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1. Introduction. In a recent paper [3] the author has constructed integral operators
which map solutions of the heat equation

hxx = h, (1.1)

onto solutions of the parabolic equation

uxx + q(x, t)u = u, (1.2)

and used these operators to obtain reflection principles for Eq. (1.2) which are analogous
to the Schwarz reflection principle for analytic functions of a complex variable. (We
note that the more general equation

vXx + o,(x, t)vx + b(x, t)v = v, (1-3)

can be reduced to an equation of the form (1.2) by the change of variables

v(x, t) — u(x, t) exp j — | J a(s, t) dsj^ ■

In this paper we will show how these operators can be used to obtain approximate solu-
tions to the first initial boundary value problem for Eq. (1.2) (or (1.3)) in a rectangle
and quarter plane. More specifically, our approach provides an analogue for Eqs. (1.2)
and (1.3) of the method of separation of variables and the "method of images" for the
heat equation, and is an extension of the use of integral operator methods for approxi-
mating solutions of boundary value problems for elliptic equations (cf. [1, 2, 6, 10]) to
the case of initial boundary value problems for parabolic equations. Numerical examples
using the methods described in this paper will be published elsewhere.

2. The first initial boundary value problem in a rectangle. Let u(x, t) be a (strong)
solution of Eq. (1.2) in the rectangle R = {(x, t): — 1 < x < 1, 0 < t < T\ such that
u{x, t) continuously assumes the initial-boundary data

u(— 1, t) = j(t), u( 1, t) = cj(t)-, 0 < t < T, u(x, 0) = h{x)\ — 1 < x < 1. (2.1)

(A strong, or classical, solution of Eq. (1.2) is a solution of Eq. (1.2) which is twice
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continuously differentiable with respect to x, continuously differentiable with respect
to t, and satisfies Eq. (1.2) pointwise.) Let R denote the closure of R and assume that
q(x, t) £ C\R), and that for each fixed x, — 1 < x < 1, q{x, t) is an analytic function
of t for 11 — | < |T. (This domain of regularity is chosen in order to guarantee the
global existence of the integral operators used in this paper—cf. [3].) Our aim is to
construct a function w(x, t) which is a solution of Eq. (1.2) in R and approximates u(x, t)
arbitrarily closely in the maximum norm on compact subsets of R. This will be accom-
plished by constructing a complete family of solutions to Eq. (1.2) in the maximum norm
and then minimizing the L2 norm of a finite linear combination of these solutions over
the base and vertical sides of R.

We first consider Eq. (1.1). In [9] Rosenbloom and Widder have constructed a set
of polynomial solutions to Eq. (1.1) which are defined by

[n/2] n — 2k±k

hn(x, t) = n\ -(n — 2k)! /c!

• (22)K(-ity

where Hn(z) denotes the Hermite polynomials. In [12] Widder showed that the set
[hn(x, 01 was complete in the space of solutions to Eq. (1.1) which are analytic in a
neighborhood of the origin, i.e. if h(x, t) is a solution of Eq. (1.1) which is analytic for
M < x0, |<| < t0 (where x and t are complex variables) then on the rectangle — x0 < x <
x0 , —t0<t<t0, h (x, t) can be approximated in the maximum norm by a finite linear
combination of members of the set \hn(x, 0!- The lemma below shows that the set
{hn(x, 01 is in fact complete for the space of strong solutions of Eq. (1.1) which are
defined in R and continuous in R.

Lemma 2.1. Let h(x, t) be a (strong) solution of Eq. (1.1) in R which is continouus
in R. Then, given e > 0, there exist constants ax , ■ • • , ax such that

max
(x. i>eS

h(x, t) — ^2, a-h„(x, t) < e.

