
ORIGINAL RESEARCH
published: 04 November 2015
doi: 10.3389/fpls.2015.00963

Edited by:

Zhulong Chan,

Chinese Academy of Sciences, China

Reviewed by:

Yucheng Wang,

Key Laboratory of Biogeography

and Bioresource in Arid Land, China

Dinesh Yadav,

Deen Dayal Upadhyay Gorakhpur

University, India

*Correspondence:

Dae-Jin Yun

djyun@gnu.ac.kr

†These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Plant Physiology,

a section of the journal

Frontiers in Plant Science

Received: 10 August 2015

Accepted: 22 October 2015

Published: 04 November 2015

Citation:

Baek D, Cha J-Y, Kang S, Park B, Lee

H-J, Hong H, Chun HJ, Kim DH,

Kim MC, Lee SY and Yun D-J (2015)

The Arabidopsis a zinc finger domain

protein ARS1 is essential for seed

germination and ROS homeostasis

in response to ABA and oxidative

stress. Front. Plant Sci. 6:963.

doi: 10.3389/fpls.2015.00963

The Arabidopsis a zinc finger domain
protein ARS1 is essential for seed
germination and ROS homeostasis in
response to ABA and oxidative stress
Dongwon Baek1†, Joon-Yung Cha1†, Songhwa Kang1, Bokyung Park1, Hyo-Jung Lee1,

Hyewon Hong1, Hyun Jin Chun1, Doh Hoon Kim2, Min Chul Kim1, Sang Yeol Lee1 and

Dae-Jin Yun1*

1 Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center,

Gyeongsang National University, Jinju, South Korea, 2 College of Life Science and Natural Resources, Dong-A University,

Busan, South Korea

The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species

(ROS), which can disrupt seed dormancy and plant development. Here, we report the

isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros

sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl

viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc

finger domain, two nuclear localization signal (NLS) domains, and one nuclear export

signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide

dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient

expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated

ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm

in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest

that ARS1 modulates seed germination and ROS homeostasis in response to ABA and

oxidative stress in plants.
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INTRODUCTION

The phytohormone abscisic acid (ABA) regulates important physiological processes including
embryogenesis, seed dormancy, vegetative growth, and abiotic stress responses (Cutler et al., 2010;

Raghavendra et al., 2010). ABA signaling is associated with the accumulation of intracellular
reactive oxygen species (ROS), which initiates diverse signal transduction processes such as gene
expression, enzyme activation, and programmed cell death (Neill et al., 2002; Wasilewska et al.,

2008). ROS such as hydrogen peroxide (H2O2), superoxide anion (O2
−), singlet oxygen (1O2), and

hydroxyl radical (OH−) form as toxic byproducts of metabolic processes, including photosynthesis,

dark respiration, and photorespiration, as well as under abiotic stress conditions; ROS also act as
important signaling molecules under optimal growth conditions (Mittler et al., 2004; Kim et al.,

2008; Foyer and Shigeoka, 2011).
Reactive oxygen species, as key endogenous messengers, play a crucial role in the complex

ABA signaling network (Wang and Song, 2008). This network involves diverse regulators, such as
NADPH oxidases, SNF1-related protein kinases (SnRK), type-2C/A protein phosphatases (PP2C),
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calcineurin B-like (CBL) interacting protein kinases (CIPK),

calcium-dependent protein kinases, and mitogen-activated
protein kinases (MAPK). The ABA receptors RCAR/PYR1/PYL

(Regulatory Components of ABA-receptor/Pyrabactin resistant
Protein/PYR-like protein) perceive ABA, bind to ABA, and

interact with a group of PP2Cs (Ma et al., 2009; Park et al.,
2009). In the absence of ABA, PP2Cs interact with SnRK2/OST1

(OPEN STOMATA1) and dephosphorylate SnRK2 to inactive
its kinase activity. When ABA binds to its receptors, SnRK2

is activated, via the lack of PP2C function (Umezawa et al.,
2009). Activated SnRK2 phosphorylates and regulates various

downstream target proteins, including guard cell ion channels,
NADPH oxidase, and transcription factors (Kwak et al., 2003;

Sato et al., 2009; Yoshida et al., 2010; Brandt et al., 2012). Among
the SnRK2 targets, NADPH oxidases (respiratory burst oxidase

homologues, RBOHs) localize in the plasma membrane and the
phosphorylation of RBOHs by SnRK2/OST1 plays a major role
in triggering ROS production in plants (Kwak et al., 2003). In

addition, RBOHF is phosphorylated by the CBL/CBL9-CIPK26
complex and mediates ROS production (Drerup et al., 2013).

