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Abstract

DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates

strand synthesis, which is performed by Polε and Polδ in leading and lagging strands,

respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mu-

tants of Polα and Polε were isolated, allowing the identification of their functions beyond

DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were re-

ported in multicellular organisms. Here we identify such a mutant which is also thermosensi-

tive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C,

but displayed increased expression of DNA replication-stress marker genes, homologous

recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°

C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3

in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive

feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes.

These results strongly suggest that the DNA polymerase δ is required for the proper estab-

lishment of transcriptionally active epigenetic marks and that its failure might affect develop-

ment by affecting the epigenetic control of master genes.

Author Summary

Three DNA polymerases replicate DNA in Eukaryotes. DNA polymerase α (Polα) initiates

strand synthesis, which is performed by Polε and Polδ in leading and lagging strands,

respectively. Not only the information encoded in the DNA, but also the inheritance of

chromatin states is essential during development. Loss of function mutants in DNA poly-

merases lead to lethal phenotypes. Hence, hypomorphic alleles are necessary to study their
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roles beyond DNA replication. Here we identify a thermosensitive mutant of the Polδ in

the model plant Arabidopsis thaliana, which bears an aminoacid substitution in the poly-

merase-domain. The mutants were essentially normal at 18°C but arrested development at

28°C. Interestingly, at 24°C we were able to study the roles of Polδ in epigenetic inheri-

tance and plant development. We observed a tight connection between DNA replication

stress and an increase the deposition of transcriptionally active chromatin marks in the

SEPALLATA3 (SEP3) locus. Finally, we tested by genetic means that the ectopic expression

of SEP3 was indeed the cause of early flowering and the leaf phenotypes by promoting the

expression of FLOWERING LOCUS T (FT). These results link Polδ activity to the proper

establishment of transcriptionally active epigenetic marks, which then impact the develop-

ment of multicellular organisms.

Introduction

Arabidopsis is a facultative long-day (LD) plant, meaning that LDs accelerate flowering

whereas in short days (SD) flowering is delayed. Flowering in spring (LDs) is therefore promot-

ed by GIGANTEA (GI), CONSTANS (CO) and FLOWERING LOCUS T (FT) which constitute

the so called “photoperiod pathway”. GI activates CO which eventually accumulates in the late

afternoon and early night under LD conditions and induces the expression of FT in phloem

companion cells. The protein FT is an universal florigen and moves to the apical meristem to

promote the transition to flowering [1–3].

In plants, epigenetic inheritance confers a cellular memory of past environmental condi-

tions. The winter ecotypes of Arabidopsis thaliana require a prolonged exposure to near freez-

ing temperatures, or vernalization, to become competent to flowering in spring [4]. Plants are

able to “remember” the past winter because persistent cold exposure (2–4 weeks) activates an

epigenetic mechanism that requires the trimethylation of Lysine 27 of histone 3 (H3K27me3),

which permanently represses FLOWERING LOCUS C (FLC) [4].

The pathways that respond to photoperiod and vernalization are integrated at the level of

FT, which is directly repressed by FLC [4,5]. The FT gene is also known as a “flowering integra-

tor” because it also responds to other flowering pathways including the thermosensory and au-

tonomous pathways [4,5]. The complex regulation of FT expression is due at least in part to

epigenetic mechanisms [6–10]. The chromatin of FT is enriched in H3K27me3; curly leaf (clf)

and terminal flowering 2/like heterochromatin protein 1 (tfl2/lhp1) mutants, which are defective

in the H3K27 methylase and H3K27me3 binding activity, are early flowering and photoperiod

insensitive due to high expression of FT [9,11–13].

The terminal differentiation of specialized tissues in multicellular organisms is strongly

influenced by the previous DNA replication events of the cells that constitute each tissue. In

Eukaryotes, three replicative DNA polymerases (Polα, Polε and Polδ) are responsible for the

faithful duplication of the nuclear genome [14]. Polα forms a complex with a primase to initi-

ate replication at origins and Okazaki fragments and these short stretches of RNA-DNA hy-

brids are extended by Polε in the leading strand and Polδ in the lagging strand [14].

