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THE AR-PROPERTY FOR ROBERTS’ EXAMPLE

OF A COMPACT CONVEX SET WITH NO EXTREME POINTS

PART 1: GENERAL RESULT

NGUYEN TO NHU, JOSE M. R. SANJURJO, AND TRAN VAN AN

(Communicated by James West)

Abstract. We prove that the original compact convex set with no extreme
points, constructed by Roberts (1977) is an absolute retract, therefore is home-
omorphic to the Hilbert cube. Our proof consists of two parts. In this first
part, we give a sufficient condition for a Roberts space to be an AR. In the
second part of the paper, we shall apply this to show that the example of
Roberts is an AR.

1. Introduction

In 1975 Roberts [R1] constructed a striking example of a compact convex set
without any extreme points, giving a counter-example to the Krein-Milman theorem
[KM] for non-locally convex linear metric spaces. After 1975 it was hoped that
Roberts’ example could be used as a counter-example to the following question (we
call it the AR-problem): Is every convex set in a linear metric space an AR?1 See
[BD], [G]. In fact, for about fifteen years, Roberts’ example was the main target
for attacking the AR-problem.

In [NT1], see also [N2], it was shown that every needle point space contains a
compact convex AR-set with no extreme points. In particular, the spaces Lp, 0 ≤
p < 1, as well as the linear metric space constructed originally by Roberts in [R1],
contain compact convex AR-sets with no extreme points. Let us observe, however,
that the results of [NT1] and [N2] do not apply to the original compact convex
set, constructed in [R1]. In fact, the compact convex set, constructed originally by
Roberts in [R1], has been distorted by the arguments in [NT1], [N2].

On the other hand, it was shown in [NT2] that all Roberts spaces have the fixed
point property. (By a Roberts space we mean any compact convex set with no
extreme points constructed by Roberts’ method of needle point spaces; see [R1],
[R2], [KP], [KPR]). However, the result of [NT2] does not say anything about
the AR-property of Roberts spaces. Therefore, the AR-problem about Roberts’
example [R1], posed in [BD], [G], has not yet been answered.
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constructed a σ-compact linear metric space which is not an AR; see Fund. Math. 146(1994),
85–99. For compact convex sets, the AR-problem, however, is still open.
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The aim of this paper is to solve this problem. As a consequence of our result we
obtain an affirmative answer to a problem of Dobrowolski and Mogilski; see [DM].
Our result shows that Roberts’ example, while rather pathological in functional
analysis, has a nice topological structure: In fact, it has the topology of the Hilbert
cube, the simplest infinite dimensional compact object in topology. Our proof
consists of two parts: In the first part (Sections 2-4), we establish a sufficient
condition for a Roberts space to be an AR; see Theorem 2. Then, we apply our
sufficient condition to prove in the second part (Sections 5-6) that the compact
convex set with no extreme points, constructed by Roberts [R1], is an AR.

The fixed point property for all Roberts spaces was completely established.
We have tried to obtain a similar answer for the AR-property of Roberts spaces.
However, there are still some difficulties we have not yet found a way to overcome.
It seems to the authors that the AR-property is somewhat harder than the fixed
point property even for compact convex sets. In fact, our result shows that the
AR-property of Roberts spaces is not easy, even in the very special case of Roberts’
example [R1]. The AR-problem for Roberts spaces is still an important question.
Further investigation to the AR-problem for Roberts spaces should be followed up.

Notation and conventions. By a linear metric space we mean a topological
linear space X which is metrizable. By Kakutani’s theorem (see, for instance [Re])
there is an invariant metric ρ on X . We denote ‖x‖ = ρ(x, θ), where θ is the zero
element of X , which is called an F -norm.

By [Re, Theorem 1.2.2] we may assume that ‖.‖ is monotone (or non-decreasing),
that is,

‖λx‖ ≤ ([|λ|] + 1) ‖x‖ for every x ∈ X and λ ∈ R,(1)

where [α] denotes the greatest integer that is smaller than α. In particular

‖λx‖ ≤ ‖x‖ for every x ∈ X and λ ∈ R with |λ| ≤ 1.(2)

In this paper all linear metric spaces are assumed to be equipped with monotone
F -norms. In particular, (2) will be used frequently throughout the paper.

