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THE APPROXIMATION OF THE EXACT
BOUNDARY CONDITIONS AT AN ARTIFICIAL BOUNDARY

FOR LINEAR ELASTIC EQUATIONS AND ITS APPLICATION

HOUDE HAN AND XIAONAN WU

Abstract. The exterior boundary value problems of linear elastic equations
are considered. A sequence of approximations to the exact boundary condi-
tions at an artificial boundary is given. Then the original problem is reduced
to a boundary value problem on a bounded domain. Furthermore, a finite ele-
ment approximation of this problem and optimal error estimates are obtained.
Finally, a numerical example shows the effectiveness of this method.

1. Introduction

Many boundary value problems of partial differential equations arising in
practical applications are given on unbounded domains, such as coupling of
structures with foundation and fluid flow around obstacles. In finding the nu-
merical solutions of these problems, it is often difficult to use the classical finite
element or finite difference method. In engineering, the usual method is to in-
troduce an artificial boundary and cut off the unbounded part of the domain
and to set up an artificial boundary condition at the artificial boundary of the re-
maining bounded domain. For example, the Dirichlet condition and Neumann
condition are often used for elliptic partial differential equations. In general,
this artificial boundary condition at the artificial boundary is only a rough ap-
proximation of the exact boundary condition. Hence, the remaining bounded
domain must be quite large when high accuracy is required. For such large
domains, it is still difficult to compute the numerical solution.

In 1985, we found the exact boundary conditions at an artificial boundary
for the Laplace equation as a model equation [7]. Moreover, a sequence of
approximations to the exact boundary condition at the artificial boundary was
given, and we reduced the original exterior problem to an equivalent (or approx-
imate) boundary value problem on a bounded domain with integral boundary
conditions. Then we solved the approximate boundary value problem on the
bounded domain by a finite element method. An optimal error estimate of
the finite element approximate solution was obtained and a numerical example
showed the effectiveness of this method.
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22 HOUDE HAN AND XIAONAN WU

Boundary value problems on unbounded domains have been studied for
many years. For example, in 1982, Goldstein [3] studied Helmholtz-type equa-
tions. The problem was replaced by a boundary value problem on a fixed
bounded domain. The behavior of the solution near infinity is incorporated
in a nonlocal boundary condition. In 1984, Feng [4] studied asymptotic radia-
tion conditions for the reduced wave equation; in 1986, Hagstrom and Keller
[5] studied the exact boundary condition at an artificial boundary for partial dif-
ferential equations in cylinders. Shortly thereafter, they used this technique to
solve nonlinear problems of both elliptic and parabolic type [6]. This technique
is a rather natural extension of related work on ordinary differential equations
over infinite intervals by Keller [9], Jepson and Keller [8], and Lentini and Keller
[11]. In 1988, Lenoir and Tounsi [10] studied the various convergence proper-
ties of the localized finite element method for the two-dimensional sea-keeping
problem.

In this paper we show how this technique applies to the exterior problem for
the linear elastic equations and obtain its finite element approximation on a
bounded domain. An optimal error estimate of the finite element approximate
solution is given; moreover, a numerical example shows this technique to be
very effective.

2. The exact and approximate boundary conditions
at an artificial boundary

Let T, be a bounded, simply closed curve in R2, and let Q be the unbounded
domain with boundary T,. Consider the following exterior boundary value
problem:

.        ..        , d   (du     dv\        , n-MM-(A + /.)-^- + -J=/I    inn,
,,       , d   (du     dv\       ,    .    _.-Mv-(A + /t)-^- + -J=/2    inQ,

u = 0   on T,,
v — 0   on T,,

u, v are bounded when r = (x2 + y2)1^2 —► +oo,

where (u,v) is the displacement, X,fi > 0 are the Lamé constants, and
(/i 5/2) is the density of the applied body force, the support of which is com-
pact.

This problem is defined on an unbounded domain Q.. The usual method
engineers use is to draw a circumference Te with radius R. Then Q is divided
into two parts; the bounded part and the unbounded part are denoted by Q,
and Çie (see Figure 1). Furthermore, suppose that the support of (f\, f2) is
in O.,. If a certain boundary condition on the artificial boundary Te is given,
then we could solve the problem ( 1 )-(4) on the bounded domain Í2,. The goal
of this section is to derive the exact and an approximate boundary condition
for the solution of problem (l)-(4) on Te.