Proof: By the Weierstrass approximation theorem and the maximum principle
for the heat equation [7], there exists a solution w^x, t) of Eq. (1.1) in R which assumes
polynomial initial and boundary data such that

max |h(x, t) — wx(x, £)| < «/3. (2.3)
(i,l)€S

M M

Wii-l, <) = 53 bmtm, Wi(l, t) =
7/1 = 0 771 = 0

and look for a solution of Eq. (1.1) in the form

M

v{x, t) = 23 vm(x)tm (2.4)
771 = 0

where v(— 1, t) = »i(— 1, t), v(l, t) = Wi(l, t). Substituting Eq. (2.4) into Eq. (1.1)
leads to the following recursion scheme for the vm(x):
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Vm" ' 0; l>m( 1) = bin , fjtf(l) = Cm t

Vm-i" = Mvm J Vm-i( 1) = &M-i , = Cm-i > (2.5)

V = fi ; wo(-i) = b0 , t)0(i) = c0 .

Eq. (2.5) shows that each vm(x) is a polynomial in x and is uniquely determined. Now
consider w2(x, t) = wx{x, t) — v(x, t). By the method of separation of variables it is seen
that there exist constants dx , ■ ■ ■ , dL such that

max_
(i, t)eS

W2{x, t) — Jldt sin ^ {x + 1) exp (— < (2.6)

Hence there exists a solution iv3(x, t) of Eq. (1.1) which is an entire function of the complex
variables x and t such that

max \h(x, t) — w3(x, 01 < tt- (2.7)
(x.f)GJS

From the previously mentioned results of [12] there exist positive constants al , ■ ■ • , an
such that

max_
u.t)eS

w3(x, t) — X anh„(x, t) < § , (2.8)

and the proof of the lemma now follows immediately from the triangle inequality.
We now want to construct a complete family of solutions to Eq. (1.2) which is

analogous to the family {hn(x, t)} for the heat equation. To accomplish this we make use
of the integral operators constructed in [3]. Let u{x, t) £ C°(R) be a (strong) solution
of Eq. (1.2) in R such that u(0, t) = 0. Then from [3] we have that u(x, t) can be repre-
sented in the form

u(x, t) = h{x, t) + [ K(s, x, t)h(s, t) ds (2.9)
J 0

where h{x, t) is a solution of Eq. (1.1) in R satisfying h{0, t) = 0 and K(s, x, t) is defined
by

K(s, x, t) = %[E(s, x, t) — E( — s, x, 0] (2.10)

where £(%, tj, t) = E(£ — v, £ + V, t) can be constructed by the recursion scheme

-S(?) V, 0 = lim En(£, 7], t)
n—♦ oo

®i(£, V, 0 = - | fQ g(s, t) ds + q(s, t) ds,

i ri i fEn+i(t, V, 0 = ~2 f l(s, t) ds + - J q(s, t) ds,

Jo f„ \d~t^n^' v' ̂  ~ 5^ + V, t)En(£, V, 0) dri; n > 1. (2.11)
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The sequence {£„} converges uniformly for (x, t) £ R, —1 < s < 1. The convergence
of the sequence \En\ is quite rapid and good approximations can be found by terminating
the recursion process after several iterations. Error estimates for such an approximating
procedure can be found in [3]. If instead of the condition u(0, t) = 0 we have that u(x, t)
satisfies ux(0, t) = 0, then we can represent u(x, t) in the form

u(x, t) = h{x, t) + f M(s, x, t)h(s, t) ds (2.12)
Jo

where h(x, t) is a solution of Eq. (1.1) in R satisfying hx(0, t) = 0 and M(s, x, t) is defined
by

M(s, x, t) = 5[(?(s, x, t) + G(—s, x, <)] (2.13)

where <?(£, y, 0 = *>(£ — y, k + y, t) can be constructed via'the recursion scheme

&(£, 77, t) — lim G„(i, v, 0>
n—»eo

Gn+Ak, V, 0 = q(s, t)ds - | ^ q(s, t) ds (2.14)

+ f J &„(%, V, 0 — ?(?, 17, t)Gn(?, 1), 0^ dy; n > 1.

The sequence {G„j again converges rapidly and uniformly for (x, t) £ R, — 1 < s < 1.
Observing that for n > 0, h2n(x, t) is an even function of x and that for n > 0, h2n+i(x, t)
is an odd function of x, we now define the particular solutions un(x, t) of Eq. (1.2) by

u2n{x, t) = h2n(x, t) + / M(s, x, t)h2n(s, t) ds- n > 0,
Jo (2.15)

U2n+i(x, 0 = h2n+1(x, t) + / K(s, x, t)h2n+i(s, t) ds;
Jo

n > 0.

