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Abstract

This paper provides a unified approach to some perturbation problems re-
cently considered by the author in joint work with S. Kantorovitz. The key
result is that the semigroup of unbounded operators {J*} formed by the frac-
tional powers of a closed operator J can be approximated in a canonical way
by a certain family of bounded semigroups.

1. Introduction

In [5] a general technique for establishing similarity of certain singular per-
turbations of unbounded operators was developed. For closed operators M
and J acting in a Banach space X, perturbations of the form M + inJ,n € R,
were shown, under suitable conditions, to be similar to M (cf. [5, Theorem 3.3]).
The proof in [S] involves embedding J in a semigroup {J*} of unbounded
operators which possesses a boundary group (of bounded operators); these
boundary values then implement the similarity.

More precisely, similarity results are obtained when J = J*, where {J*} is a
regular semigroup of unbounded operators; that is, there exists a sequence (or
net) of semigroups of bounded operators {J3},.c+, N € Z*, such that for each
xeCt,

Domain(J*) = {x € X | lim J§x exists in X},

N-—ow

for each N e Z*, {J%} is holomorphic on C*, of class (C,) on (0, ), and has
a boundary group {J}}, . r ; and certain other technical conditions are satisfied.
Then a boundary group {J*}, _ . is obtained as the limit, in the strong operator
topology, of the groups {J}, .z as N — oo (cf. [5, Theorem 2.2]).

In order to apply this theory to explicit examples, ad hoc methods were used
to establish appropriate approximating semigroups. For example, in the case
where M is the operation of multiplication by x, and J is the Volterra operator
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334 RHONDA J. HUGHES

acting in I?(0, o), 1 < p < oo (with maximal domains), {J°} is the Riemann-
Liouville semigroup

70 =g | =00 des

the restrictions of that semigroup to I7(0, N), N € Z*, provide the approximat-
ing semigroups {J%}, where Jy = Py J* and Py f(x) = x;0.5(X)f (x). The boun-
dary group {J"} is then the strong limit, as N — oo, of the boundary groups
N}

On the other hand, when Jf(x) = [ f(t) dt in I?(0, o0), the holomorphic
semigroups {W¢},.c+, ¢ > 0, where

Wi f(x)= F:&“) [ et —xp=17(0) d,

were used to approximate the Weyl fractional integrals

a. — ° x— 1 dt
FIe) =] =X T
Thus the boundary group in this case is obtained as the limit, in the strong
operator topology, of the boundary groups {Wi}, _ .
In [2] Fisher shows that the boundary group for the Riemann-Liouville
semigroup acting in I?(0, o) is also the strong limit of the boundary groups of
the semigroups {R?}, as ¢ > 0", where

a — L * E(t — x) 41
R: f(x)= @) fo TN x — T (t) dt.
This result, and the key observation that R} = R(g; —D), where D=J"1,
suggest a unified approach to the approximation problem. It is the purpose of
this paper to show that in a suitable general setting there is a canonical choice
for {J*} and the approximating semigroups: for certain closed operators J
(which are one-to-one with inverse D), we take J* to be the ath power of J as
defined by Balakrishnan [1], and R} to be the abstract Bessel potential
R(e; —D)* (the ath power of R}). We then have (in Section 2):

THEOREM A. Let R, = R(s; —D) for ¢ >0. Then {R3},cc+, €>0, is an
approximating family of semigroups for {J*},cc+.

We point out that Theorem A also follows from a result of Hirsch (cf. [3,
Theorem 10]); our proof uses different techniques and is elementary in that it
involves only properties of fractional powers.

Under suitable conditions we can apply Theorem 2.2 in [5] to obtain the
boundary group {J”}; in the setting of Theorem B, the hypotheses of [5,
Theorem 2.2] may be weakened.
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THEOREM B. Let — D be the infinitesimal generator of a semigroup {T},- ¢ of
uniformly bounded operators. If for each ¢ > 0, {R%},.c+ has a boundary group
{R™M), g, and |R?| < Me*™!, where M and v are independent of ¢ > 0, then there
exists a strongly continuous group {J™}, g of bounded operators satisfying
()-(iv) of [5, Theorem 2.2]. In addition, J*J" = J"J*.

Proofs of the existence and uniform boundedness of the approximating
boundary groups for the cases discussed above may be found in [5, Theorem
4.2] and [2, Corollary 3.4]; in the latter we see that Muckenhoupt’s singular
integrals provide a useful tool for verifying the hypotheses of Theorem B in
explicit examples. The proof in [S] employs different techniques. Section 2
closes with a brief discussion of the infinitesimal generator of the boundary
group {J™}, . x.