We now consider the boundary value problem of linear elastic equations on

(1)

(2)

(3)
(4)
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Figure 1

the unbounded domain Çle with boundary Te :

(5)

(6)

(7)
(8)

. d (du    dv\    n-MM-(A + M)_^_ + _j=0   in«,,

..     , a (du   dv\    .

u\re = u(R, 9),
v\re=v(R,6),

u, v are bounded when r -* +oo.
We know that the problem (5)-(8) has a unique solution (u, v) if (u(R, 9),
v(R, 9)) is given. This solution (u, v) can be found in [13, §83]. For our
application, the solution (u, v) is given in the following form [7]:

(9)
(10)

u(r, 9) = (r2 - R2)WX + G,,
v(r, d) = {r2-R2)W2 + G2,

where x = reos6 and y = rsinö . Here G\, G2, W\, and W2 are harmonic
functions, and

(11)

(12)

with

(13)

(14)

(15)

(16)

Gl(r,6) = ^ + ¿(a„ cosn9 + bn sinn9)r~n ,
n=\

G2(r, 9) = y + J2(c" C0S "ö + dn sin "ö)''"" -
n=l

Rn   [¿n
an = — /    u{R, 9) cos«Ö i/o,        « = 0,1,2,...,

n Jo
R"   t2n

b„ = —        u(R, 9)sinnÔd6,
n Jo

Rn   (2n
c„ = — /    v(R, 9)eosn9d9,

n Jo
Rn   í2n

d„ = — /    v{R, 9) sinn6d0,
n Jo

n = 1,2,...,

« = 0, 1,2,...,

n = 1,2, ... .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 HOUDE HAN AND XIAONAN WU

Furthermore, let

(17)

Then we know that p is a harmonic function, and

du     dv      _. , u— + — = 8 := -Kp   and   k = -fa—.dx     dy X + ß

(18)

with

(19)
(20)
and

(21)

(22)

p(r, 9) = ^2(p„cosne+p2sinne)r ",
n=2

(\ + k)p„ = (n- l)(fl„_i -d„-i),

{\ + K)pl = {n-\)(b„-l + c_i),

1  ^^(r» ö) = -J]{^cos(« + l)ö+p„2sin(« + 1)0}/--"-'
n=2

.    oo

^(f. fl) = 7 E(P] «"(« + !)ô -P» cosfn + l)9}r-"-'.
n=2

Finally, a computation shows

(23)

(24)

xlVi+yW2 = \p,
\ (ad     dG2\

2+K)P = ~\dx   '   dy)
We now discuss the stress on the boundary Ye . From

Ar, = Ae+2/í-,   ^ = y, = ̂ _ + -j,   r^Ae+2/i-,
we obtain the vector components of stress acting on the boundary Ve :

X„ = (Xx cos e + Xy sin ö)| r,,        y„ = (Xy cos 0 + 7^ sin 0)| Tt.
Furthermore, we get

(   du     , .       du        .       öu   .   _\
" = I ß-r.-AKpcose + fi— cosö + /í— sinö 1

= < p.—-Axpcos0 + 2p.x{W¡ cos 6 + W2 sin0)

+//-T—cos0 + //—— sin0dx dx L
dw .      3u + A .     öGi        .     dG2   .   n

= ß [ — - P eos 0 + ^tttttt/7 cos " + ~— cos " + ~— sin "9r    " 2(A + /i)
The last equality comes from (17) and (23).

A computation shows

dx dx r=R

du-pcos9dr = 2RWl(R, 9) +
dG

r=R
2 + 2k dG,
\+2k   dr

dr

+

-p{R, 9)cose
r=R

1 dG2
r=R (1+2k)R de r=R

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXACT BOUNDARY CONDITIONS FOR LINEAR ELASTIC EQUATIONS

By equality (24) we have

25

3ß +1
2(A + p)p cos 0 = 3ß + A

2(1 +p.)
— (-
1+2k V

dG
dx

dG2

(dG{     dG2\
\dx       dy )

Hence, we get

(25) Xn(u,v) = p

Similarly, we can get

(26) Y„(u,v)=n(j

dy

2 + 2KdGi

r=R

COS 9.