Lemma 2.2: Let u(x, t) be a (strong) solution of Eq. (1.2) in R which is continuous
in R. Then, given e > 0, there exist constants ax , ■ ■ ■ , aN such that

N

u(x, 0 — 23 a«Un(x, t)max
(1, lies

< e.

Proof: We first show that u(x, t) can be represented in the form

u(x, 0 = h(x, t) + | J [K(s, x, t) + M(s, x, t)]h(s, t) ds (2.16)

where h{x, t) is a solution of Eq. (1.1) in R. Eq. (2.16) is a Volterra integral equation
of the second kind for h(x, t) and can be uniquely solved for h(x, t) where h(x, t) is defined
in R and continuous in R [11]. It remains to be shown that h(x, t) is a solution of Eq. (1.1).
From Eqs. (2.10) and (2.13) we have that K(s, x, t) = —K(—s, x, t) and M(s, x, t) =
M(—s, x, t) and hence we can rewrite Eq. (2.16) in the form

u{x, t) = \{h{x, t) — h(—x, 0) + | f K(s, x, t)[h(s, t) — h(—s, <)] ds

+ \{h(x, t) + h( — x, 0) + | J M(s, x, t)[h(s, t) + h(—s, <)] ds. (2.17)
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Applying the differential operator (1.2) to both sides of Eq. (2.17), using the fact that
K(s, x, t) and M (s, x, t) are solutions of the following initial boundary value problems [3]

Kxx — K„ + q(x, t)K = Kt , (2.18a)

K(x, x, t) = —^ [ q(s, t) ds, K(0, x, t) = 0, (2.18f>)
Z J o

Mxx — M„ + q(x, t)M = M, , (2.19a)

M(x, x, t) = —^ f q(s, t) ds, Mx(0, x, t) = 0, (2.196)
Z J o

and rewriting the resulting expression in the form of Eq. (2.16), gives

0 = (hxx — ht) + | J [K(s, x, t) + M(s, x, t)](h,,(s, 0 — h,(s, t)) ds. (2.20)

Since solutions of Volterra integral equations of the second kind are unique we can
conclude that h(x, t) is a solution of Eq. (1.1) in R.

Using Lemma 2.1, we now approximate h(x, t) by a linear combination of the poly-
nomials defined in Eq. (2.2) such that

max
(i, 1)6 R

where

h(x, t) — ^2 anh„(x, t)
n = 0

C = max |K(s, x, t) + M(s, x, t) \.

< (2.21)

(x , t) €R
~1<8<1

Eqs. (2.16), (2.17) and the fact that h2n(x, t) is an even function of x and h2n+l(x, t) is
an odd function of x for n > 0 now show that

max
(i.oeS

ZV

u(x, 0- E a"u»(x> o < 6. (2.22)

Theorem 2.1: Let u(x, t) be a (strong) solution of Eq. (1.2) in R which is continuous
in R and satisfies the initial-boundary data (2.1). Let R0 be a compact subset of R. Let
N he & positive integer and define akn and bk , 1c = 0, 1, • • ■ , N, n = 0, 1, • • • , N, by
the formulas

akn = [ un{— 1, t)uk(— 1, t) dt+ f un{x, 0)uk{x, 0) dx + [ «„( 1, t)uk(l, t) dt,
J 0 *^-1 ^0

bk = fT t) dt + f h(x)uk(x, 0) dx + f g{t)uk(l,t) dt. (2.23)
J 0 *'-1 ^0

Then there exists a unique solution Ci , • • • , cN of the linear algebraic system

k = 0, 1, ••• ,N, (2.24)
n = 0

and given « > 0 we have

max
Is.llE R0

,(x, /.) - cnu„(x, t) < 6 (2.25)