Regulation of ROS-generating and ROS-scavenging systems
maintains the delicate balance of ROS (Foyer and Noctor,

2009). Non-enzymatic antioxidants detoxify singlet oxygen and
hydroxyl radical; by contrast, antioxidant enzymes including

superoxide dismutases (SOD), catalases (CAT), and ascorbate
peroxidases (APX) detoxify H2O2 (Op den Camp et al., 2003;

Gadjev et al., 2006; Gechev et al., 2006; Foyer and Noctor, 2009).
SOD catalyzes the dismutation of O2

− to H2O2; CAT and APX

directly react with H2O2 to form water and oxygen (Mittler et al.,
2004).

Recently, ROS have been implicated in mediating complex,
systemic signaling in plant cells. These ROS signals may function

alone or interact with other molecules, including plant hormones,
Ca2+ signals, proteins, and RNA (Karpiński et al., 2013; Shah

et al., 2014; Wang et al., 2014). In addition, ABA and ROS
may act together in regulating systemic responses to abiotic
stress (Suzuki et al., 2013). In this study, we isolated Arabidopsis

ARS1 (ABA AND ROS SENSITIVE 1) using a genetic screening
system and showed that ARS1 is essential for seed germination

and maintenance of ROS homeostasis in plants challenged with
ABA or oxidative stress. We also demonstrated that ARS1

translocates from the nucleus to the cytoplasm in response to
ABA or oxidative stress. We report that ARS1 functions as a

positive regulator countering ABA to break seed dormancy and
maintaining ROS homeostasis in response to ABA and oxidative

stress.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The activation T-DNA vector pSKI015 was used to generate
an insertion mutant population (T1) in the Arabidopsis

thaliana C24 RD29A::LUC (WT) background, based on Basta
herbicide selection. Plants were grouped into 10-line pools,

and T2 progenies were screened for mutants that exhibited
ABA hypersensitivity compared to WT. T-DNA insertion

mutants of ARS1 (At3g02860), ars1-2 (SALK_009596), ars1-3

(SALK_030445), and ars1-4 (SALK_126300), were obtained from
the Arabidopsis Biological Resource Center (ABRC). Seeds were

surface-sterilized and sown ontoMSmedium [1/2Murashige and
Skoog (MS) salts, 1.5% sucrose and 0.6% agar, pH 5.7] with or

without ABA (as indicated in figures). Plants were grown in a
growth chamber with a cycle of 16 h light and 8 h dark at 22◦C

Thermal Asymmetric Interlaced PCR
Analysis
DNA flanking the left border of the inserted T-DNA in the
ars1-1 mutant was isolated by thermal asymmetric interlaced

PCR (TAIL-PCR). The entire isolated fragment was sequenced.
The primers used in the TAIL-PCR were specific primers for the

T-DNA left border (LB1, LB2, and LB3) and degenerate primers
(DP1, DP2, and DP3; Supplementary Table S1). The nucleotide

sequence of the PCR product was determined and subjected to
BLASTn analysis.

Determination of Transcript Levels
Total RNAwas isolated from 10-d-old seedlings using the RNeasy

kit (Qiagen, Valencia, CA, USA) following the manufacturer’s
instructions. Isolated total RNA was treated with DNase I

(Qiagen, Valencia, CA, USA) to remove genomic DNA
contamination. The first-strand cDNA was synthesized using

2 µg total RNA with a cDNA synthesis kit (Invitrogen,
Carlsbad, CA, USA) in a 20-µl reaction volume, and subjected

to PCR for examination of gene expression. The specific
primers were designed according to the sequence of ARS1.

TUBULIN2 was used as a control in the experiment. The
primers used for the RT-PCR analysis are listed in Supplementary

Table S1.
For quantitative RT-PCR (qRT-PCR) analysis, the first-strand

cDNA was synthesized using 2 µg total RNA with a cDNA
synthesis kit (Invitrogen, Carlsbad, CA, USA). The QuantiSpeed

SYBR No-Rox Mix (PhileKorea, Seoul, Korea) was used for qRT-
PCR as follows: 50◦C for 10 min, 95◦C for 2 min, and 40 cycles

of 95◦C for 5 s, and 60◦C for 30 s. TUBULIN2 was used for
RNA normalization. The relative expression levels of all samples
were automatically calculated using CFXManager program (Bio-

Rad, Hercules, CA, USA) and carried out in three biological
replicates. The primers used for the qRT-PCR analysis are listed

in Supplementary Table S1.