dy r=R
COS 9

r=R

1 -f 2k dr

2 + 2hcdG2

2k      dG2

r=R

+ 2k dr +
r=R

[1+2k)R 00

2k      dGi
{1 + 2k)R d9

r=R

r=R

Substituting (11)—(16) into (25) and (26) and integrating by parts, we obtain
the vector components of stress acting on the boundary Te,

°°      i-Iti o2
X„(u,v) =

2 + 2k ß
1 + 2kkR~

(27)

d2u(R, <p) cos«(0 - tp)
dtp2 n

2k    ßdv{R,9)
\ + 2kR      d9

dtp

Y„(u,v)

= Ty(u,v),
2 + 2k ß °°    r2n f)2

1 + 2k uR — Jo
d2v{R, (p)cosn(9-<p)

dtp2 n
dtp

(28) + 2k    ßdu{R,9)
1+2kR      dt

= T2(u, v).

The formula can also be rewritten in the following form:

°°     r2n a2
X„(U, V)

(29)

2 + 2k ß
1 + 2k nR -

n=\

d2u(R, <p) cosn(9 - <p)
"dtp2 n

dtp

00     rln q22k     ß  ^  f
"   1 + 2/C 7TÄ \ Jo

d2v{R, <p)sinn{9 -
dtp2 n

dtp,

Y„{u,v) = 2 + 2k ß
T+2KnR

00        ç2%   o2

(30)
U d2v(R, tp) cos«(0 - <p)

dtp2 n
dtp

00      ein a2

+
2k     ß

1 + 2kkR-
d2u(R, tp)sinn(9 - tp)

dtp2 n
dtp.

We now get the exact boundary condition (27)-(28) (or (29)-(30)) at the ar-
tificial boundary Te. Then the restriction of the solution (u,v) of problem

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(l)-(4) to the bounded domain Q, is a solution of the following problem:

(3!) _M„H, + rt¿(g + g)=/l   lníí„

(32) -M,-a + A)A(|í + g)=/2    ¡níi,,
(33) u = 0   on T,,
(34) u = 0   onT,,
(35) X„ = Ti(w,u)   on r,,,
(36) y„ = r2(w,t;)   onTe.

This is a boundary value problem with global boundary condition on Ye. Let

N     r2n ¿>2,7^M  ?A_2 + 2k "  V rd2u{R,tp)cosn(9-tp)
^^^'-TT^jR^Jo    ~dV2 n d<P

n=\

2k     ß  A f2n d2v(R, tp)sinn(9-(p)  ,
1+2K71R

n=\

Tff«  ^-2 + 2k » ST flnd2v{R,(p)cosn{9-tp)
I2{U'V)-TT2k~1œ2^        —ají n df>

2k     ß A f2n d2u(R, f)smn{9-tp)
+ l+2K7tR^L dtp2 n dq>

n=\

and Tf(u,v) = 0,  r2°(w, v) = 0.  Then we get a sequence of approximate
boundary condition on the artificial boundary Te,

(37) Xn = TxN(u,v)   onT,,
(38) Y„ = T2N(u,v)   onrf,

for W = 0, 1, 2, ... . When N = 0, then (37)-(38) reduces to

X„ = 0   on re,       7„ = 0   on re,

which is often used in engineering.
By means of the approximate boundary condition (37)-(38), we reduce the

original problem (l)-(4) to the following problem on the bounded domain Í2,
approximately for N = 0, 1, 2, ... :

(40) _„it,Mi + /i)l.(g + |ï)=/2   ¡„a,,
(41) w = 0   onT,,
(42) u = 0   on r,,
(43) X„ = TiN(u,v)   onrf,
(44) Yn = Tfau,v)   onff.
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In the following section we will show that the boundary value problems (31)-
(36) and (39)-(44) are well posed.

3. The solution of problems (31)—(36) and (39)-(44)

Let Hm(Qj) and Hs(Te) denote the usual Sobolev spaces on the domain £!,
and the boundary Fe, with integer m and real 5 . Furthermore, let

Hl{ni) = {veHl(Qi);v\r¡ =0}   with norm ||v||, >n,.,
V = Hl(Qi) x HUQ,)   with norm \\(u,v)\\2v = ||«||?>Q( + ||«||?>0(.