for N sufficiently large.
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Proof: Let G(x, t, £, r) be the Green's function for Eq. (1.2) in R. Then u{x, t) can
be represented in the form

u(x, 0 = ^ ~ G(x, t, -1, r)f(r) dr - ^ ^ G(x, t, 1, r)fil(r) dr

+ £ G(x, t, {, 0)h(Q dk (2.26)

where G(x, t, £, r) is continuous for (x, t, £, t) G S0 X OR. Hence for (x, t) £ Rn we have
by Schwarz's inequality

max \u(x, 0|2 < C
(i.DEB,

£ l/(r)|2 dr + £ |g(r)|2 dr + £ |/l©|2 df] (2.27)

where

C = max { [ j;G(x, t, —1, t) dr + [
(x,l )€R0 l-'O O? Jo

^ G(x, t, 1, r)

+ £ |G(z, <^,0)|2^. (2.28)

From Lemma 2.2 we can conclude that for N sufficiently large there exist constants
Ci , • • • , Cjy such that

max
(i. oefl

m(:c, t) ~ Yh cnu„(x, 0 < 2C(T + 1) (2'29)

and Eq. (2.27) (applied to m(x, 0 ~ cnU.Xx, t) instead of u(x, t)) shows that a
suitable choice of the constants , ■ • • , cN can be determined by minimizing the quadratic
functional

Q(ci , • ■ ■ , c„) = [
Jo

/(r) — £ C„U„(—1, r)

+

ra = 0

N

2

dr

r> T N | 2 M

/ 0M - 2 <VU„(1, r)l dr + /
J 0 n-0 I ^ -1

ft(£) - 22 C„W„(£, o) (2.30)

We note that Q(ci , • • • , cA-) is always positive or zero and hence its only stationary point
represents a minimum. This minimum can be found by solving the set of equations
dQ/dck = 0 and this leads to the system (2.23), (2.24). Since the set {un(x, 0 }»«<>* is
linearly independent (this follows from the fact that the set {v„(x, OL-o^ is linearly
independent) the coefficient matrix (akn) is nonsingular and hence the system (2.23),
(2.24) has a unique solution. (Here use has been made of the fact that if a solution of
Eq. (1.2) vanishes on the base and vertical sides of R it must be identically zero through-
out R [7]). If C[ , • • • , c,v is the solution of the system (2.24) then Eqs. (2.27) and (2.29)
imply the validity of Eq. (2.25).

We note in passing that error estimates for the above approximation procedure can be
found if one can estimate the maximum of |u(x, t) — 22"-oA cnun{x, 0| on the base and
vertical sides of R. The maximum principle for parabolic equations [7] then immediately
gives estimates for \u(x, t) — 23»-o" cnu„{x, 01 in the interior of R.
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3. The first initial boundary value problem in a quarter plane. In this section we
will derive constructive methods for approximating solutions of Eq. (1.2) which satisfy
the initial-boundary data

«(0, 0 = 0; 0 < t < T,

u(x, 0) = /(x); 0 < x < 00,

where we assume / (x) is continuous, / (0) = 0, and there exist positive constants M and A
such that

|/(x) | < M exp Ax; 0 < x < oo. (3.2)

We will look for a solution u(x, t) of Eq. (1.2) in 0 < a; < , 0 < t < T < 1/4 A which
is continuous for 0 < x < <*>, 0 < t < T, satisfies the initial-boundary data (3.1), and
satisfies a bound of the form

|u(x, i)| < Mi exp A,x2; 0 < x < oo, 0 < t < T (3.3)

for some positive constants Mi and Ai (cf. [7], Ch. 4). For the sake of simplicity we will
only consider the case when q(x, t) = q(x) is independent of t, and make the assumption
that q(x) is continuously differentiable for 0 < x < and is bounded in absolute
value by a positive constant C for 0 < x < °°. In order to exploit the construction of the
kernel K(s, x, t) already given in Eqs. (2.10), (2.11) we will assume without loss of
generality that q(x) has been extended to a continuously differentiable function defined
for — co < x < . The method we will use to solve the initial-boundary value problem
(1.2), (3.1), is basically an application of the reflection principle (or "method of images")
for parabolic equations derived in [3].