Apart from their essential role in DNA replication, Polα and Polε are required for other

non-essential functions such as the maintenance of transcriptional silencing in yeast. In this

alternative role, Polε is part of a mechanism that processes transcripts into siRNAs to reinstall

transcriptional silencing [15]. In plants, mutants versions of Polα and Polε led to changes in

histone marks, resulting in elevated FT expression together with increased flower homeotic

gene expression, which produced early flowering and curly leaf phenotypes [11,16–19].
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However, which genes are the primary targets of the defective-polymerase induced epigenetic

changes remains unclear.

Unlike Polα and Polε, the role of the Polδ in epigenetic inheritance has not been addressed

so far. Besides lagging strand synthesis, Polδ also participates in many other processes that re-

pair DNA lesions required to protect genome integrity [20,21].

Reports in yeast and plants have shown that a reduction in the amount of Polδ leads to ge-

nome instability and hyperrecombination phenotypes [20–22]. In mammals, mutations in the

proofreading domain of Polδ produce predisposition to cancer. For instance, a POLD1 S478N

variant in human populations predisposes to colorectal tumors and endometrial cancer [23].

Although the fact that replicative polymerases are essential in most studied organisms, via-

ble mutant alleles of POLA1 (At5g67100, encoding the catalytic subunit of Polα and POLE1

(At1g08260, encoding the catalytic subunit of Polε were isolated in multiple genetic screenings

[11,16,18,19,24,25]. However, viable hypomorphic alleles of POLD1 were not isolated so far,

which may be due to its essential roles in DNA replication and repair. Here, we report the isola-

tion of gigantea suppressor 5 (gis5), the first plant POLD1 viable mutant allele, which also

proved to be thermosensitive. Under restrictive temperatures, the gis5 allele led to early flower-

ing and curly leaf phenotypes which were dependent on the FT gene but caused by overexpres-

sion of SEP3, which showed a correlation with increased trimethylation of Lysine 4 (H3K4me3)

at the SEP3 locus. These phenotypes mostly disappeared at permissive temperatures. Our

findings reveal an unforeseen function of Polδ that may be linked to the correct establishment

of transcriptionally active epigenetic marks during DNA replication.

Results

Isolation of gigantea suppressor 5

We performed a genetic screen for induced mutations that suppressed the late flowering pheno-

type of gi-2mutants, with the aim to isolate genes involved in the interaction between photoperiod

and thermosensory pathways. One of the ethyl methanesulfonate (EMS)-induced mutations sup-

pressed most of the gi-2 late flowering phenotype under long days (LD) conditions and was

named gigantea suppressor 5 (gis5) (Fig. 1A). The gis5mutation also accelerated flowering in a wild

type (WT) background (Fig. 1A) so we used gis5 in this background in subsequent experiments.

We also observed that in theWT background—but not in the gi-2 background–, gis5 displayed a

curly leaf phenotype, reminiscent of curly leaf (clf) mutants [12]. Interestingly, the curly leaf pheno-

type depended on temperature, i.e.: it was strong at 24°C but disappeared at 18°C (Fig. 1B-C). We

decided to evaluate whether the flowering phenotype of gis5mutants was also temperature-depen-

dent. Under LD, the flowering phenotype of gis5mutants was relatively insensitive to temperature

in the range 18–24°C (Fig. 1D). In stark contrast, the gis5 early flowering phenotype was mostly

suppressed when plants were grown at 18°C under short days (SD) (Fig. 1E).

gis5 Encodes the Catalytic Subunit of the DNA Polymerase δ

Wemapped gis5 to a 120kb interval delimited by markers CER436434 and CER436454 (http://

www.arabidopsis.org/browse/Cereon/index.jsp [26]) (Fig. 2A). We detected a C to T transition

in the 18th exon of the gene encoding the catalytic subunit of Polδ (POLD1, AT5g63960) which

led to a A707V substitution (Fig. 2A). To confirm that the gis5mutation was the cause of the

observed phenotypes, we complemented gis5mutants with a WT genomic fragment containing

the complete POLD1 gene with its own promoter and terminator sequences. Four independent

transgenic lines, with single locus T-DNA insertions were evaluated and in all cases, the curly

leaf phenotypes and the early flowering under both LD and SD were complemented to a high

degree (Fig. 2B; S1A Fig.).