In Section 3 we discuss perturbations of the form M + aJ, where M is a
certain closed operator and J satisfies the hypotheses of Theorem B. We have
the following:

THEOREM C. M + oJ and M + BJ are similar if «, f € C\{0} and Re a =
Re B; the similarity is implemented by J'™“~P_ If D(M) < D(J), then M and
M + inJ are similar for n € R.

Perturbations of Heisenberg-Volterra type (cf. Kantorovitz [6]) also arise
rather naturally in this setting; a preliminary result is discussed in Theorem D.

Throughout this paper, X will denote a Banach space, D(J) the domain of
the operator J, and R(e; J) its resolvent. Theorems 2.2, 3.3 and 3.4 of [S] are
required, but their contents will be made clear in the present discussion.

2. The approximating semigroups

Let J be a closed, densely-defined linear operator in X, with dense range.
Suppose that R* < p(—J), the resolvent set of —J, and that the resolvent of
—J satisfies

(1) |[AR(A; =J)| <M for A>0.

Since J is closed and satisfies (1), we may embed J in a one-parameter family
of closed operators {J*}, .+, where J* is defined by Balakrishnan’s fractional
powers of closed operators (cf. [1]): for « € C with 0 < Re a < 1 and x € D(J),

sin 7o

@) Jix = [ 2 R(s =gy dis

0
for n—1<Rea<n and x e DJ"), J*x =J* """ 1(J)" " !x, and for n — 1 <
Rea <n and x € DJ"*?!), J°x = J* "*1(J)"~x. Then the operators J* are
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closable, and we will also denote their closures by J*. Moreover, in light of our
hypotheses on J,

DJ®)= () DU") =D
neZ+t
JJPx = J Py
J*x strongly continuous for o > 0
J'x > xasa—0+

=ixe () DUJ*")

a,>0

by Lemmas 2.2, 2.4 and 2.5 in [1]. Thus {J*},., is a semigroup of closed
operators in the sense of the definition in [4], since D(J*) = X (by [1, Lemma
3.1)).

We now consider the family {J*}, ¢+, in order to determine a canonical
approximating family of semigroups. By (1) and the fact that Ran (J) is dense,
we have that for all x € X, lim,_,. AR(4; —J)x = 0, and also that J is one-to-
one. Let D denote the inverse of J; of course, D is closed, densely-defined with
dense range, R* < p(—D) and (1) holds with J replaced by D. Moreover, if for
¢>0, R, = R(¢; —D), then R* = p(—R,) and, for 1 >0,

1 1 1+ ¢
R(A; —R)=> — = : —D).
('1’ RE) }. 12 R ( /1 9 )
Therefore R, satisfies (1), so we may define, for « € C*, R; = R(¢; — D), again
using Balakrishnan’s -definition. Now R{ is bounded, and by the above-
mentioned lemmas in [1], {R%}, . ¢+ is a holomorphic semigroup of class (C,) on
(0, 00). In fact, since

R(4; —Re)Rgx——-%R(l—_;—)ﬁ; —D)x for A>0,xeX,

the change of variables u = (1 + A¢)/A yields

sin mo
(3) Rix =

- f (u—¢) *R(u; —D)xdu, 0<Rea<1

In order to prove that {R}},.c. is an approximating family of semigroups (as
e—0") for {J*},.c+, we shall need the following three lemmas.

LEMMA 1. For each a € C*, D(J®) is a core for J*; that is, J* = J*| D(J*).

Proof. We may assume that 0 < Re a < 1. Since J* = J*|D(J), we must
show that

J*|D(J) = [ D).
Let x € D(J); then x = R(4; —J)y forsome y € X and 4 > 0. Since D(J°) = X,
y = lim,, ., y,, where {y,} = D(J®). Thus

J*x = J*R(A; —J)y = lim J°R(A; —J)y,,

n—o
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since J*R(4; —J) is bounded. But {R(4; —J)y,} = D(J*), and R(4; —J)y,— x
as n — oo. Therefore x € D(J*|D(J®)), and J*x = J*| D(J®)x.
Next we note that if A > 0, then A € p(— (I — ¢R,)), since

4) R(A; —(I—eR.))