We look for a solution of Eqs. (1.2) and (3.1) in the form

u(x, t) = h(x, t) + f K(s, x)h(s, t) ds (3.9)
Jo

where K(s, x) is defined by Eqs. (2.10) and (2.11) (noting that q(x, t) = q(x) is indepen-
dent of t and hence so is K(s, x, t) — K(s, x)) and h(x, t) is a (strong) solution of Eq. (1.1)
for 0<x< oo, 0 < t < T, satisfying h( 0, t) = 0. Note that by the reflection principle
for the heat equation we can conclude that h(x, t) is in fact a solution of the heat equation
for — oo < x < oo; 0 < t < T and hence u(x, t) is a strong solution of Eq. (1.2) in this
region. Evaluating Eq. (3.9) at t = 0 leads to a Yolterra integral equation of the second
kind for the unknown function h(x, 0) and from this data along with h(0, t) = 0 it is
possible to construct h(x, t) in the region 0 < x < oo)0<<<71, provided we know that
h(x, 0) satisfies a bound of the form (3.2). However, the construction of h(x, 0) and the
estimation of its rate of growth is based on the construction and rate of growth of the
resolvent kernel for Eq. (3.9). But the resolvent kernel is obtained by an iteration pro-
cedure involving the kernel K(s, x) which in turn is constructed by the iteration procedure
(2.11). Hence, in order to solve the initial boundary value problem (1.2), (3.1) by the
use of the integral operator (3.9), it is important to provide a better method of construct-
ing the resolvent kernel for Eq. (3.9). We will now show how this can be done by reducing
the construction of the resolvent kernel to the problem of solving a Goursat problem for
a hyperbolic equation.

We look for a solution h(x, t) of Eq. (1.1) in the form
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h{x, t) = u(x, t) + f T(s, x)u{s, t) ds (3.10)
J 0

where u(x, t) is a solution of Eq. (1.2) in 0 < x < °°; 0 < t < T, is continuously dif-
ferentiate for 0 < x < oo, 0 < t < T, continuous for 0 < x < oo, 0 < t < T, and
satisfies the boundary condition w(0, t) = 0 for 0 < t < T. Substituting Eq. (3.10)
into Eq. (1.1) and integrating by parts shows that h(x, t) will be a solution of Eq. (1.1)
provided r(s, x) satisfies the Goursat problem

r« - r„ - q(s)T = 0 (3.11a)

T(x, x) = \ f q(s) ds, T(0, x) = 0. (3.11b)
£ Jo

From [5, p. 119], it is seen that the unique solution f(|, ri) = r(£ — rj, £ + rj) of Eqs.
(3.11a), (3.11b) is given by the iterative scheme

f(£, ,) = lim Tn(£, ri),
n—♦ oo

r.G, V) = \ £ «(«) ds, (3.12)

r„+itt, '?) = !_/ «(s) ds - fo ^ v) dt dv; n > 1.

Hence the existence of the operator (3.10) is established. From the initial conditions
(3.11b) and (2.18b) satisfied by the kernels r(s, x) and K(s, x) respectively, it is seen that
the operators (3.9) and (3.10) leave the Cauchy data assumed by h(x, t) and u(x, t)
invariant. Hence from the uniqueness of the solution to Cauchy's problem for parabolic
equations [8] we can conclude that the operators defined by Eqs. (3.9) and (3.10) are
inverses of one another, i.e. r(s, x) is the resolvent kernel of the operator (3.9).

We now want to obtain an estimate on the rate of growth of T(s, x) for 0 < s < x,
0 < x < oo. Since x = £ + y, s = £ — rj, it is seen that under these restrictions on s and x
we have £ > 77, 77 > 0. Since |g(a:)| < C for 0 < x < 00( it is seen from Eq. (3.12) that
for £ > t], > 0, |r(£, 77)| < P(£, t]) where P(£, ri) is defined by the recursion scheme

P(£, v) = lim P„(£, ri),
n—♦ 00

P,(£, ri) = Q, (3.13)

-Pn + i(£, v) = Q + C f [ P„(£, ?j) <f£ dr).
J 0 J 0

Hence

P& V) = £
C'A: 4-1 f A; + 1 kv

ti (k + 1)! fc!