Let A be a subset of a linear metric space X . By conv A we denote the convex
hull of A in X and span A denotes the linear subspace of X spanned by A. We
also use the following notation:

A+ = conv (A ∪ {θ}) ; Â = conv
(
A+ ∪ (−A+)

)
= conv (A ∪ (−A) ∪ {θ}) ;(3)

and if x, y ∈ X and B ⊂ X , we write

‖x−A‖ = inf {‖x− y‖ : y ∈ A} ;

dis(A,B) = inf {‖x− y‖ : x ∈ A, y ∈ B} ;

diamA = sup{‖x− y‖ x, y ∈ A};
[x, y] = {tx+ (1− t)y : t ∈ [0, 1]} .

If A is a finite set, then card A denotes the cardinality of A. Let f : R → R be a
function; we denote supp f = {t ∈ R : f(t) 6= 0}.

2. The AR-property for Roberts spaces

The following theorem was established by Roberts in [R1]; see also [R2], [KPR,
Proof of Theorem 9.4].
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Theorem 1. Let {An} be a sequence of finite sets of non-zero points in a complete
linear metric space X with the following properties:

A0 consists of only one single point;(4)

An+1 = ∪{A(a, εn+1) : a ∈ An} , where εn+1 = m(n)−12−n−1,

m(n) = cardAn, and A(a, εn+1) is a finite set, which is called

an εn+1-needle set for a, that is,

(5)

‖b‖ < εn+1 for every b ∈ A(a, εn+1);(5-a)

a ∈ convA(a, εn+1);(5-b)

For each b ∈ A(a, εn+1)
+, there exists an α ∈ [0, 1]

such that ‖b− αa‖ < εn+1.
(5-c)

Denote A =
∞∪
n=o

(An)+ ⊂ X ; C = conv (A ∪ (−A)) ⊂ X. Then, C is a compact

convex set with no extreme points.

Remark 1. By (5-b), {(An)+} and {Ân}, see (3), are increasing sequences. There-
fore, the set A is convex, and by (5), A, and hence C, are compact. It is easy to
see that

C =
∞∪
n=o

Ân ⊂ X.(6)

For every a ∈ An, let An+1(a) = A(a, εn+1). For k ≥ n + 2, we define Ak(a) by
induction:

Ak(a) = ∪{A(b, εk) : b ∈ Ak−1(a)} ;(7)

Cn(a) =
∞∪
k=1

Ân+k(a) ⊂ X.(8)

Observe that

An+k = ∪{An+k(a) : a ∈ An} .(9)

The following notation will be used frequently throughout the paper:

An = {an1 , . . . , anm(n)}, where m(n) = cardAn.(10)

In this part, we give a sufficient condition under which the compact convex set
C in Theorem 1 is an AR.

Theorem 2. C is an AR if the following conditions hold:

(i) For every n ∈ N, if xi ∈ spanCn(ani )\{θ}, i = 1, . . . ,m(n), then the set
{x1, . . . , xm(n)} is linearly independent in X (see (8) and (10)).

(ii) For every k ∈ N, the sets Ak+1(a) = A(a, εk+1), a ∈ Ak, have the same
cardinality (see (5)).

Remark 2. It follows from (i) that the union of (9) is disjoint. Therefore, Condition
(ii) implies that cardAk+1(a) = m(k)−1m(k + 1) for every a ∈ Ak.

At first we establish the following facts, which will be used in the proof of The-
orem 2.
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Lemma 1 [NT2]. Let X be a linear metric space and let a ∈ X be a non-zero
point. Then, there is a retraction ra : X → [−a, a] such that

‖x− ra(x)‖ ≤ 4‖x− [−a, a]‖ for every x ∈ X.

Lemma 2. ‖x − [−ani , ani ]‖ ≤ m(n)−12−n+1 for every x ∈ Cn(ani ) and i = 1, . . . ,
m(n) (see (8), (10)).

Proof. Since An+1(a
n
i )+ = A(ani εn+1)

+, by (5-c) for every x ∈ An+1(a
n
i )+ there

exists an α ∈ [0, 1] such that

‖x− αani ‖ < εn+1 = m(n)−12−n−1.

Therefore Lemma 2 holds for x ∈ An+1(a
n
i )+. We shall prove by induction that,

for every x ∈ An+k(a
n
i )+,

‖x− [θ, ani ]‖ < m(n)−1(2−n−1 + 2−n−2 + · · ·+ 2−n−k).(11)

In fact, let An+k(a
n
i ) = {a1, . . . , ap}. By Condition (ii) of Theorem 2, p does not

depend on i ∈ {1, . . . ,m(n)}. From (5) and (7) we get

An+k+1(a
n
i ) = ∪pj=1A(aj , εn+k+1).