1 _(A+1 1 € Ae
- : — R} = R , DJ).
eR( e ) vl Tar 1y (/1+1 )
Therefore I — ¢R, satisfies (1), because D does, and so we may define (I — ¢R,)*
using Balakrishnan’s definition. We now prove:

LEMMA 2. Let a € C*, e> 0 and x € D(J*). Then
5) Rix = (I — ¢R,)J*x.
Proof. Fix x € D(J*), and suppose 0 < Re a < 1. Then
_sinma ®

Jox = J 1~ *R(u; —D)x du;

T 0

using (4) and the first resolvent equation, we have

(I — &R,y J*

(sin no

. )2 f: A71R(A; —(I — €R.))

x (I — ng)f u *R(u; —D)x dp dA
0

(6) sin mat\2 ®  A* de o
=Jx —¢|—— . cap(.
R ) fo (/1+1)2R(A+1’ D)fo #~*R(u; —D)x dp d2
sin ma\2 f® A* © #—a
= J% —
¥ 8( n )Jo At 1dy wit1)—is

Ag

We now use an argument similar to that in [8, Proposition 4.9], to which we
refer for notation. Let ¢ > 0, R > 0 and ¢ be an angle such that tan ¢ < 1/M,
where M is the constant in (1). Let C be the closed contour formed by the
straight lines from O to R, R to R +ig, R+ ie to (¢/tan @)+ ie, and
(¢/tan @) + ie to 0. Since p(— D) contains the sector |arg A| < Tan™' (1/M)
(cf.[1, Lemma 6.1]), the integral in (6) with respect to A, taken around C, is zero.
Using the fact that

sup ||AR(4; —D)| < oo for |0| < Tan™! (1/M)

|arg A| =6
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[1, Lemma 6.1], it follows that the integral with respect to A in (6) is the limit, as
¢ — 0, of integrals in which the path for A is a line parallel to and height ¢ above
the x-axis, from Re 4 = ¢/tan ¢ to oo. Similarly, the integral with respect to p is
the limit of integrals along paths parallel to and slightly below the x-axis.
Calculating residues, we have

(I — eR.YJ*x = J*x — (Sin ”“) | i (( io)g)“aR( L —D) x dA

e 2+1\A+i0+1 I+1

sin ncx —i0 \*
+ [ ( . 8) ]R(u, —D)x dp
sin o A* Ae 7 Ag
( ) J (/1+1) R(,1+1’_D)Xd)‘

(Sm m) e f (e — #)""R(u; —D)x dp
n 0

sin mwor [ ®

. J (u — &) "R(u; —D)x dp.

We make the change of variables u = A¢/(A + 1) in the first integral on the
right-hand side, and obtain

sin
(I — eR,)J*x = e

J (n—&)"*R(u; —D)x du = Rix,

by (3).

We have shown that (5) holds for all x € D(J®), 0 € C* with0 <Re a < 1.
Since both sides of (5) are holomorphic functions of « € C* for x € D(J®), the
equality holds for all x € C* and x € D(J®). Now if x € D(J*) for . € C*, we
use Lemma 1 and the fact that R} and (I — ¢R,)* are bounded operators to
obtain the desired result.

LEMMA 3. Foreachoa e C™ and ¢ >0, R = J(I — eR.)* o (I — ¢R,)\J™

Proof. Let x € D(J*), and suppose that 0 < Re a < 1. Then

() (I = eR.yx = sin 7o

[ 2 IRG: — (1 — RN — eR)x d

/1+1
Ae

s <) a—1
=x~smno¢ A R
n Jy A+1

~i)sxa

by the first resolvent equation. The right-hand side of (7) certainly belongs to
D(J*), and

(8) JNI — eR.y'x = (I — eR,)J’x,
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because J* commutes with the integrand in (7). Since, for x € D(J*), both sides
of (8) are holomorphic functions of & € C*, (8) holds for all « € C*.

Now let x € D(J*), for « € C*. By Lemma 1, there exists a sequence {x,} <
D(J*°) such that x,— x, and J*x,— J*x. Thus (I — eR.)x,— (I — ¢R.)'x,
{(I — ¢R,)x,} = D(J*), and

JI — eR,Yx, = (I — eR,YJ*x, - (I — &R, )"J*x.

Because J* is closed, the inclusion in the statement of the lemma follows. That
R} = J*(I — ¢R,)* follows immediately from Lemma 2, since D(J*) is dense and
both operators are bounded.

We now have:

THEOREM A. For eacha e C™,
Domain(J*) = {x € X | lim R}x exists in X};
=0+

for x € D(J?), J*x = lim,_, 4. R’x.

Proof. Fixa e C*, and let x € D(J*); then (I — eR,f'x » xas & — 0", for all
x € X. Indeed, eR, —» 0 as ¢ —» 0" in the strong operator topology, so we see
from (4) that

R(A; —(I — eR))x — as¢—> 0" forallxeX.

x
A+1
Moreover, |I — ¢R, | < K, where K is a constant which does not depend on «.
Therefore, for each x € X,

R(A; —(I — eR.))I — eR.)x — x ase—0".