Protoplast Transient Expression Analysis
The cDNA encoding ARS1 was isolated from a cDNA library by

PCR. The PCR product was confirmed by nucleotide sequencing
and was inserted into XbaI and BamHI sites of the sGFP vector

(kindly provided by Inhwan Hwang, POSTEC, Korea) to create
chimeric GFP-fusion constructs under the control of the 35S

promoter (Supplementary Table S1). The sGFP plasmid vector
is a pUC-based vector containing CaMV35S-sGFP-NOS3 for

protoplast expression.
Protoplast isolation from Arabidopsis leaves and

transformation into protoplasts was as described in Jin et al.
(2001). Expression of the fusion constructs was monitored
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at various time points after transformation and images were

captured with a Zeiss Axioplan fluorescence microscope
(Carl Zeiss Co., Jena, Germany). The filter sets used were:

XF116 (exciter, 474AF20; dichroic, 500DRLP; and emitter,
605DF50) and XF137 (exciter, 540AF30; dichroic, 500DRLP;

and emitter, 585ALP; Omega, Inc., Brattleboro, VT) for GFP
and RFP, respectively. Data were then processed using Adobe

Photoshop software (Adobe System, Mountainview, CA, USA)
and presented in pseudo-color format.

Detection of ROS in Protoplasts
To measure intracellular ROS levels, an aliquot of protoplast

suspension (∼2 × 105·ml−1) was incubated with 5 µM 2,7-
dichlorohydrofluoroscein diacetate (DCFH-DA, Molecular

Probes, Eugene, OR, USA) for 5 min and 20 µM
dihydrorhodamine123 (Rh123, Molecular Probes, Eugene,

OR, USA) for 15 min and were observed under a Zeiss Axioplan
fluorescence microscope using XF116 (DCFH-DA; exciter,

474AF20; dichroic, 500DRLP; and emitter, 605DF50) and
XF33/E (Rh123; exciter, 535DF35; dichroic, 570DRLP; emitter,

605DF50; Omega, Inc., Brattleboro, VT, USA).

Histochemical Detection of O2
−

NBT (nitro blue tetrazolium; Sigma–Aldrich, Saint Louis, MO,
USA) staining was used to detect O2

− accumulation in tissues.

O2
− was visualized as a dark blue formazan compound within

tissues. Seven-day-old seedlings were immersed in 50 mM

potassium phosphate buffer (pH 7.8) containing 0.1% NBT
and 10 mM sodium azide and incubated for 2 h in the dark.

Chlorophyll was removed from the seedlings prior to imaging by
infiltrating them with lacto-glycerol-ethanol (1: 1: 4 volume) and

boiling for 5 min (Bournonville and Díaz-Ricci, 2011).

Measurement of H2O2
H2O2 was measured in tissues using the Amplex Red Hydrogen
Peroxide/Peroxidase Assay Kit (Invitrogen/Molecular Probes,

Eugene, OR, USA) following the manufacturer’s instructions.
Fluorescence was determined by excitation at 530 nm and

emission at 590 nm. H2O2 concentration was calculated based
on a standard curve and expressed as H2O2 per fresh weight

(Bournonville and Díaz-Ricci, 2011).

RESULTS

Isolation and Identification of the
ABA-Hypersensitive ars1 Mutant
The RD29Apro::LUC transgene has been widely adapted to

screen for ABA- or abiotic stress-responsive mutants from large
populations of Arabidopsis C24 ecotype plants with T-DNA

insertions (Ishitani et al., 1997; Zhu et al., 2008). Here, the
T2 progeny were screened for enhanced sensitivity of seed

germination to ABA compared to wild type (WT, C24 ecotype),
and the phenotypes were further identified in T3 progeny. The

ars1-1 mutant displayed hypersensitivity to ABA with reduced
seed germination and retarded emergence of green cotyledons

compared to WT (Supplementary Figure S1). Using TAIL-PCR,

we found that the ars1-1mutant had a T-DNA insertion in ARS1
(At3g02860), located in the second exon, 701 bp upstream of the

ATG translation start site. Genotypic analysis showed the T-DNA
insertion in ARS1 segregated with the ars1-1 mutant phenotype,

as all tested F2 homozygotes exhibited identical phenotypes
(n = 100, data not shown).

