Thus M + is a Kato perturbation if

I.I < lip.
In [5] we restricted our attention to operators which satisfy the commutation

relation in (iii) above. However, it is natural to assume that the operators M
and R satisfy a Heisenberg-Volterra commutation relation as discussed in [6].
That is, let M be a closed operator, and suppose that for each e > 0,

(11) RD(M) c D(M) and [R, M] C,

where C is a bounded operator which commutes with R. Then by the theorem
in [6], M + I’(R)C is similar to M, where # is any function holomorphic in a
neighborhood of cr(R), and the similarity is implemented by egtR).

Now assume that lim_.o C x Cx exists for all x X, and that -D gener-
ates a strongly continuous semigroup {Tt}t>o such that I1Tt < L. Then for
e > O, e p(-J), and x Domain(D)ifand only iflim_.0/ g(e; -J)x exists in
X. Indeed, the operator D has all the properties required of J, so Theorem A
holds with the roles of J and D reversed. If we set S R(e; -J), and assume
that (11) holds with R replaced by S, we obtain from the theorem in [6] that

(12) Me-’Sx e-’S’(M- tC)x for x O(M).
But for t > 0, e-’S’x --+ T x, for all x X, by a classical result. Ifwe let e --+ 0/ in
(12), we obtain Tx D(M), for Ile-’ :ll _< K uniformly in e > 0, and M is
closed; lllso, MTx T(M tC)x. We have proved the following:
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THEOREM D. Let -D be the infinitesimal generator ofa strongly continuous
semigroup {T}t> o of uniformly bounded operators, and let St g(e; -J), where
J D-1 and e > O. Suppose that SD(M) D(M)and [St, M] C, where C is
boundedfor each e > O, and that lim_.0/ Cx Cxfor all x X. Thenfor each
> o,

Remark. If D satisfies the hypotheses of Theorem D, and R R(e; -D) is
M-olterra with respect to A, then it is easy to see that St R(e; J) satisfies
the following:

SD(M) D(M)and [St, M] -A(JS)2 for each e > 0.

Therefore, if we take C JS in Theorem D, we obtain Tt(M + tA) MT,
t>O.
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