Polδ Role in Epigenetic Inheritance
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Fig 1. gis5 phenotypes are temperature-dependent. (A) gis5mutants flower early. WT, gis5 and gi-2

single mutants and gis5 gi-2 double mutant lines were grown under LD at 23°C. The total leaf number
(cauline and rosette leaves) was recorded at the time of flowering. Bars represent the mean ± SEM of at least
12 plants for each genotype. (B andC) gis5mutants display a temperature-dependent curly leaf phenotype.
WT and gis5mutants were grown under LD at the indicated temperatures either on soil (B) or MS agar plates
(C) and photographed at flowering. Scale bar: 1 cm. (D and E) gis5mutants display a temperature-dependent
early flowering phenotype under SD. WT and gis5mutants were grown under LD (D) or SD (E) at the
indicated temperatures (abscissas) and flowering time was recorded as in (A). Bars represent the mean ±

SEM of at least 12 plants for each genotype.

doi:10.1371/journal.pgen.1004975.g001
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The A707VMutation May Affect Polδ Activity

The A707 residue is perfectly conserved in δ DNA polymerases from other eukaryotes (S1B

Fig.). We modeled WT and mutant POLD1 using the yeast crystal structure of Pol3 as a tem-

plate (PDB: 3IAY) [27]. Both proteins share 50% identity, which suggests that this particular

model could be as accurate as one obtained from low resolution X-ray crystallography [28].

The A707V mutation is located in a α-helix from the finger domain (Fig. 2C) which interacts

Fig 2. gis5 affects the catalytic subunit of Polδ. (A) Positional cloning of gis5. Representation of a chromosome V interval, overlapping BACs and markers
(arrows) used to screen for recombinants. The gis5 interval is flanked by markers CER436434 and CER436454. A C>T transition was detected in the 18th

exon of the At5g63960 locus (POLD1) leading to an Ala to Val substitution in the catalytic subunit of Polδ. (B) TheWT POLD1 sequence complements gis5
flowering phenotype. Four independent gis5 transgenic lines (G1 to G4), bearing a WT fragment of POLD1, were grown under SD (left panel) or LD (right
panel) conditions. Bars represent the mean ± SEM of at least 12 plants for each genotype. (C) Superposition of the structural model of the catalytic subunit of
Polδ and the yeast pol3 (pdb code: 3IAY). The program “Modeller” Version 9.13 [62] was used to construct the model using the X-ray structure of pol3 [27]
(Top panel). Ribbon representation of the yeast Pol3, the Arabidopsis Polδmodel and the DNA colored in green, gray and light orange respectively. Shown
as sticks: ligand 2'-DEOXYCYTIDINE-5'-TRIPHOSPHATE (orange), 3IAY residues contacting the ligand (green). Shown as pink spheres are the Ca ions.
Bottom panel: A detailed view of the modeled Polδ V707 (red sticks), which shows that the lateral chain points in the opposite direction of the substrate
binding pocket.

doi:10.1371/journal.pgen.1004975.g002
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with the nucleotide substrate during DNA polymerization. Interestingly, the A707 does not in-

teract directly with the substrate and the A to V substitution does not affect the protein struc-

ture in any obvious manner (Fig. 2C, lower panel). Further, the A707 residue is inaccessible to

the solvent, suggesting that it is not directly involved in protein to protein interactions (Fig. 2C;

S1C Fig.). As the yeast Polδ conformation changes upon substrate binding [29], we modeled

POLD1 in both substrate-free (4FVM) and bound (4FYD) conformations using X-Ray models

from POLA1 (29% identity) as references (S1C Fig.). The α-helix bearing the A707 is greatly

displaced when comparing both models, suggesting that the α-helix moves during catalysis

(S1C Fig.) and that the A707V substitution may affect POLD1 activity. This was further sup-

ported by the fact that Val is known to destabilize α-helices, when replacing Ala residues [30].

Hence, the gis5mutation might increase the finger instability at higher temperatures.