ARS1 encodes a zinc ion-binding protein (Figure 1A),
but its biological functions have not been reported yet. To

elucidate the functional roles of ARS1 in the ABA response, we
generated a construct overexpressing ARS1 under the control

of the cauliflower mosaic virus 35S promoter, and transformed
this construct into the ars1-1 mutant (ars1-1+ARS1). RT-PCR

analysis revealed that the ars1-1+ARS1 plants had high levels
of ARS1 transcripts compared to WT, but ARS1 transcripts

were absent in both ars1-1 and ars1-1 harboring the empty
vector (ars1-1+Vector) (Figure 1B). In addition, ars1-1+ARS1
plants showed rescue of the ABA hypersensitivity of ars1-1

and displayed WT phenotypes in seed germination, while ars1-
1+Vector showed germination defects similar to those of ars1-1

(Figure 1C).
To identify the roles of ARS1 in response to ABA in multiple

alleles, we obtained three additional, different T-DNA alleles,
ars1-2, ars1-3, and ars1-4, in the Arabidopsis Col-0 background

(Figure 1A). ARS1 transcripts were absent in ars1-2 and ars1-
3 plants compared to Col-0 plants, but were barely detectable

in ars1-4 (Figure 1D). All ars1 allelic mutants in the Col-
0 background also showed an ABA-sensitive phenotype with

retarded emergence of green cotyledons compared to Col-0
plants (Figures 1E,F). Root length also provided a measure

of ABA sensitivity (Supplementary Figure S2). Four-day-old
plants grown on MS medium were transferred to MS medium

containing ABA, and root growth was monitored 11 days
later. At 30 and 40 µM ABA, root growth in ars1-2 and

ars1-3 plants lacking ARS1 transcripts was significantly lower
compared to that in Col-0 plant; however ars1-4 mutants
showed no significant differences from Col-0. Although the

ABA-dependent root growth phenotypes of ars1-4 marginally
differed from the germination phenotypes, the data are consistent

with the differences in expression of ARS1 in those mutants,
suggesting that ARS1 may also affect post-germination plant

growth (Figure 1D, Supplementary Figure S2). These results
indicate that ARS1 is essential for breaking seed dormancy in

germination, which is inhibited mainly by ABA.

Characterization of ARS1
To predict the potential function of ARS1 in plants, we compared

the protein sequences of Arabidopsis ARS1 and its homologs
in other plants, retrieved by BLAST-P search. Phylogenetic

analysis using the BAR Expressolog Tree program1 revealed
that ARS1 had the highest sequence similarity (53.1%) to a
zinc finger protein in Medicago truncatula, and also shared

32.4–49.9% similarity with its homologs in plant species such
as Glycine max, Solanum tuberosum, Lycopersicon esculentum,

Oryza sativa, and Zea mays (Figure 2A). The tree clearly

1http://bar.utoronto.ca/expressologtreeviewer/
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FIGURE 1 | The absence of ARS1 leads to ABA-hypersensitive seed germination. (A) T-DNA insertions in the ars1 mutant alleles. (B) RT-PCR analysis of

ARS1 expression in WT, ars1-1, ars1-1+Vector, and ars1-1+ARS1 plants. TUBULIN2 serves as a control for RNA integrity. (C) Comparison of seed germination

between the WT, ars1-1, ars1-1+Vector, and ars1-1+ARS1 plants exposed to 0 or 1 µM ABA. The photograph shows Arabidopsis seedlings after 5 days of ABA

treatment. (D) Expression of ARS1 in WT Col-0 and ars1 allelic mutants determined by RT-PCR. TUBULIN2 serves as a control for RNA integrity. (E) Comparison of

seed germination between the WT Col-0 and ars1 mutants exposed to 0 or 1 µM ABA. The photograph shows Arabidopsis seedlings after 5 days of ABA treatment.

(F) Quantification of green cotyledons in WT Col-0 and ars1 mutants grown on various concentrations of ABA for 5 days. The data represent the means ± SE of

three independent experiments, with 50 seeds per experiment.

divided ARS1 homologs from dicots or monocots into different
branches. However, their biological functions remain elusive in

plants. ARS1 encoded a 313-amino acid protein with predicted
molecular mass of 35.2 kDa2 (Figure 2B). ARS1 protein possesses

a nuclear localization signal (NLS; 6–22 a.a.), a C2H2-type zinc
finger domain (37–61 a.a.) in the N-terminal region, a nuclear

export signal (NES; 261–268 a.a.), and another NLS (262–288
a.a.) in the C-terminus. C2H2 zinc finger proteins are classified

three sets (A, B, and C), and set C is sub-classified into three
distinguishable subsets such as C1, C2, and C3 (Englbrecht