1
A+1
In addition, the integrand in the first integral in (7)is O(A%**~')as A - 0", and
is O(A"**~2) as A — co. Therefore it follows from the dominated convergence
theorem that
: o qa—1
sin ma A xdi=x,

I — ¢R.)
(I = eR.Jx T Yy A+1

as claimed.

It now follows immediately from (5) that J*x = lim,_ . R}x. On the other
hand, suppose that lim,.,. Rix exists. Then by Lemma 3,
lim,_o. J*(I — ¢R,)'x exists. Since (I — ¢R,f*x — x, and (I — eR,)’x € D(J*) by
Lemma 3, we have that x € D(J*), and J*x = lim,_,,. R{x, since J* is closed.

In special cases we can now apply Theorem 2.2 in [5] to obtain the boundary
group {J"}, .. Note that if —D is the infinitesimal generator of a strongly
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continuous semigroup {T;},- o such that | T;|| < Lfor all ¢t > 0, then we have the
representation

[«

9) Rix=——[ e 1Txd, xeX,aeC*
0

L
I'(x)
which may be obtained by a direct computation (cf. [2, p. 426]); the regularity
requirement of Theorem 2.2 in [5] may now be weakened.

THEOREM B. Let — D be the infinitesimal generator of a strongly continuous
semigroup {T}, ¢ of uniformly bounded operators, and let {R3}, . ¢+, ¢ > 0, be the
approximating family of semigroups obtained in Theorem A. If for each ¢ > 0
{R%}, cc+ has a boundary group {R¥"}, _ g, and |R¥|| < Me'", where M and v are
constants independent of ¢ > 0, then there exists a strongly continuous group of
bounded linear operators {J™}, . on X such that:

(i) J"x =lim,,q+ RYx, x € X, n € R;

i) 10 < Mo
(iii) J"J*=JJ"=J**" o >0, n € R, as operators in X ; and
(iv) if x € D(J®), then J"x = lim;_o. J**"x.

Proof. First we show that {J*}, ... is a regular semigroup in the sense of
Definition 2.1 in [5]. Since each of the approximating semigroups {R:}, ¢+ has
boundary values on the imaginary axis, we need only check that the following
holds: if y,(s) is the Norlund function of {R}}, . ¢+, and (o, @, ) is the largest
interval such that the equation y,(s) = /2« has a unique solution s, = 54 ()
when0 <oy, <o <oy, < 0o, thena, , > 1. However, it follows from Stirling’s
formula that y,(s) < n/2 for each ¢ > 0. Therefore o, , > 1.

Next, we observe that the set

JJPx =J**Bx, a, >0
J%x strongly continuous, a > 0
J'x—»>xasa—-0"

D={xe () DUJ*)

a,peC+

contains D(J®), so D is dense in X. Therefore, by Theorem 2.2 in [5], (i), (i), (iv)
and the fact that J"J* = J**™ hold. To complete the proof, we show that for
eache>0,and o, { € C*,

(10) RJ* < JR;

in fact, equality holds in (10) if either « or { is purely imaginary. Now if o, { e C*,
and x € D(J*), it is easy to see that Rix € D(J*) and J*Rx = R}J*x. Using
Lemma 1, we obtain (10) in the usual manner.

If Re a = 0 (say a = in), then for x € D(J®), J"x = lim,_,¢. J**"x, so that

RiJ"x = lim RiJ**¥x = lim J*T"Rix = J"Rix for{e C™,
E-0+ &0+
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by (10). Since both sides of (10) are bounded, and D(J*) is dense, equality holds
in (10) if Rea=0, { € C*. A similar argument yields equality in (10) for
Re { = 0,a € C*. Finally, we use (i) to obtain J"J* = J*J" for o > 0, € R. We
omit the easy details.

In particular, if J is the Volterra operator acting in I?(0, c), 1 < p < oo, with
maximal domain, then for f e I?(0, o),

R: f(x)= ()jx I — FIf (t) dr, x € (0, o).

Since we showed in [5, Theorem 4.2] that {R}}, . ¢ . satisfies the requirements of
Theorem B, we obtain as a special case the result of Fisher discussed in the
introduction. (We emphasize that Balakrishnan’s definition of fractional power
gives precisely the Riemann-Liouville fractional integral

e (x j (x— 0 (e) dt

with maximal domain in I?(0, oo). Indeed, if fe D(J) and 0 <Re a < 1, it is
easy to see that the two coincide. Since each operator is equal to the closure of
its restriction to D(J), the rest follows by a familiar argument.)