So, for every x ∈ An+k+1(a
n
i )+ we have x =

∑p
j=1 λjxj , where xj ∈ A(aj , εn+k+1)

+,

λj ≥ 0, j = 1, . . . , p, and
∑p

j=1 λj ≤ 1; see (3). By (5-c), for every j = 1, . . . , p,

there exists an αj ∈ [0, 1], such that

‖xj − αjaj‖ < εn+k+1 = m(n+ k)−12−n−k−1.(12)

By Remark 2,

m(n + k) = cardAn+k = m(n) cardAn+k(a
n
i ) = pm(n).(13)

Let y =
∑p

j=1 λjαjaj ∈ An+k(a
n
i )+. Then from (12) and (13) we get

‖x− y‖ =
∥∥ p∑
j=1

λj(xj − αjaj)
∥∥ < pεn+k+1

= pm(n+ k)−12−n−k−1

= p(m(n)p)−12−n−k−1 = m(n)−12−n−k−1.

(14)

Since y ∈ An+k(a
n
i )+, by (11) there is a z ∈ [θ, ani ] such that

‖y − z‖ < m(n)−1(2−n−1 + 2−n−2 + · · ·+ 2−n−k).

Hence from (11) and (14) we get, for every x ∈ An+k+1(a
n
i )+,

‖x− [θ, ani ]‖ ≤ ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖
< m(n)−12−n−k−1 +m(n)−1(2−n−1 + · · ·+ 2−n−k)

= m(n)−1(2−n−1 + · · ·+ 2−n−k−1).

Consequently, (11) has been proved by induction. Therefore

‖x− [θ, ani ]‖ < m(n)−12−n for every x ∈ ∪∞k=1An+k(a
n
i )+.

Now, for every x ∈ Ân+k(a
n
i ) and k ∈ N, we have x = λ1x1 − λ2x2, where

xj ∈ An+k(a
n
i )+ and λj ∈ [0, 1], j = 1, 2, with λ1 + λ2 = 1; see (3). Take

aj ∈ [θ, ani ] such that ‖xj − aj‖ < m(n)−12−n, j = 1, 2. Then we have

a = λ1a1 − λ2a2 ∈ λ1[θ, a
n
i ]− λ2[θ, a

n
i ] ⊂ [−ani , ani ],
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and

‖x− a‖ = ‖λ1x1 − λ2x2 − λ1a1 + λ2a2‖
≤ ‖x1 − a1‖+ ‖x2 − a2‖ < 2m(n)−12−n = m(n)−12−n+1.

Therefore

‖x− [−ani , ani ]‖ < m(n)−12n+1 for i = 1, . . . ,m(n).

Consequently, we get the assertion by (8). The lemma is proved.

Claim 1. Using notation (8) and (10), for every n ∈ N and for every x ∈ C, there

exist xi ∈ Cn(ani ), see (8), i = 1, . . . ,m(n), such that x =
∑m(n)

i=1 xi.

Proof. Let x ∈ C. Take a sequence {xk} ⊂ ∪∞i=0Âi such that xk → x; see (6).

By Remark 1, {Âi} is an increasing sequence. Therefore {xk} ⊂ ∪∞i=n+1Âi for

some n ∈ N. We may assume that xk ∈ Ân+n(k) for every k ∈ N. From (9) we

get An+n(k) = ∪m(n)
i=1 An+n(k)(a

n
i ). Therefore, there exist xki ∈ Ân+n(k)(a

n
i ) and

λki ∈ [0, 1], i = 1, . . . ,m(n), such that

m(n)∑
i=1

λki ≤ 1, and xk =

m(n)∑
i=1

λki x
k
i .(15)

From (8) we get xki ∈ Ân+n(k)(a
n
i ) ⊂ Cn(ani ) for every k ∈ N and i = 1, . . . ,m(n).

By the compactness of Cn(ani ), by passing into subsequences if necessary, we may
assume that λki → λi and xki → yi ∈ Cn(ani ) for every i = 1, . . . ,m(n). Therefore
from (15) we get

x =

m(n)∑
i=1

λiyi, where λi ∈ [0, 1], i = 1, . . . ,m(n), and

m(n)∑
i=1

λi ≤ 1.(16)

Consequently, letting xi = λiyi we get xi ∈ Cn(ani ) for every i = 1, . . . ,m(n). The
claim is proved.