et al., 2004). We found that ARS1 belongs to subfamily of C3
subset (Supplementary Figure S3). It indicates that ARS1 as a
C2H2 zinc finger protein may be located either in the nucleus

or cytoplasm and may translocate under certain conditions. To
reveal the intracellular localization of ARS1, we used protoplast

transient expression co-transforming an ARS1::sGFP construct

2https://www.arabidopsis.org/

and a chimeric construct containing the NLS domain fused
to RFP (NLS::RFP) as a nuclear marker (Lee et al., 2001). As

shown in Figure 2C, the intracellular distribution of green
and red fluorescent signals overlapped, indicating that ARS1

localizes to the nucleus. We also examined the expression
of ARS1 transcripts in different organs by RT-PCR analysis

(Figure 2D). Interestingly, ARS1 transcripts accumulated to high
levels in silique and root, which show strong effects of ABA.

ARS1 expression was slightly higher in rosette leaves and stem
than in highly proliferating organs such as seedlings, secondary

inflorescences, and flowers.

ARS1 Represses ABA-Induced ROS
Production
Abscisic acid shows a strong relationship with abiotic stress
tolerance, especially with drought tolerance via regulation of

stomatal closure to reduce water loss (Lim et al., 2015). Thus,
we first examined water loss, but found that water loss assays
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FIGURE 2 | Characterization of ARS1. (A) Phylogenetic tree of ARS1 homologs, generated using the BAR Expressolog Tree program. (B) ARS1 encodes an

unknown protein with two NLS domains, an NES domain, and a C2H2 type zinc-finger domain. (C) Intracellular localization of the ARS1 protein in the nucleus.

Protoplasts prepared from Arabidopsis seedlings were co-transformed with ARS1::sGFP and NLS::RFP. The transformed protoplasts were examined by

fluorescence microscopy 12 h after transformation. Green and red images are GFP and RFP signals, respectively. Bars indicate 20 µm. (D) RT-PCR analysis of ARS1

expression in Arabidopsis tissues. TUBULIN2 serves as a control for RNA integrity.

FIGURE 3 | ARS1 represses ABA-induced ROS production. (A) Representative images of ROS production indicated by the fluorescent dye DCFH-DA.

Protoplasts from 3 week-old-seedlings of WT Col-0 and ars1-2 mutants were treated with ABA (100 µM) for 1 h. Bars indicate 100 µm. (B) WT Col-0 and ars1

mutants seedlings under ABA (100 µM) and MV (5 µM) treatment stained with NBT. The dark blue color indicates insoluble formazan deposits that are produced

when NBT reacts with superoxide. (C) Internal H2O2 production assays in WT Col-0 and ars1 mutants. Experiments were performed twice, and approximate

fluorescence was measured by excitation at 530 nm and emission at 590 nm. Asterisks represent significant differences from the WT (∗p-value ≤0.05, Student’s

t-test). (D) Photographs of seedlings that were grown on MS medium for 4 days, and transferred to MS medium with or without MV (5 µM) for another 3 days.

showed no significant differences between Col-0 and ars1-
2 plants in the absence or presence of ABA (Supplementary

Figure S4).
Next, we examined ABA-induced ROS production in Col-0

and ars1-2 protoplasts using an ROS-sensitive, cell-permeable
fluorescent dye, 2′,7′-dichlorofluorescin diacetate (DCFH-DA)
(Wang and Joseph, 1999; Pei et al., 2000). As shown in Figure 3A,

the fluorescent signals increased slightly in response to ABA
treatment in Col-0 plants, consistent with previous reports

(Wang and Song, 2008). Interestingly, the signals increased
dramatically in ars1-2 plants exposed to ABA. In addition,

ABA-induced ROS production in ars1-3 and ars1-4 was similar
to that in ars1-2 mutants (data not shown). We further
examined ABA- or MV- induced ROS induction in planta
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by staining the superoxide anion with nitroblue tetrazolium

(NBT) (Figure 3B). Both ABA and MV increased the dark
purple staining, indicating increased superoxide levels in all ars1

mutant plants, while those in Col-0 plants remained consistent
in the absence or presence of ABA or MV. Interestingly,

ars1 mutants showed more staining than Col-0 plants, even
in the absence of treatments, indicating that the absence of

ARS1 may increase ROS levels in plants. To confirm the
ROS accumulation in ars1 mutants, we compared hydrogen

peroxide contents of Col-0 and ars1 mutants (Figure 3C). As
shown in Figure 3B, hydrogen peroxide contents in all ars1

mutants were higher than those in Col-0 plants, even in the
absence of treatments. The ars1-2 and ars1-3 mutants showed

significantly higher ROS than ars1-4, which is also consistent
with the different levels of ARS1 transcripts among ars1mutants

(Figure 1D). Furthermore, ars1mutants displayed MV-sensitive
phenotypes, showing bleaching of leaves compared to Col-0
(Figure 3D).

