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THE  APPROXIMATION  PROPERTY  DOES  NOT  IMPLY

THE  BOUNDED  APPROXIMATION  PROPERTY

T. FIGIEL  AND  W.   B.   JOHNSON1

Abstract. There is a Banach space which has the approxi-

mation property but fails the bounded approximation property.

The space can be chosen to have separable conjugate, hence there

is a nonnuclear operator on the space which has nuclear adjoint.

This latter result solves a problem of Grothendieck [2].

I. Introduction. Let iX, \\ ■ ||) be a Banach space. We show that if

there is a constant X so that iX, \ ■ |) has the ¿-metric approximation

property (¿-m.a.p., in short) for each equivalent norm | ■ | on X, then X*

has the bounded approximation property (b.a.p., in short). This result

is used to construct an example of a Banach space which possesses the

approximation property (a.p.) but fails the b.a.p.

For e, X positive constants, we say that X has the (e, A)-m.a.p. provided

that, for each finite dimensional subspace Z of X and each <5>0, there is

a finite rank operator Ton Xso that ||T\\ = X + 6and \\Tz—z\\ ^(e + <S)||z||

for each z eZ. An intermediate step in our construction is that if X has

the (e, A)-m.a.p. for some e, 0<e<l, then Xhas the A(l —g)-1-m.a.p.

We use the standard notation in Banach space theory. Let us only

recall the types of approximation conditions a Banach space X may

satisfy. X has the a.p. if for each compact subset K of X and e>0, there

is a finite rank operator ( = bounded, linear operator) £ on A' so that

||£À--ÂJ<e for each k e K. If always £ can be chosen with ||£||^A

then X is said to have the A-m.a.p. A space which has the A-m.a.p. for

some X is said to have the b.a.p. For equivalent formulations of these

definitions (which we use without further reference) the reader is referred

to [2] and [4].

We wish to thank Professor A. Pelczynski for a revision of an earlier

incorrect proof of the main result. Pelczynski's description [6] led us to

the proof presented here.
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II. Implications among approximation conditions. Given a Banach

space (X, || • ||), let .g/ be the family of equivalent norms, | -1, on X whose

dual norms on X* are of the form |x*| = ||x*||+A/é/(x*, Z). Here

M ranges over positive constants, Z ranges over finite dimensional sub-

spaces of X*, and d(x*,Z) = inf{\\x*—z\\ :z eZ} is the || ■ ||-distance of

x* to Z. Since finite dimensional subspaces of X* are weak* closed, it is

evident that each such norm on X* is the dual of an equivalent norm on X.

Proposition 1. Suppose that (X, | ■ |) has the X-m.a.p. for each norm,

| • |, in sé. Let 0<£<1. Then (X*, || • ||) has the (s, X[l+2e-1X])-m.a.p.

Proof. Suppose that Z is a finite dimensional subspace of X*. Let

ß>X   and   <5>0.   Define   |»|   on   X*   by   \x*\ = \\x*\\+2e-1ß d(x*, Z).

Pick a finite dimensional subspace Y of X such that for each zeZ,

||z||<(l+á)sup{r(»:jG 7, lljll^l}. Since (X, \ ■ |) has the X-m.a.p.,
there is a finite rank operator Ton A"so that Ty=y for y e Y and \T\^ß.

We have, for x* e X*,

\\T*x*W + 2e~^d(T*x*,Z) < ,8[||x*|| + 2e-1/5 d(x*, Z)].

Hence \\T*x*\\z%ß(l+2e^ß)\\x*\\ whence || T|| ^/?(1+26-1/?). Now for

zeZ, 2e~lß d(T*z, Z)<:ß\\z\\, so there exists w 6 Z satisfying \\T*z-w\\^

|e||z||. But for y e Y, (T*z)y=z(Ty)=z(y), and thus sup{\z(y)-w(y)\:

ye Y,\\y\\^l}^s\\4- Therefore ||z-w||=le(l+<5)||z||, from which

it follows that

\\T*z - z\\ z% [|e(l + Ô) + is] \\z\\ z% (1 + ó)e \\z\\.

Since (5>0, ß>X are arbitrary, the conclusion follows.

Proposition 2. Suppose (X, \\ ■ \\) has the (e, X)-m.a.p. with e< 1. Then

X has the (l—e)"1 X-m.a.p.

Proof. We thank Professor W. J. Davis for the proof given here.

Davis' proof is rather more revealing than proofs discovered by us.