From Claim 1 and from (16) it follows that

C ⊂
∑

{Cn(a) : a ∈ An} and C = conv(∪{Cn(a) : a ∈ An}) for every n ∈ N.

(However, C 6= ∑{Cn(a) : a ∈ An}.)
Definition 1. Let a ∈ An. We say that a non-zero point x ∈ Cn(a), see (8), is
maximal, if λx 6∈ Cn(a) for any |λ| > 1.

Definition 2. We say that the expression of x ∈ C by (16) is standard if yi is
maximal for every yi ∈ Cn(ani ) with yi 6= θ.

Remark 3. It is easy to see that every x ∈ C has a standard expression, and under
Condition (i) of Theorem 2, any standard expression is unique.

Observe that, under Condition (i) of Theorem 2, the expression of x in Claim 1
is unique. Therefore, we can define Pn

i : C → Cn(ani ), i = 1, . . . ,m(n), by

Pn
i (x) = xi for every x =

m(n)∑
i=1

xi ∈ C.
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Claim 2. Pn
i : C → Cn(ani ) is continuous for every i = 1, . . . ,m(n).

Proof. Assume that {xk} ⊂ C and xk → x. Write

xk =

m(n)∑
i=1

xki , x =

m(n)∑
i=1

xi, where xki , xi ∈ Cn(ani ) for i = 1, . . . ,m(n).

We shall show that Pn
i (xk) = xki → xi = Pn

i (x). If it is not the case, then by

the compactness of Cn(ani ) there exists a sequence {k(`)} ⊂ N such that x
k(`)
i →

yi ∈ Cn(ani ) for every i = 1, . . . ,m(n) and that yi 6= xi for some i ∈ {1, . . . ,m(n)}.
Then

xk(`) =

m(n)∑
i=1

x
k(`)
i → x =

m(n)∑
i=1

yi.

From the uniqueness of the expression of x in Claim 1, we have xi = yi for every
i = 1, . . . ,m(n), a contradiction. The claim is proved.

Remark 4. By Claim 2, the map

Pn =

m(n)∑
i=1

rani P
n
i : C → Dn =

m(n)∑
i=1

[−ani , ani ]

is continuous for every n ∈ N, where rani , i = 1, . . . ,m(n), were defined in Lemma
1. Moreover, by Lemmas 1 and 2 we have

‖Pn(x) − x‖ ≤
m(n)∑
i=1

‖rani (xi)− xi‖ ≤
m(n)∑
i=1

4‖xi − [−ani , ani ]‖

< 4m(n)m(n)−12−n+1 = 2n+3.

So, if Pn(C) ⊂ C, then C is admissible, therefore, it is an AR; see [K1], [K2]. This
problem seems to be easy, however we are unable to get it done. (Observe that Dn

is not contained in C.)
Thus, we must take a long way to the proof of Theorem 2 which involves the

following characterization of ANR-spaces, established by the first author in [N1];
see also [NS].

3. A characterization of ANR-spaces

Let X be a metric space. For an open cover U of X , let N (U) denote the nerve
of U , equipped with the Whitehead topology.

Let {Un} be a sequence of open covers of X . We say that {Un} is a zero sequence
iff sup{diamU : U ∈ Un} → 0 as n→∞.

We denote U = ∪∞n=1Un and K(U) = ∪∞n=1N (Un ∪ Un+1). For every σ ∈ K(U),
we write

n(σ) = sup{n ∈ N : σ ∈ N (Un ∪ Un+1)}.
We say that a map f : U → X is a selection if f(U) ∈ U for every U ∈ U . The

proof of Theorem 2 is based on the following.

Theorem 3 [N1]. A metric space X is an ANR if and only if there exists a zero
sequence of open covers {Un} of X with the following property: For any selection
g : U → X, there exists a map f : K(U) → X such that if {σn} is a sequence of
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simplices of K(U) for which n(σk) →∞, then diam{f(σk) ∪ g(σok)} → 0, where σo

denotes the set of all vertices of a simplex σ ∈ K(U).