The gis5 Alelle Is Thermosensitive

We reasoned that if the observed temperature-dependent phenotypes were due to a defect in

the activity of Polδ, then we should observe similar temperature dependence on other pheno-

types not related to flowering. It has been previously shown that suppression of Polδ by RNAi

triggers a DNA replication stress response, including an increase in Homologous Recombina-

tion (HR) [31]. Hence, we tested if gis5mutants displayed a DNA replication stress response

and whether this response was temperature-dependent. Interestingly, the mRNA levels of

BRCA1 and RAD51, two genes involved in HR, increased at 24°C in the gis5mutant, but only

relatively weak effects were observed at 18°C (Fig. 3A). To evaluate if these changes promoted

HR, we used HR reporter lines that bear halved fragments of GUS reporter genes which are re-

constituted after HR events [31]. We quantified HR events, seen as blue dots after X-Gluc

staining, and observed that HR events were relatively few at 18°C and greatly increased in gis5

mutants (more than 100-fold) by growing plants at 24°C (Fig. 3B; S2 Fig.).

To further test if problems in DNA replication appeared at higher temperatures we intro-

duced a pCYCB1–1:GUS reporter line in gis5mutants. This reporter is used to reveal cells in

late G2 phases [32]. The number of GUS stained cells increased in gis5 roots, but only at 24°C,

thus suggesting that, at higher temperatures, defects in DNA replication accumulated in gis5

cells and demanded more time for HR-dependent repair during the G2/M transition (Fig. 3C).

We reasoned that if the gis5 allele were thermosensitive, further increasing temperature above

24°C would impair development. gis5mutants grown at 28°C were severely affected, resembled

dwarfed plants that did not set seeds and eventually died even in axenic culture (Fig. 3D).

FT Acts Downstream of the gis5Mutation

To evaluate which flowering pathways are affected by the gis5mutation, we investigated the ep-

istatic relationships between gis5 and those mutations affecting the photoperiod, autonomous

and vernalization pathways (Fig. 4A-B).

Mutations in the photoperiod pathway co-9 and gi-2 did not suppress gis5 early flowering

phenotype under both LD and SD conditions, suggesting that gis5 is acting either downstream

of these genes in the photoperiod pathway or in a parallel pathway (Fig. 4A-B).

The effects of autonomous and thermosensory pathways mutations [33], fve-3 and fca-9,

were mostly additive to gis5 and the double mutants showed intermediate flowering pheno-

types, suggesting that gis5 affects parallel pathways to those affected by fve-3 and fca-9

(Fig. 4A-B).

FLC acts downstream of the vernalization and autonomous pathways. The gis5mutation

produced a decrease in FLCmRNA levels in WT and fca-9 backgrounds which could indicate

that gis5might control flowering through the levels of FLC transcripts (S3A Fig.).

Polδ Role in Epigenetic Inheritance
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Fig 3. The gis5 allele of the catalytic subunit of DNA polymerase δ is thermosensitive. (A) The gis5mutants display a DNA replication stress response
only at higher temperatures. WT and gis5mutant plants were grown for 10 days under continuous light at either 18°C or 24°C. Total RNA was extracted
and BRCA1 and RAD51 transcripts quantitated by Reverse Transcriptase-PCR (qRT-PCR) relative to UBQ10mRNA In each panel, WT mRNA levels at
18°C were scaled to one. Bars represent the mean ±SEM of 3 independent biological replicates, each replicate analyzed in triplicate. (B) Homologous
Recombination (HR) increases in gis5mutants in a temperature-dependent manner. The gis5mutant was crossed with HR reporter lines bearing either direct
(1415) or inverted (1406) tandem repeats of a disrupted GUS gene [31]. The repeats overlapp by 618 bp and a recombination event restores GUS activity.
WT and gis5mutants bearing the reporter constructs were grown in LD at either 18°C or 24°C. Fully expanded 1st pair-leaves were fixed, stained with X-Gluc
and photographed. Dots (HR events) were quantified as described in Materials and Methods. (C) gis5mutant cells are delayed in the G2-M transition. A
PCycB1;1:GUS reporter line [32] was introduced into gis5mutants by crossing. Seven day old seedlings grown on LD and vertical MS agar plates at either 18
or 24°C were fixed and stained with X-gluc as described in Materials and Methods. (D) gis5mutants do not complete their life cycle at 28°C. WT (left) and
gis5 (right) mutants were grown on MSmedia at 28°C under LD and photographed at flowering.

doi:10.1371/journal.pgen.1004975.g003
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Notwithstanding, gis5mutants flowered much earlier than flcmutants, especially in SD