Then the boundary value problem (31)—(36) is equivalent to the following vari-
ational problem:

Find (u, v) e V such that
A(u, v; Ü, v) + B(u, v ; it, v)

(45) = if (fiü + f2v)dxdy   V(fi,«)€K,

where
A(u, v ; ü, v)

JJci,\   \dx     dy)\dx     dy J \dxdx     dy dy )
(dv     du\ (dv     dü\]   ,    ,

»\d-x + d-y)\o-x + d-y))dxdy\öx     öyj
V(w, v), (ü, v) e V,

B(u, v;u,v)
°°     t2%    r2n_ 2 + 2K/¿y> f2n f2n (du{R, <p)dü(R, 9)     dv{R, tp) dv(R, 9)\

~~ \ + 2Kitj^JQ    J0    \      dtp d9 dtp d9      J

dtp de
n=\ '

cos«(0 - tp)

2k    ^Apri   dv(R,<p)dü(R,9)     du(R, <p)dv(R, 0) )
+ i + 2K7t^iJ0   J0   {      dtp        d9  ~+    dtp        d9    j

sin«(0 - tp)
n

Furthermore, let

BN(u, v;ü,v)
N      r2n    r2n

dtpd9   V(u,v),{ü,v)eV.

_ 2 + 2Kßy, í2n f2n (du{R, tp)dù{R,9)     dv{R,tp)dv{R, 0)1
'' ï+2kti^J0    J0    \      dç> d9 dtp d9      }

dtp de
n=\

cos«(0 - tp)
n

N      r2n    i-2n2k    /¿vW     f    {   dv(R,tp)dü(R,9)     du(R, <p) dv{R, 0)]
hi + 2K^^y0  J0   [dy        de    +    dtp       d9    )

dtpd9   V(k,u), (ü,v) e V.

n=\

sin«(0 - tp)
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28 HOUDE HAN AND XIAONAN WU

Then the boundary value problem (39)-(44) is equivalent to the following vari-
ational problem:

Find (uN, vN) 6 V such that
_46. A(uN,vN;u,v) + BN{uN,vN;u,v)

= JJ (M + f2v)dxdy   V(Ö,*)6K

From Korn's inequality [12], we know that the following holds.

Lemma 1. The bilinear form A(u, v; ü, v) is symmetric, bounded, and coercive
on V x V. That is, there are two positive constants Mq and ßo such that

\A(u,v; ü,v)\ <Mo\\(u,v)\\v\\(ù,v)\\v   V(u,v), (ü,v)e V,
A{u,v;u,v)>ß0\\(u,v)\\2v   V(u,t>)e V.

For the bilinear forms B(u, v ; ü, v) and BN(u, v ; ü, v), we have

Lemma 2. The bilinear forms B(u ,v;it,v) and B^(u ,v;ü,v) are symmet-
ric and bounded on V x V, i.e., there is a constant Mi > 0 such that

(47) |Ä(ii,»;fl,«)|<Jfi||(ii,t>)||K||(fi,«)||K   V(«,«),(fi,«)€K,
(48) \BN(u,v;ü,v)\<Mx\\(u,v)\\v\\{ü,v)\\v   V(m, v), (Ü, V) € V.

Furthermore,
B(u,v;u,v)>0   V{u,v)eV,

BN{u,v;u,v)>0   V(u,v)eV.
Proof. We recall an equivalent definition of Sobolev space Hs(Te) [14]:

oo

u e Hs(Te) «• u = y + ^2(ancosn9 + bnsinn9)2
n=\

/ \ 1/2
and JIulU,, =    ^ + ¿(1 + n2Y(a2n + b2n) )

n=\

where ||m||a,j is an equivalent norm in Hs(Te).
For any (u, v), (it, v) e V we know that u\ r,, v| rf, u\ re, and ù| r-, belong

to the space Hxl2(Te) by the trace theorem. Assume
DC

u(R, 0) = — + ^2(a" cos M^ + ^" sm w^) '2
n=l
DC

u(i?, 0) = y + ^(c„cos«0 + i/„sin«0),2
n=l

DC

«(/?, 0) = y + ^(à„ cos «0 + ¿>„ sin «0).2
/!=1
DC.

v(R, 0) = y + ^(c„cos«0 + J„sin«0).2
n=l
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Then

EXACT BOUNDARY CONDITIONS FOR LINEAR ELASTIC EQUATIONS 29

\ i/2a0
■t-

n=\

u{R,9)UAI2=   ^ + £(l+«2)l/2(a2 + è2)       <oo;

Co
DC 1/2

\ !/2

2
n=l

û(A,e)||Ail/2=  f+ £(i + «2)1/2(a2 + ¿2)     <00<2

¿o
,1/2=  I

A computation shows

K=l /

\ 1/2
*(Ä,ö)||A,1/2=M + C(l+«2)1/2(c2 + i/2)j      <oo.