We are going to describe a sequence {Un} of open covers of C satisfying the con-
ditions of Theorem 3. Using notation (10), for every i = 1, . . . ,m(n), we subdivide
each interval [−ani , ani ] into 2k(n) subintervals by ci0 = −ani < ci1 < · · · < ci2k(n) = ani
such that

‖cij − cij+2‖ < m(n)−12−n−1 for every j = 0, . . . , 2(k(n)− 1).(17)

By Lemma 1 for every i = 1, . . . ,m(n), there exists a retraction rni : Cn(ani ) →
[−ani , ani ] such that

‖rni (x)− x‖ ≤ 4‖x− [−ani , ani ]‖ for every x ∈ Cn(ani ).(18)

For every i = 1, . . . ,m(n) and j = 0, . . . , 2(k(n)− 1) we put

Si
0(n) = {x ∈ [−ani , ani ] : −ani ≤ x < ci2};(19-a)

Si
2(k(n)−1)(n) = {x ∈ [−ani , ani ] : ci2(k(n)−1) < x ≤ ani ;(19-b)

Si
j(n) = {x ∈ [−ani , ani ] : cij < x < cij+2} for j = 1, . . . , 2k(n)− 3.(19-c)

U i
j(n) = (rni )−1(Si

j(n)) ⊂ Cn(ani ).(20)

Denote

J(n) = {0, . . . , 2(k(n)− 1)}m(n).(21)

For j = (j(1), . . . , j(m(n))) ∈ J(n), write

Uj = U1
j(1)(n) + · · ·+ U

m(n)
j(m(n))(n) and Un = {U = Uj ∩C : j ∈ J(n)}.(22)

Our aim is to check that the sequence {Un}, defined by (22), satisfies the con-
ditions of Theorem 3. First, we shall show that {Un} is a zero-sequence of open
covers of C.

Lemma 3. Un is an open cover of C for every n ∈ N.

Proof. First every U ∈ Un is open in C. In fact, let U = Uj ∩ C ∈ Un, where Uj =

U1
j(1)(n) + · · ·+ U

m(n)
j(m(n))(n). Observe that Uj ∩ C = ∩m(n)

i=1 (Pn
i )−1(U i

j(i)(n)). Since

U i
j(i)(n) is open in Cn(ani ), see (20), and since Pn

i is continuous for i = 1, . . . ,m(n)

by Claim 2, it follows that U = Uj ∩ C is open in C.
Now, we prove that Un covers C. By Claim 1, for every x ∈ C, there exist xi ∈

Cn(ani ), i = 1, . . . ,m(n), such that x =
∑m(n)

i=1 xi. Then rni (xi) ∈ [−ani , ani ], i =
1, . . . ,m(n). Hence, there exists Si

j(i)(n) so that rni (xi) ∈ Si
j(i)(n), whence xi ∈

U i
j(i)(n); see (19), (20). Let j = (j(1), . . . , j(m(n))) ∈ J(n); see (21). Then x ∈

Uj = U1
j(1)(n) + · · · + U

m(n)
j(m(n))(n); see (22). Consequently, Un covers C, and the

lemma is proved.

Lemma 4. {Un} is a zero sequence: In fact, diamU < 2−n+5 for every U ∈ Un.
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Proof. Let

U = Uj ∩ C = (U1
j(1)(n) + · · ·+ U

m(n)
j(m(n))(n)) ∩C ∈ Un; see (22).

Let x ∈ U i
j(i)(n), i = 1, . . . ,m(n). Then, from (18) and from Lemma 2, we get

‖x− rni (x)‖ ≤ 4‖x− [−ani , ani ]‖ ≤ 4m(n)−12−n+1 = m(n)−12−n+3.

From (17) and (19,a-c) we obtain

diamSi
j(i)(n) = ‖cij(i) − cij(i)+2‖ < m(n)−12−n−1.

Observe that, if x ∈ U i
j(i)(n), then rni (x) ∈ Si

j(i)(n), see (20). For every x, y ∈
U i
j(i)(n), since rni (x), rni (y) ∈ Si

j(i)(n), see (20), we have

‖x− y‖ ≤ ‖x− rni (x)‖ + ‖rni (x)− rni (y)‖+ ‖rni (y)− y‖
≤ m(n)−12−n+3 + diamSi

j(i)(n) +m(n)−12−n+3

< m(n)−12−n+5.

Consequently

diamUj ≤
m(n)∑
i=1

diamU i
j(i)(n) ≤ m(n)m(n)−12−n+5 = 2−n+5.

The lemma is proved.

The following fact is essential in our proof of Theorem 2.