Suppose Z is a finite dimensional subspace of X. Let 0<e<o<l and

ß>X.
Construct by induction finite rank operators Tn on X so that

\\TyZ - z\\ < Ô \\z\\     for zeZ, \\T„+1x - x|| < Ô ||x||

for x g span ZuT„A'uT„_1A'U- ■   KJTyX, and ||T„|| <ß.

Define Sn by I-Sn = (I-Tn)(I-T„_y) ■ ■ ■ (I-Ty). Then for zeZ,

||(/-SJz]|<ô»||z||.Also,

Sn = (I- Tn)(I - Tn_.y) ■•■(I-T2)T1 + (I- Tn)(I - Tn_y) ■ ■ ■

(I - T3)T2 + ••■ + (/- T„)Tn_y + T„,

so that \\SJ^O"-lß + - ■ - + »ß+ß<(l-o-ylß.
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Hence X has the (t, (1— 6)~1ß)-m.a.n. for each t>0, <5>e and ß>X,

whence X has the (1 — e)~U-m.a.p.

Setting £ = | in the above two propositions yields:

Theorem 1. If for each | • | in sé, iX, \ ■ \) has the Xi-m.a.p., then

X* has the 2Xil+4X)-m.a.p.

Remark 1. If A"* has the ¿-m.a.p. then for each | ■ | in sé, iX*, \ ■ |)

hasthe/l-m.a.p. (hence also iX, \ ■ |) has the X-m.a.p.). For if |x*| = ||a:*|¡ +

M dix*, Z), F is a finite dimensional subspace of X*, and e>0, then there

is a finite rank operator Ton X* so that [|£||^/l+e and Tx*=x* for

x* espan FuZ. Since £is the identity on Z, |T|<||Tj|^/+e.

Remark 2. It is known [3, Theorem 4] that if iX, \ • |) has the 1-m.a.p.

for each | • | in sé, then X* has the 1-m.a.p. We do not know whether a

similar result is true with "1" replaced by "A". It may even be true that

if X* has the b.a.p., then X* also has the 1-m.a.p. This is the case when

X* is separable [4, Remark 4.11].

Example.    There is a Banach space which has the a.p. but fails the b.a.p.

Proof. Of course, we need the important result of Enflo [1] that

there is a Banach space which fails the a.p. Lindenstrauss [5] (see [3] for

a specific example) had shown that a consequence of this is the existence

of a Banach space X which possesses the 1-m.a.p., but whose conjugate

fails the a.p. By Theorem 1, there is a sequence (| • \n) of equivalent

norms on this X so that iX, \ ■ |„) fails the «-m.a.p. Thus (I>iX, \ • \n))l

fails the b.a.p. but possesses the a.p.

Note that (S(A', | • |„))¡2 can be chosen to have separable conjugate,

since Lindenstrauss' construction can yield an X with X* separable.

III. Nonnuclear operators with nuclear adjoints. The example con-

structed in §11 justifies the following proposition.

Proposition 3. If a Banach space X has the a.p. but fails the b.a.p.,

and X* is separable, then there is a nonnuclear operator T on X such that

T* is nuclear.

Since the proof is an almost immediate consequence of results of [2],

we give only some indications.

Let NiX) denote the space of nuclear operators on X [2, Definition 4]

and L0iX) the space of finite rank operators on X. Since the weak*-

continuous nuclear operators form a closed subset of NiX*), it is enough

to show that {£* : £ e NiX)} is not closed in NiX*).

Consider the natural mappings X*ê)X^NiX)^[L0iX)]*<^NiX*). Here

x{T)S=trace ST and y(£)5,= trace(£5*).
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Observe that

(i) <p is an isometry onto, because X has the a.p. (cf. [2, Proposition 35,

A=>BX)).

(ii) xf is not an isomorphic embedding, for otherwise (cf. [2, Proposi-

tion 39, proof of BX=>AX]) X would have the b.a.p.

(iii) tp is an isometry onto. For given F e L0iX)*, consider the factori-

zation (cf. [2, Proposition 27, (a)=>(d)]) X*->La0->Lx—>-X* of the operator

induced on X* by £. X* is separable, so the Dunford-Pettis theorem yields

(cf. [2, Lemma 9]) that Lx—>-Lx-+X* is nuclear.

Since (i), (ii), and (iii) imply that the range of \p~l% is not closed, it

only remains to observe that y>~1x(T)= T* for each £ 6 NiX).
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