B(u,v;u,v) = -j¡—^-2^n{anan + b„bn+cncn+dndn}
n=\
DC'

+ (1 *^\ ^2 nia»d" ~ b»ë" * c"~b" + d"ä"}
n=\

DC

= M l^\Y^n^X + K)(a„ä„ + b„bn + cnc„ + dnd„)
[l +¿K) n=l

+ K(a„d„ - bnc„ - c„bn + d„än)}
1/2íH^e {g "«+*+*+*}

¿«(¿2 + ¿2 + c2 + í/2)
1/2

.«=1

^ 4(1 +K)7tß... ... ....     ....
-    (1 + 2k)   «("'^Iki/zlK«. u)IU,i/2
^ 4(1 +K)7r/ic..,       ... ....   ....
<     (1 + 2k)    IKM^)lli/2,rJI(M^)lli/2,rf,

where the last inequality is a consequence of the fact that ||w|U, i/2 is equivalent
to the norm  ||«||i/2,r,   in trie Sobolev space Hxl2(Te), and c is a constant
independent of N. By the trace theorem we obtain the inequality (47).

Furthermore,

2nß
(1+2k)

DC

B{u,v;u,v) = J^ntâ + bî + cï + d2
n=\

2   ,   „(„     ,   A \2i+ k(¿>„ - cny + K(a„ + d„)2} > 0    V(M, V) 6 K
Similarly, for 2?at(w, t; ; ü, v) we obtain

|ÄAf(«,w; m, ô)| <M,||(w,t;)|MI(",ö)lk   V(m,u), («,«)€ F,
BN(u,v; u,v) >0   V(k,»)éK

The proof of Lemma 2 is completed.   D
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On the other hand, we have

\B(u,v; Ü, v) - Bf/(u, v; u,v)\

2(1 +K)nß
;i + 2k)

^ n{a„ä„ + b„b„ + c„c„ + d„d„}
n=N+l

+ (TT2^T  ^  n{a„d„ - b„c„ - c„b„ + d„ä„}
^ ' n=N+\

i^7^r{ t n(ai + H + d + Am
,n=N+\ J

■^ 1/2

4(1 +K)7lß
(1+2k)

E    n(än + ft + ¿I + ft)
t=N+\

4(1 +K)7lß

,n=N+l )
\ 1/2

tki-r>i;/^     ■   y-  (   2)fc-,/2(  2     ¿2       2     rf2) I
- (1+2k)A^-i \„^, 1"« + °« + ^ + «^!

f     do .1/2
•      £   n(ä2n + b2 + c2 + d2n)\

Kn=N+\ J

- ^=Tll(M'v)IU-i/2,rJI(w,*)l|i/2,rP,    Vk>2.

Hence we obtain the following error estimate:

Lemma 3. The following error estimate holds:

(49) \B(u, v; ü, v)-BN(u, v ; ü, v)\ < jy^rrlK", *>)llfc-i/2,rj!(", «)lli/2,r, >

with k > 2 and c a constant independent of N, (u, v), and (ü,v).   G

Theorem 1. Suppose fi,f2& H~[(Ci¡) ; then the variationalproblem (45) has a
unique solution (u, v) e V and problem (46) has a unique solution (h#, Vf/) e
V. Furthermore, we have the following error estimate.

(50) [u-uN,v-vN)\\v <   - jyfc_, ll(M,tt)llfc-l/2,r,.

froo/. By Lemmas 1 and 2, we know that ,4(m, w ; ü, v) + B(u, v ; w, v) and
,4(M,t;;w,t))+ ##(«, t;;£i,t)) are two symmetric, bounded, and coercive bi-
linear functionals on V x V . By Cauchy's inequality, (f , f2; ü, v) is a linear
functional on V . From the Lax-Milgram theorem [2], we obtain that the prob-
lem (45) has a unique solution (u, v) which is the restriction to fi, of the
solution (u, v) of the original problem (l)-(4), and the problem (46) has a
unique solution (u#, Vn) .