In the event that — D generates a semigroup as described above, we can
obtain information about the infinitesimal generator of the group {J™}, . g.

COROLLARY. Let A denote the infinitesimal generator of {J™}, .. Then A is
the limit, in the strong generalized sense (cf. [7, VIIL, Section 1]), of the operators
A,, where A, is the infinitesimal generator of {R¥}, . r. Moreover, x € D(A,) if and
only if

x* = J e "logtT,x dt
0

is in Domain(D), and for x € D(A,),
A, x = —i[Cx + (eI + D)x*],
where C is Euler’s constant.

Proof. The statement regarding the A4,’s is proved in [3, Theorem 4 and
Corollary 3.7]. That A is the strong generalized limit of the 4,’s follows from
Theorem IX.2.16 in [7], because of (i) and (ii) in Theorem A.

3. Similarity

Now suppose that M is a closed linear operator acting in X with
Domain D(M), that J satisfies the hypotheses of Theorem B, and that for each
¢ > 0, the following hold:
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(i) A is a non-zero bounded operator on X which commutes with M
and R,;
(ii) R$**D(M) < D(M) for s+ it in some rectangle 0 <s<a, |t| <a,
where a is a constant which may depend on ¢;
(i) R, is M-Volterra with respect to A; that is, R,D(M) < D(M) and
[R,, M] = AR

If we define T, = M + aAJ for a € C, with Domain D(T,) = D(M) n D(J),
then an application of Theorems 3.3 and 3.4 in [5] gives:

THeOREM C. If a, f € C\{0}, and Re o = Re B, then T, is similar to Ty, with
Jim =P implementing the similarity. Also, if D(M) < D(J), then M and T,, are
similar, for n € R.

We point out that in general the perturbations under consideration are not
Kato perturbations (cf. [9, p. 190]). For example, if Mf(x)= xf(x) and
Jf(x) = [? f(t) dt as discussed in the introduction, then D(M) = D(J) (cf. [5,
Lemma 49]). However, if fe D(M), then |Jf|,< |n|p|Mf|, since
Jf = W1§(Mf), where

1 Qo
W S =g 7 =20 dn

x

by Theorem 4.5.11 in [9], || W14 ||, < p. Thus M + inJ is a Kato perturbation if
In] < p.

In [5] we restricted our attention to operators which satisfy the commutation
relation in (iii) above. However, it is natural to assume that the operators M
and R, satisfy a Heisenberg-Volterra commutation relation as discussed in [6].
That is, let M be a closed operator, and suppose that for each ¢ > 0,

(11) R,D(M)<= D(M) and [R,, M]<C,,

where C, is a bounded operator which commutes with R,. Then by the theorem
in [6], M + ¢'(R.)C, is similar to M, where g is any function holomorphic in a
neighborhood of o(R,), and the similarity is implemented by e#®?.

Now assume that lim,_, . C,x = Cx exists for all x € X, and that — D gener-
ates a strongly continuous semigroup {T},, such that ||T;|| < L. Then for
¢>0,¢€ p(—J), and x € Domain(D)if and only if lim,_,,. R(e; —J)x exists in
X. Indeed, the operator D has all the properties required of J, so Theorem A
holds with the roles of J and D reversed. If we set S, = R(e; —J), and assume
that (11) holds with R, replaced by S,, we obtain from the theorem in [6] that

(12) Me ®x = e (M —tC,)x for x € D(M).

But for t > 0, e *:x — T, x, for all x € X, by a classical result. If welet ¢ —» 07 in
(12), we obtain T,x € D(M), for ||e™**| < K uniformly in ¢ >0, and M is
closed; also, MT, x = T(M — tC)x. We have proved the following:
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THEOREM D. Let — D be the infinitesimal generator of a strongly continuous
semigroup {T}}, o of uniformly bounded operators, and let S, = R(e; —J), where
J =D""and ¢ > 0. Suppose that S,D(M) = D(M) and [S,, M] = C,, where C,is
bounded for each ¢ > 0, and that lim,_, . C,x = Cx for all x € X. Then for each
t>0, (M — tC) = MT,.

Remark. 1If D satisfies the hypotheses of Theorem D, and R, = R(e; —D) is
M-Volterra with respect to A, then it is easy to see that S, = R(e; —J)satisfies
the following:

S.D(M) = D(M) and [S,, M] = —A(JS,)* for each ¢ > 0.

Therefore, if we take C,= JS, in Theorem D, we obtain T(M + tA) = MT,
t>0.
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