Lemma 5. Under Condition (i) of Theorem 2, if j = (j(1), . . . , j(m(n))), i =
(i(1), . . . , i(m(n))) ∈ J(n), see (21), such that Uj ∩ Ui 6= ∅, then

|j(k)− i(k)| ≤ 1 for every k = 1, . . . ,m(n).

Proof. Assume that x ∈ Uj ∩ Ui. Then we have

x = x1
j(1) + · · ·+ x

m(n)
j(m(n)) = x1

i(1) + · · ·+ x
m(n)
i(m(n)),

where

xkj(k) ∈ Uk
j(k)(n) ⊂ Cn(ank ) and xki(k) ∈ Uk

i(k)(n) ⊂ Cn(ank ) for every k = 1, . . . ,m(n).

From the uniqueness of the expression of x in Claim 1, we get xkj(k) = xki(k) for

every k = 1, . . . ,m(n). Hence, from (20) we get

rnk (xkj(k)) ∈ Sk
j(k)(n) ∩ Sk

i(k)(n) for every k = 1, . . . ,m(n).

Consequently,

|j(k)− i(k)| ≤ 1 for every k = 1, . . . ,m(n).

The lemma is proved.

Remark 5. Let Uj = U1
j(1)(n) + · · · + U

m(n)
j(m(n))(n), j = (j(1), . . . , j(m(n))) ∈ J(n),

see (22). Then, we say that U i
j(i)(n) is the i-th coordinate of Uj. Lemma 5 says that

if Uj and Ui intersect, then the respective coordinates intersect.
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4. Proof of Theorem 2

Since C is contractible, it suffices to prove that C is an ANR. Our aim is to show
that the sequence {Un}, defined by (22), satisfies the conditions of Theorem 3.

Let g : U → C be an arbitrary selection, where U = ∪∞n=1Un. Then, for every

U ∈ U , we have U = Uj ∩ C = (U1
j(1)(n) + · · · + U

m(n)
j(m(n))(n)) ∩ C, where j =

(j(1), . . . , j(m(n))) ∈ J(n), see (21) and (22). Let g(U) =
∑m(n)

i=1 λj(i)xj(i) denote

the standard expression of g(U), see Definition 2. Then λj(i)xj(i) ∈ U i
j(i)(n) for

each i = 1, . . . ,m(n). We define fo(U) by the formula

fo(U) =

m(n)∑
i=1

λj(i)ri(xj(i)) ∈ C,(23)

where ri = rani , i = 1, . . . ,m(n), see (10), were defined by Lemma 1. By Remark
3 the standard expression is unique, hence fo is well-defined. Thus, we get a map
fo : U → C. (Observe that Theorem 3 does not require fo to be a selection.) From
Lemmas 1 and 2 we get, for U ∈ Un,

‖g(U)− fo(U)‖ =
∥∥m(n)∑

i=1

λj(i)xj(i) −
m(n)∑
i=1

λj(i)ri(xj(i))
∥∥

≤
m(n)∑
i=1

‖λj(i)xj(i) − λj(i)ri(xj(i))‖

≤
m(n)∑
i=1

‖xj(i) − ri(xj(i))‖ ≤
m(n)∑
i=1

4‖xj(i) − [−ani , ani ]‖

≤ 4m(n)m(n)−12−n+1 = 2−n+3.

(24)

Now, using the convexity of C we extend fo to the map f : K(U) → C which is
linear on each simplex of K(U). Let us check that f satisfies the required condi-
tions. Let σ = 〈U1, . . . , Uk〉 ∈ K(U), where U1, . . . , Up ∈ Un(σ) and Up+1, . . . , Uk ∈
Un(σ)+1, that is,

σ = 〈σ1, σ2〉,
σ1 = 〈U1, . . . , Up〉 ∈ N (Un(σ)) and σ2 = 〈Up+1, . . . , Uk〉 ∈ N (Un(σ)+1).

(25)

The most important step in our proof of Theorem 2 is to estimate the diameters of
f(σi), i = 1, 2. For the reader’s convenience, we first outline the rough idea of our
proof: By Remark 5, the respective coordinates of Ut intersect. Therefore, instead
of working on Ut we can work on each coordinate of Ut. Then, using the retraction
ra of Lemma 1, we push every coordinate into a straight line in the space. Now,
observe that, because the F -norm ‖.‖ of the space is monotone, the diameter of a
finite set in a straight line in the space X does not increase when taking its convex
hull. So, if diam fo(σi), i = 1, 2, are really small, then diam f(σi), i = 1, 2, are
small too.