Let e\ — u - ux and e2 — v - Vn ; then (e\, e2) satisfies

A(ei,e2;ü,v) + BN(ei,e2;ü,v)
= BN(u, v; Ü, v) - B(u, v;ù,v)   V(û, v) e K.
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Taking ü = e\ and v = e2 in (51), we get

ßo\\{e\, ei)\\l <A(el,e2;el,e2) < \BN(u,v;ex, e2) - B(u, v ; ex, e2)\

- Jjlh\\\(u>v)\\k-i/2,re\\{ei, e2)\\v.
The last inequality comes from Lemma 3.   The inequality (50) now follows
immediately.   □

4. The finite element approximation of problem (46)

For the sake of simplicity, let Y¡ be a polygonal line, and ^ be a triangu-
lation of Q, satisfying

where K is a triangle and K is a curved triangle with a curved side on Te,
and

Pk
where hk - diameter of K or K, pk = diameter of the inscribed circle of K
or K, and h = max,, ^^crhk. Let

A , A fc.-'/j

Sh(Qj) = {v e Hl{toi), v\k (v\ jf) is a linear polynomial VK{K) € ^h),
Vh = Sh(n¡) x Sh(a¡).

We know that the subspace Vn is a regular finite element space in the sense of
Babuska and Aziz [1], which satisfies the following approximation property:

(52) inf     \\(u-uh,v -vh)\\v <ch\\{u, v)\\2Mr

We now consider the approximation problem of (46):

Find (uhN, vhN) e V„ such that
(53\ A{uhN,vhN;ü,v) +BN(uhN,vhN;u,v)

= jl (fü + f2v)dxdy   V(ü,v)eVh.
By the Lax-Milgram theorem we have

Theorem 2. The variational problem (53) has a unique solution (uhN, vfr) e Vh .

Theorem 3. Assume that u, v e //2(fi,) n Hk~xl2(Ye), k > 2, where (u, v) is
the solution of problem (45); then the following error estimate holds:

\\(u -uhN,v- vhN)\\v < c |ä||(«, «)||2,o, + jfk=x¥M>vy\k-\p.rt\ .

where c is a constant independent of h and N.
Proof. From the equalities (45) and (53) we obtain
(54) A{u-uhN,v-vhN;ü,v) + BN(u - uhN, v - vhN; it, v)

= BN(u, v ; it, v) - B(u, v; ü, v)   V(ö, v) 6 V„.
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Then
\\(uhN-ü,vhN-v)\\2v

< -^-{A(uhN -ü,v^-v;uhN-ü,vhN-v)
ßo

+ BN{uhN-ü, vhN -v; uhN-ü, vhN-v)}

= -r-{A(u- ü, v -v; uhN - ü, v^ -v)
ßo

+ BN(u - ü, v - v ; uhN - ü, üjy - v)

+ B(u,v;uhN-ü,vhN-v)- BN(u,v;uhN-ü,vhN-v)}

<{M°^Ml)\\(u-ü,v-v)\W\\(uhN-ü,vhN-v)\\v
ßo

+ o xk-tU", v)\\k_l/2,re\\{uhN - ü, vhN - V)\\V    V(Ü,V)€ Vh.

Therefore, we have

\\(uhN-ü,vhN-v)\\v<{Mo + Ml)\\(u-ü,v-v)\\v
ßo

+ -g-prrll(",w)IU-i/2)rí   V(ü,v)eVh.