^ rt v W (3.14)- h k\ fc!
= C£/0(2(C£„),/2)

where I0(z) denotes the modified Bessel function of the first kind. From the asymptotic
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expansion of I0(z) (cf. [4]) we can now conclude that there exists a positive constant Ci
such that

0 < P& „) < C£ exp (2(C£r,)1/2); (3.15)

i.e. for 0 < s < x, 0 < x < °°,

|r(s, x)\ < CiX exp (VC x). (3.16)

From the above analysis and the fact that K(s, x) satisfies a Goursat problem of the
same form as T(s, x) (cf. Eqs. (2.18a), (2.18b)), it is seen that for 0 < s < x, 0<x< °°,
K(s, x) also satisfies the inequality

\K(s, x)\ < Cxx exp (VC x). (3.17)

We now return to the initial boundary value problem (1.2), (3.1). From Eqs. (3.2),
(3.10) and (3.16) we have

g{x) = h{x, 0) = f(x) + [ T(s, x)j(s) ds (3.18)
Jo

and for 0 < x < <»

\g(x)\ < M exp (Ax2)[ 1 + CtX2 exp a/C x]

< C2 exp [(A + t)x2] (3.19)

for e > 0 fixed but arbitrarily small and C2 a positive constant. Using the "method of
images", we now define the solution h(x, t) of Eq. (1.1) by

h(x, t) = f |s(a; - y,t) - s(x + y, t)}g(y) dy (3.20)

where

s(X)i) = (dr exp(_l)' (3-21)
From [7] it is seen that h(x, t) is a strong solution of Eq. (1.1) for — <*> < x &, 0 < t < T,
is continuous for — co < x < <*>, 0 < t < T, assumes the initial-boundary data h{0, t) =
h{0, t) = 0, 0 < t < T, h(x, 0) = g{x), 0 < x < <», and satisfies \h(x, /)| < M2 exp A2x2
for suitable constants M2 and A2 and 0 < x < =°, 0 < t < T. Since from our previous
discussion we have

j(x) = g{x) + [ K(s, x)g(s) ds, (3.22)

it is seen that Eqs. (3.18), (3.20) and (3.9) now define the solution of the initial boundary
value problem (1.2), (3.1) for 0 < x < , 0 < t < T. From Eq. (3.17) and the bound on
h(x, t) we can conclude that the inequality (3.3) is valid.

For (x, t) restricted to compact subsets of 0 < x < =°, 0 < t < T, approximations
of the solution to the initial boundary value problem (1.2), (3.1) can be obtained by
using the recursion schemes (2.10)—(2.11) and (3.12) to approximate the kernels K(s, x)
and T(s, x) respectively. Error estimates for such an approximation procedure can be
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found from estimates of the form (3.13), (3.14). For (x, t) again restricted to compact
subsets of 0 < a; < co, 0 < t < T, the improper integral (3.20) can be accurately approx-
imated by a proper integral by setting s(x, t) = 0 for |x| sufficiently large. This is partic-
ularly useful if j{x) satisfies a bound of the form |/(x) | < M exp Ax instead of the bound
in Eq. (3.2), since in this case an estimate of the form (3.19) leads to a similar bound for
g(x), thus speeding up the convergence of the integral (3.20). The problem of dealing
with the improper integral (3.20) is avoided completely if we make the assumption that
q(x) and f(x) both vanish for x > x0 ■ In this case we have from Eq. (3.18) that

g(x) = [ T(s, x)/(s) ds (3.23)
Jo

for x > x0 . But for x > 3x0 we have £ > -q = %(x — s) > xQ , and hence from Eq. (3.12)
it is seen that r(s, x) = 0 for 0 < s < x0, x > 3x0. Therefore from Eq. (3.23) it is seen
that g(x) = 0 for x > 3a:0 and the integral (3.20) reduces to a proper integral.
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