Now, we will present our arguments in details. Let Ut = Ujt ∩ C, t = 1, . . . , p,
with jt = (jt(1), . . . , jt(m(n(σ)))) ∈ J(n(σ)), see (21) (22). Since ∩pt=1Ut 6= ∅, from
Lemma 5 we get

|jt(i)− jt′(i)| ≤ 1 for every t, t′ ∈ {1, . . . , p} and i = 1, . . . ,m(n(σ)).
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We may assume that jt(i) ≤ jt′(i). Then we get

‖cijt(i) − cijt′ (i)‖ ≤ ‖cijt(i) − cijt(i)+2‖ < m(n(σ))−12−n(σ)−1, see (17),(26)

for every t, t′ ∈ {1, . . . , p} and i = 1, . . . ,m(n(σ)). For every i = 1, . . . ,m(n(σ)),
we denote

Bi = {λjt(i)ri(xjt(i)) : t = 1, . . . , p} ⊂ [−an(σ)
i , a

n(σ)
i ].(27)

Then we have

Claim 3. diam convBi ≤ m(n(σ))−12−n(σ)+7 for every i = 1, . . . ,m(n(σ)).

Proof. From Lemmas 1 and 2 we get, for t = 1, . . . , p, i = 1, . . . ,m(n(σ)),

‖λjt(i)ri(xjt(i))− ri(λjt(i)xjt(i))‖
≤ ‖λjt(i)ri(xjt(i))− λjt(i)xjt(i)‖+ ‖λjt(i)xjt(i) − ri(λjt(i)xjt(i))‖
≤ 4‖xjt(i) − [−an(σ)

i , a
n(σ)
i ]‖+ 4‖λjt(i)xjt(i) − [−an(σ)

i , a
n(σ)
i ]‖

≤ 4m(n(σ))−12−n(σ)+1 + 4m(n(σ))−12−n(σ)+1

= m(n(σ))−12n(σ)+4.

Since λjt(i)xjt(i) ∈ U i
jt(i)

(n(σ)), we have ri(λjt(i)xjt(i)) ∈ Si
jt(i)

(n(σ)), see (20).

Therefore, for every t = 1, . . . , p, i = 1, . . . ,m(n(σ)),

‖cijt(i) − ri(λjt(i)xjt(i))‖ ≤ diamSi
jt(i)

(n(σ)) ≤ m(n(σ))−12−n(σ)−1.

It follows that

‖λjt(i)ri(xjt(i))− cijt(i)‖
≤ ‖λjt(i)ri(xjt(i))− ri(λjt(i)xjt(i))‖+ ‖ri(λjt(i)xjt(i))− cijt(i)‖
≤ m(n(σ))−12−n(σ)+4 +m(n(σ))−12−n(σ)−1

< m(n(σ))−12−n(σ)+5.

Consequently, from (26) we get, for t, t′ ∈ {1, . . . , p},
‖λjt(i)ri(xjt(i))− λjt′ (i)ri(xjt′ (i))‖

≤ ‖λjt(i)ri(xjt(i))− cijt(i)‖+ ‖cijt(i) − cijt′ (i)‖+ ‖cijt′ (i) − λjt′ (i)ri(xjt′ (i))‖
≤ m(n(σ))−12−n(σ)+5 +m(n(σ))−12−n(σ)−1 +m(n(σ))−12−n(σ)+5

< m(n(σ))−12−n(σ)+7.

Therefore, diamBi ≤ m(n(σ))−12−n(σ)+7. Since Bi is contained in a straight line
in X , see (27), from (2) we get diamconvBi = diamBi. The claim is proved.

By (25) for every x ∈ σ there exist xi ∈ σi and λi ∈ [0, 1], i = 1, 2 with
λ1 + λ2 = 1, such that x = λ1x1 + λ2x2. Then we have

f(x) = λ1f(x1) + λ2f(x2).

Using Claim 3 above we obtain the following fact which provides an estimation of
diam f(σi), i = 1, 2.

Claim 4. (i) ‖f(x1)− fo(U1)‖ ≤ 2−n(σ)+7;
(ii) ‖f(x2)− fo(Up+1)‖ ≤ 2−n(σ)+6.