By the triangle inequality,

\\(u -uhN,v- vhN)\\v < \\{u -u,v- v)\\v + \\(uhN -ü,vhN- v)\\v
((M0 + M<)     A ,,,v^V~^+ Jll(w"       )IIf
+ ^oA^r|l(M'u)lk"1/2'rf'

Hence, we get

h h Mo + Mi+ßo .\\(u - u%, v - v$,)\\v <-¡=-— ,-V&v \\(u - u, v - v)\\v
ßo {u,v)evh

By inequality (52), the proof is completed.   □

5. Numerical example
Suppose that the unbounded domain Q = {(x, y)eß, 1 < \x\ or 1 < l^l}

is the exterior domain of the square [-1, 1] x [-1, 1] with boundary T,. Let

. X + 3ß      fl       x2 + (y + 0.5)2
U^>y)=4nß(A + 2ß){2lOex2 + (y-0.5)2

¿ + ß  ( x2_x2 \\
A + 3ß \x2 + (y - 0.5)2     X2 + (y + 0i5)2 y J '

2 4- ii í      ríu-flM v,i;4-DSÏ      \
Vi(x,y)

4ii/i(A + 2ß) \x2 + (y- 0.5)2     x2 + iy + 0.5)2
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Then (u\ ,V\) is the unique solution of the following boundary value problem:

. d (du   dv-ßAu-ß + ß)-iK- + -

,,     . d (du   dv-Mt,-(A + ̂ )_^_-r_

= 0     in Q,

= 0     inQ,

u = U\   onT,,
v = v\    on T,,

u, v are bounded when r —► +oo.

We take Ye as a circumference with radius 2; then we consider the finite
element approximation of (u, v) on the bounded domain Q, = {(x, y) G Q
and r < 2} .

Since «i and «i are symmetric about the x and y axes, respectively, and
antisymmetric about the y and x axes, respectively, the domain of computa-
tion was taken to be the part lying in the first quadrant. The symmetric and
antisymmetric boundary conditions were used along x = 0 and y = 0.

Three meshes were used in computation. Figure 2 shows the triangulation
for mesh A. Mesh B was generated by dividing the triangles in mesh A into
four small triangles, and mesh C was similarly generated. Linear finite ele-
ment approximation was used in computation. Table 1 shows the maximum
of the errors u — uhN and v — vhN over the mesh points when N = 5. Since
the maximum norm of u is about 0.117, the maximum relative error for u is

Table 1. Maximum error for N = 5

mesh B

0.36 0.18 0.09

max|u, - u"N -| 0.370d-02 0.117d-02 0.294d-03

max|U/-t/ft -I 0.651d-02 0.252d-02 0.840d-03
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Table 2. Maximum error for mesh A

N 0 1

max |w/ - u"Nj\ 0.433d-01 0.610d-02 0.358d-02 0.370d-02
max m jn,A 0.721d-02 0.148d-01 0.658d-02 0.651d-02

Table 3. Maximum error for mesh B

N

max m¡ - uN,i\ 0.412d-01 0.521d-02 0.116d-02 0.117d-02

max|u, -v% ¡\ 0.493d-02 0.101d-01 0.231d-02 0.252d-02

Table 4. Maximum error for mesh C

N

max|M, - u%j\ 0.409d-01 0.568d-02 0.433d-03 0.294d-03
max \Vj - vN,i\ 0.408d-02 0.816d-02 0.624d-03 0.840d-03

about 3.2% for mesh A, 1% for mesh B, and 0.25% for mesh C. The maximum
norm of v is about 0.555, hence the maximum relative error for v is about
11.7% for mesh A, 4.54% for mesh B, and 1.51% for mesh C. The convergence
is fast; in fact, the rates are much higher than linear.

Table 2 shows the maximum of the errors u - uhN and v - v^ for mesh
A when N = 1,3, and 5; Tables 3-4 show the analogous results for meshes
B and C. As we can see from the tables, for u, N = 3 is good enough for
meshes A and B, since the meshes are too coarse and then the main errors are
due to the coarse meshes. This becomes clear when the mesh is refined, N = 5
did improve the accuracy for mesh C. For v, the effects of N were not so
significant as for u for meshes A and B; this is because on the boundary Ye , v
is very close to zero, so even for N = 0, the error is already small. The effects
of 2V showed up only for finer meshes, as is shown in Table 4 for mesh C.

Figures 3-5 show the results for u and v along some curves, where the inte-
rior points are the points along the curve ABCDE shown in Figure 2, and the
boundary points are the points along the boundary Ye , i.e., the circumference
with radius 2. The effects of 2V are shown for meshes A-C; as shown in the
figures, N = 5 gives good approximations, and therefore in the computation
very few terms in the bilinear form B^{u, v ; it, v) are needed in order to get
good accuracy.
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