To determine whether ARS1 directly affects ABA-induced
ROS production, we carried out complementation tests in

protoplasts using the fluorescent dye dihydrorhodamine123
(Rh123) to monitor ROS production. Rh123 becomes the

fluorescent chromophore Rh123 upon oxidation by ROS (Schulz
et al., 1996). Empty GFP vector and ARS1::sGFP constructs were

independently transformed into protoplasts isolated from the
ars1 mutants, and approximately 40% of the protoplasts showed

expression of both constructs (data not shown). After treatment
with ABA for 1 h and then with Rh123 for 15 min, we found that

ARS1::sGFP clearly targeted to the nucleus but the empty vector
produced a GFP signal in the cytoplasm of protoplasts from all

ars1mutants (Figure 4). In addition, the fluorescent signals from
Rh123 were greatly reduced in all protoplasts transformed with

ARS1::sGFP compared to those transformed with empty vector
(Figure 4). These results suggest that ARS1 acts positively in

repressing ABA-induced ROS production.

ARS1 Deficiency Reduces Expression of
SOD
To identify how ARS1 regulates ABA responses, we first
used qRT-PCR to analyze the transcript levels of ARS1 in

response to ABA. ARS1 transcripts slightly increased (1.2-
fold induction) in response to ABA treatments for 1 and

3 h (Supplementary Figure S5A). Englbrecht et al. (2004)
found that C2H2 zinc finger proteins act as transcriptional

regulators in conserved biological processes in response to stress.
Accordingly, we examined the expression of RD29A genes in

ars1 mutants to explore the possible role of ARS1 in the ABA
signaling pathway. RD29A expression is highly induced by ABA

as a stress-responsive marker gene but does not change in
response to H2O2 treatment (Trouverie et al., 2008). However,

RD29A transcript accumulation did not show any significant
differences in the ars1 mutants compared to that in Col-0

plants either in the absence or presence of ABA (Supplementary
Figure S5B). Thus, ARS1 activity may not be necessary for

regulation at the transcriptional level in the ABA signaling
pathway.

FIGURE 4 | ARS1 inhibits ABA-induced ROS production. Protoplasts

were isolated from ars1 mutants seedlings transformed with the empty

sGFP vector (Vector) or ARS1::sGFP. Twelve hours after transformation,

protoplasts were treated with ABA (100 µM) for 1 h and stained with

dihydrorhodamine123 (Rh123) for 15 min. The images are green (GFP) and

red (Rh123) fluorescence images of one aliquot of protoplasts. Bars indicate

20 µm. Yellow arrows point to the non-expressing protoplasts, white arrows

point to the protoplasts expressing sGFP and ARS1::sGFP.

Based on the effect of ARS1 on ABA-induced ROS
production, we investigated the transcripts encoding ROS-

scavenging enzymes in ars1 mutants (Figure 5). SOD catalyze
the dismutation of O2

− to O2 and H2O2, which is subsequently

reduced to water by CAT and APX (Mittler et al., 2004).
We used qRT-PCR to measure the transcript levels of two

SOD genes (CCS and CSD3) and two APX genes (APX1 and
APX2) in the absence or presence of ABA. Transcripts of

CCS (COPPER/ZINC SUPEROXIDE DISMUTASE), APX1, and
APX2 did not show any significant differences between Col-

0 and ars1 mutants and even in response to ABA treatment
(Figures 5A,C,D). However, transcripts of CSD3, encoding a
copper/zinc superoxide dismutase 3, significantly decreased in

all ars1 mutants in response to ABA treatment (Figure 5B).
These results indicate that ARS1 represses ABA-induced ROS

accumulation via inhibiting SOD transcripts, especially CSD3.