(Observe that (ii) differs from (i) because U1 ∈ Un(σ); meanwhile Up+1 ∈ Un(σ)+1,
see (25).)
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Proof of (i). Since x1 ∈ σ1, we have x1 =
∑p

t=1 αtUt, where αt ∈ [0, 1] and∑p
t=1 αt = 1, see (25). By the definition of f and (23) we get

f(x1) =

p∑
t=1

αtf0(Ut) =

p∑
t=1

αt

m(n(σ))∑
i=1

λjt(i)ri(xjt(i))

=

m(n(σ))∑
i=1

p∑
t=1

αtλjt(i)ri(xjt(i))

(28)

Since
∑p

t=1 αtλjt(i)ri(xjt(i)) ∈ convBi, see (27), it follows from Claim 3 that

‖f(x1)− fo(U1)‖ ≤
m(n(σ))∑
i=1

∥∥ p∑
t=1

αtλjt(i)ri(xjt(i))− λj1(i)ri(xj1(i))
∥∥

≤
m(n(σ))∑
i=1

diam convBi

≤ m(n(σ))m(n(σ))−12−n(σ)+7 = 2−n(σ)+7.

Therefore (i) holds. Similarly, we get the proof of (ii).
Using Claim 4 we can compute diam f(σ)

Claim 5. diam f(σ) ≤ 2−n(σ)+10.

Proof. From Lemma 4 we get

diamU1 < 2−n(σ)+5 and diamUp+1 < 2−n(σ)+4, see (25).

Since g is a selection and since U1 ∩ Up+1 6= ∅ we have

‖g(U1)− g(Up+1)‖ ≤ diamU1 + diamUp+1

≤ 2−n(σ)+5 + 2−n(σ)+4 < 2−n(σ)+6.

For each x ∈ σ, we write x = λ1x1 + λ2x2, where xi ∈ σi and λi ∈ [0, 1] with
λ1 + λ2 = 1. Let y = λ1U1 + λ2Up+1 ∈ σ. Then by Claim 4 we have

‖f(x)− f(y)‖ = ‖λ1f(x1) + λ2f(x2)− λ1fo(U1)− λ2fo(Up+1)‖
≤ ‖f(x1)− fo(U1)‖ + ‖f(x2)− fo(Up+1)‖
≤ 2−n(σ)+7 + 2−n(σ)+6 < 2−n(σ)+8.

(29)

Therefore, since λ1 + λ2 = 1, from (24) we get

‖f(y)− fo(U1)‖ = ‖λ1fo(U1) + λ2fo(Up+1)− fo(U1)‖
= ‖λ2fo(U1)− λ2fo(Up+1)‖ ≤ ‖fo(U1)− fo(Up+1)‖
≤ ‖fo(U1)− g(U1)‖+ ‖g(U1)− g(Up+1)‖ + ‖g(Up+1)− fo(Up+1)‖
≤ 2−n(σ)+3 + 2−n(σ)+6 + 2−n(σ)+3 < 2−n(σ)+7.

Consequently, from (29) we obtain

‖f(x)− f(U1)‖ ≤ ‖f(x)− f(y)‖+ ‖f(y)− fo(U1)‖
≤ 2−n(σ)+8 + 2−n(σ)+7 < 2−n(σ)+9.

Therefore, diam f(σ) ≤ 2−n(σ)+10. The claim is proved.
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Now, we are able to complete our proof. Let σ = 〈U1, . . . , Uk〉 ∈ K(U). Since g
is a selection and since ∩ki=1Ui 6= ∅, from Lemma 4 we get

diam g(σo) ≤ 2 max{diamUi : i = 1, . . . , k}
= 2 max{2−n(σ)+5, 2−n(σ)+4} = 2−n(σ)+6.

From (24) we obtain

dis(f(σ), g(σo)) ≤ ‖fo(U1)− g(U1)‖ ≤ 2−n(σ)+3.

Therefore

diam{f(σ) ∪ g(σo)} ≤ diam f(σ) + diam g(σo) + dis(f(σ), g(σo))

≤ 2−n(σ)+10 + 2−n(σ)+6 + 2−n(σ)+3 < 2−n(σ)+11.

Consequently, diam{f(σk) ∪ g(σok)} → 0 as n(σk) → ∞. Hence, C is an ANR by
Theorem 3. Theorem 2 is proved.

Remark 6. Let us observe that Condition (ii) is not essential in the proof of Theo-
rem 2. However, we prove Theorem 2 under this condition because it simplifies the
proof and also because this condition is satisfied naturally in our application to the
example of Roberts [R1].
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