(Fig. 4A-B), and the flcmutation did not further accelerate flowering in the gis5 background,

suggesting that gis5 was acting mostly downstream of FLC. Hence, a role for FLC in gis5 early

flowering seemed minor in the Col background used here, but may be more important in ver-

nalization requiring accessions. Interestingly, the ftmutation suppressed most of the gis5 early

flowering phenotype under both LD and SD (Fig. 4A-B), suggesting that FT acts downstream

gis5. A mutation in the other flowering integrator gene, suppressor of overexpression of constans

1 (SOC1), resulted in an intermediate effect when evaluated in the gis5 background, which is

consistent with SOC1 being one of the downstream targets of FT [34]. A mutation in a third in-

tegrator gene, TWIN SISTER OF FT (TSF), showed marginal effects in our conditions in gis5

andWT genetic backgrounds. Together, these results suggested that FT could be downstream

of gis5 and prompted us to measure FTmRNA levels. FT was highly expressed in the gis5 back-

ground in both continuous light and SD (Fig. 4C-D). Further, the expression of FT was highly

dependent on temperature in the gis5mutant background.

To test if ectopic or tissue specific overexpression of FT was related to the gis5 phenotype,

we evaluated the pattern of expression of the β-glucuronidase (GUS) reporter gene under the

FT promoter [6]. GUS expression in gis5 P8.1kbFT:GUS plants was limited to the vascular

tissue and was not detected in the apical meristem (S3B Fig.). These results, together with qRT-

PCR data (Fig. 4C-D), show that FT is overexpressed in vascular tissue in gis5mutants. To test

if this overexpression is functional, we used artificial microRNAs directed against FTmRNA,

as previously reported [3]. When artificial microRNAs were expressed under the companion-

cell specific promoter SUC2, the early flowering of gis5 was greatly suppressed, while expres-

sion under the apical meristem specific FD promoter had no effect in the gis5mutant back-

ground (Fig. 4E). These results taken together showed that FT overexpression within vascular

tissue was necessary for the gis5 early flowering phenotype and were also consistent with the

curly leaf phenotype observed in strong FT overexpressors [35].

Despite the fact that high expression of FT could explain both the temperature dependence

and the leaf and early flowering phenotypes of gis5mutants, the underlying mechanism

was unclear.

High Expression Levels of SEP3 Are Temperature Dependent and
Mostly FT-Independent in the gis5Mutant

The data presented above show that FT acts downstream gis5 and is also necessary for the ex-

pression of gis5 early flowering and curly leaf phenotypes. However, how a mutation in Polδ

produced such effects was still unclear. To obtain an insight on the mechanisms, we performed

a microarray analysis to study the transcriptome of gis5mutants to investigate if other factors

could be acting upstream FT and be direct targets of the gis5 allele. The genes were ordered

based on the effect of gis5 on their expression. Only a few flowering genes were found among

the upregulated and downregulated genes. SEP3 was at the top of the list, which also included

SEP1 and SEP2 (S1 Table). Intriguingly, it has been reported that SEP3 overexpression

Fig 4. FT is required for gis5 early flowering. (A-B) Loss of FT function suppresses most of gis5 early flowering phenotype. Plants of the genotypes
indicated on the abscissa were grown under LD (A) or SD (B) at 23°C and flowering recorded as in Fig. 1A. Bars represent the mean ± SEM of at least 12
plants for each genotype. (C-D) The increase in FT expression is temperature-dependent in gis5mutants. WT and gis5mutant plants were grown for 10 days
under continuous light at either 18°C or 24°C (C), or for 21 days under SD at either temperature. Plants grown under SD were harvested at the end of the
photoperiod. Total RNA was extracted and FT transcripts quantitated by qRT-PCR relative to UBQ10mRNA. Bars represent the mean ±SEM of 3
independent biological replicates, each replicate analyzed in triplicate. (E) Phloem specific FT expression is required for gis5 early flowering. gis5mutants
were crossed to transgenic lines bearing artificial microRNAs against FT expressed under specific promoters (FD for apical meristem specific expression,
SUC2 for phloem specific expression and 35S for high and constitutive expression [3]. These genotypes and the corresponding controls (indicated on the
abscissa) were grown under LD at 23°C and flowering recorded as in Fig. 1A. Bars represent the mean ± SEM of at least 12 plants for each genotype.