ARS1 Translocates from the Nucleus to
the Cytoplasm in response to ABA and
Oxidative Stress
Protein sequence analysis revealed that ARS1 has a putative
NES motif at its C terminus (Figure 2B). The presence of the

putative NES signal suggested that ARS1 could be exported
from the nucleus in response to certain stress conditions and

led us to investigate the changes of subcellular localization of
ARS1 in Arabidopsis cells. To analyze the subcellular localization

of ARS1 under stress conditions, we first transiently expressed
ARS1::sGFP in Arabidopsis (Col-0) protoplast cells. Twelve hours

after transformation of ARS1::sGFP into protoplasts, we treated
the protoplasts with ABA, H2O2, or methyl viologen (MV)
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FIGURE 5 | Expression of ROS-scavenging genes in response to ABA

treatment. Total RNA was isolated from 10-d-old seedlings of WT and ars1

mutants with or without ABA (100 µM) treatment for 3 h. Relative transcript

levels of CCS (A), CSD3 (B), APX1 (C), and APX2 (D) in Col-0 and ars1

mutants determined by qRT-PCR. Transcript levels were normalized to those

of TUBULIN2. Bars represent mean ± SD of three biological replicates with

three technical replicates each. Asterisks represent significant differences from

the Col-0 (∗; 0.01 < p-value ≤ 0.05, ∗∗ ; p-value ≤ 0.01, Student’s t-test).

as ROS triggers. In the absence of stressors, ARS1 clearly
localized to the nucleus (Figures 2C and 6A, Supplementary

Figure S5). Surprisingly, nuclear-localized ARS1 was abundantly
translocated to the cytoplasm in response to ABA, H2O2, and

MV. (Figure 6, Supplementary Figure S6). These translocation
patterns of ARS1 in protoplasts markedly increased as the
stress duration increased up to 5 h (Figure 6B). These results

indicate that the putative NES motif is likely important for ARS1
function in stress responses. Together, this evidence suggests that

ARS1 exists as an inactive form in the nucleus, but changes its
localization to the cytoplasm as a result of ROS signals induced

by ABA and other stresses to repress ABA/stress-induced ROS
production in plant cells.

DISCUSSION

Seed germination involves extensive crosstalk between

phytohormones and secondary messengers. ABA and gibberellin
(GA) act antagonistically in germinating seeds, and secondary

messengers such as ROS and Ca2+ might be also responding
differently in germination. In dormant seeds, high levels

of ABA in seed coats repress germination via expression
of the DELLA gene RGL2 and the ABA biosynthesis gene

ABA1, thus triggering induction of ABI5 (Lee et al., 2010).
Seed dormancy can be broken by environmental cues such

as exposure to cold, oxygen, and water (Finch-Savage and
Leubner-Metzger, 2006). In germinating seeds, endogenous

ROS and cytosolic Ca2+ concentrations increase to promote
germination, counteracting the effects of ABA. Exogenous

ROS and Ca2+ treatments also enhance seed germination
(El-Maarouf-Bouteau and Bailly, 2008; Kong et al., 2015).

FIGURE 6 | ARS1 is translocated from the nucleus to the cytoplasm in

response to ABA and oxidative stresses. (A) Protoplasts were isolated

from leaves of 3-week-old WT Col-0 plants transformed with ARS1::sGFP.

Twelve hours after transformation, protoplasts were treated with ABA

(100 µM), H2O2 (1.5 mM) or MV (3 µM) for the indicated times. Bars indicate

20 µm. (B) Percentage of ARS1 signal exported to the cytoplasm in response

to ABA, H2O2, and MV shown in (A). Bars represent mean ± SD of three

biological replicates with three technical replicates each (n = 200). Asterisks

represent significant differences from the 0 h(∗∗p-value ≤0.01, Student’s

t-test).

However, either low or excess ROS delay or inhibit germination,
indicating that ROS homeostasis, termed the “oxidative window

of germination,” is essential for breaking seed dormancy (Bailly
et al., 2008). In this study, we identified ARS1, encoding

an uncharacterized zinc finger domain protein, as essential
for seed germination to escape ABA-induced dormancy in

Arabidopsis (Figures 1 and 2, Supplementary Figure S1).
Interestingly, ars1 mutants displayed higher ROS accumulation

either in the absence or presence of ABA, indicating that
ARS1 may act to repress ROS production (Figures 3 and

4). Furthermore, this finding also suggests that ARS1 may
regulate the “oxidative window of germination” to prevent

excess ROS accumulation during the period of breaking seed
dormancy. Using in silico analysis, we found 211 C2H2-type

zinc finger proteins that constitute the most abundant family
of putative transcriptional regulators in Arabidopsis3. Several

of these proteins act in abiotic stress responses, in particular
ABA or oxidative stress signaling. SAZ (SA- AND ABA-

DOWNREGULATED ZINC FINGER GENE), ZFP3 (ZINC
FINGER PROTEIN 3), AZF1 (ARABIDOPSIS C2H2 ZINC

3https://www.arabidopsis.org/
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FINGER PROTEIN 1), and AZF2 act as negative regulators

in ABA signaling during seed germination and early
seedling development (Jiang et al., 2008; Kodaira et al.,

2011; Joseph et al., 2014). SAP12 (STRESS-ASSOCIATED
PROTEIN 12) contains two AN1 zinc fingers and

conformational changes due to redox states of cysteine
residues located between the zinc finger structures modulate

its activity (Ströher et al., 2009). ZAT10 (ZINC-FINGER
OF ARABIDOPSIS 10) is phosphorylated by MPK3 and

MPK6 and is involved in ROS-dependent ABA signaling
(Mittler et al., 2006). The high conservation of functional

motifs among the C2H2 zinc finger proteins suggests that
these proteins may have similar molecular functions with

respect to transcriptional regulation in diverse biological
processes.

Reactive oxygen species act as important signaling molecules
and control various biological processes including germination,
growth, development, and abiotic stress responses. Diverse

abiotic stresses lead to production of toxic levels of ROS, which
causes oxidative damage to organelles such as chloroplasts and

mitochondria in plant cells (Bailey-Serres and Mittler, 2006;
Foyer and Noctor, 2009). To balance the accumulation of toxic

ROS, plants have efficient, well-conserved mechanisms for the
removal of ROS from cells, including both enzymatic and non-

enzymatic ROS scavenging antioxidant systems (Mittler et al.,
2004; Bailey-Serres and Mittler, 2006; Foyer and Noctor, 2009).

For instance, SOD, CAT, and APX serve as ROS-scavenging
enzymes. Abiotic stresses as well as ABA induce production of

ROS such as oxygen radicals and hydrogen peroxide via plasma
membrane-localized NADPH oxidases (Kwak et al., 2003). ROS

accumulation in the ars1 mutant plants may be caused by
repressed expression of the SOD gene CDS3 (Figure 5). Our

results indicate that the function of ARS1 in stress tolerance
may be associated with the regulation of antioxidant ability.

However, the direct mechanisms by which ARS1 regulates
CDS3 expression are still elusive. To better understand the
mechanisms, future research should examine the interaction

between ARS1, ROS scavenging systems, and antioxidant enzyme
activity.

Reactive oxygen species are generated in various
subcellular organelles including chloroplasts, mitochondria,

and peroxisomes, and they trigger changes in the nuclear
transcriptome during stress (Apel and Hirt, 2004; Suzuki et al.,

2012). ROS signaling occurs via interlinked exchanges between
two distinct pathways: retrograde (organelle-to-nucleus) and

anterograde (nucleus-to-organelle) signaling, which might be
involved in acclimation, adaptation, or resistance against stresses

(Suzuki et al., 2012). Disruption of ROS homeostasis can
occur in chloroplasts or mitochondria, from which signals are

transmitted to the nucleus via retrograde signaling cascades.
We found that ARS1 in the nucleus was translocated to the

cytoplasm upon exposure to ABA or oxidative stress, presumably
in response to ROS signals (Figure 6). We cannot conclude

that a protein is involved in retrograde regulation just because
it exists in two different locations or relocalizes to another

subcellular compartment depending on conditions. However,

ARS1 translocates from the nucleus to cytoplasm in an ROS-

dependent manner (Figure 6). This suggests that ARS1 may
affect ROS-dependent anterograde signaling between the nucleus

and cytoplasm under stress conditions or in response to
ABA.

CONCLUSION

The phytohormone ABA regulates important physiological
processes, and is closely related with the accumulation of

intracellular ROS to transfer signals triggered in diverse
physiological and environmental cues. In this study, we isolated

and designated an ars1 mutant from large populations of
Arabidopsis with T-DNA insertions as an ABA hypersensitive

mutant. We identified thatARS1 encodes a C2H2 type zinc finger
domain protein and may play as a positive regulator for seed
germination and maintenance of ROS homeostasis in response

to ABA and oxidative stress, which trigger the induction of
toxic ROS in cells, via the regulation of a gene for superoxide

dismutase (CSD3). Interestingly, we also demonstrated that
nuclear-localized ARS1 is translocated to the cytoplasm in

response to ABA or oxidative stress. Translocation of ARS1
induced by ROS signals may help clarify the role of ROS-

dependent anterograde signaling pathways that underlie plant
stress responses. Taken together, our results suggest that ARS1 is

essential to modulate seed germination and ROS homeostasis in
response to ABA and oxidative stress in Arabidopsis.
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