doi:10.1371/journal.pgen.1004975.g004

Polδ Role in Epigenetic Inheritance

PLOS Genetics | DOI:10.1371/journal.pgen.1004975 February 18, 2015 9 / 25



accelerates flowering and leaf curling [36–38]. Further, a recent report has shown that SEP3

can act also upstream of FT and that both genes mutually regulate each other in a positive man-

ner [38]. Hence, we decided to evaluate the expression of SEP genes under different photoperi-

od and temperature conditions in gis5mutants. SEP1, SEP2 and SEP3mRNAs were expressed

at very high levels in the gis5mutants under continuous light, and this effect was highly depen-

dent on temperature (Fig. 5), which correlates well with the phenotype of gis5mutants.

As FT was reported to act upstream of SEP3 in a thermosensory pathway [39], the tempera-

ture-dependence of gis5 phenotypes could be due to the amplification of an underlying re-

sponse to temperature. We reasoned that under SD conditions and low temperatures (18°C),

SEP3 expression should be independent of both the photoperiod and the thermosensory path-

ways; in contrast, under elevated temperatures (24°C) the thermosensory pathway would in-

crease SEP3 expression in an FT-dependent manner. Hence, we also tested the expression of

SEP genes in plants grown in SD in the ftmutant background. The three SEP genes were affect-

ed by the ftmutation in the gis5 background only at 24°C and their expression dropped by

about 50% in the double gis5 ftmutants (Fig. 5B), which is consistent with SEP3 acting down-

stream FT in the thermosensory pathway [39]. However, the expression of SEP genes was high-

ly elevated (30 to 100 fold) in the double gis5 ftmutants with respect to ft single mutants,

revealing an FT-independent effect on SEP gene expression in gis5 plants. Interestingly, despite

the high expression levels of SEP3 in gis5 plants, FT was still required for early flowering

(Fig. 4). Among the SEP genes, SEP3 showed the strongest temperature response in the gis5 ft

double mutants (4.4 fold), SEP1 showed a partial response (1.7 fold) and SEP2 showed no re-

sponse to temperature. Taken together, these results suggested that at higher temperatures the

gis5mutation might cause increased FT expression and curly leaf as well as early-flowering

phenotypes by elevating SEP3 expression.

Active Chromatin Marks in the SEP3 Locus Increase in gis5Mutants in a
Temperature-dependent Manner

Since the SEP3 locus was shown to be actively repressed by H3K27me3 marks [40], we evaluat-

ed if the V707A mutation in Polδ could affect histone marks in the SEP3 locus in a manner

that is dependent on the temperature. We performed chromatin immunoprecipitation (ChIP)

experiments to quantify H3K27me3, H3Ac and H3K4me3 enrichment at the SEP3 locus in

WT and gis5mutants grown at either 18 or 24°C. We did not find changes in H3K27me3

marks enrichment but a significant enrichment (about 5-fold) in H3K4me3 marks, which

peaked in the first intron of SEP3 and decreased towards the 3´end (Fig. 6, top right panel, S4

Fig. and S7 Fig.). Importantly, this enrichment in H3K4me3 marks on the SEP3 locus was also

dependent on temperature, showing a correlation with expression data (Fig. 5, lower left panel,

Fig. 6, top panels, and S4 Fig.). H3Ac also increased in a temperature-dependent way and more

likely reflects the increased transcriptional activity at the SEP3 locus [41].

Since mutations in Polα and Polε were proposed to affect histone mark deposition at FT

and FLC loci [11,16,17,19], we decided to study the deposition of histone modifications at both

loci, in the WT and gis5mutants at both 18 and 24°C. Despite higher FTmRNA and lower FLC

mRNA levels in gis5mutants, ChIP against H3Ac, H3K4me3 and H3K27me3, followed by

qPCR of locus-specific fragments, did not reveal temperature-dependent changes at both the

FT and FLC loci, except for a marginal increase in H3K4m3 at the FT locus which was not sta-

tistically significant (S5 Fig., S6 Fig. and S7 Fig). These results supported the notion that the

SEP3 locus was a primary target of a gis5-produced epigenetic modification.

Polδ Role in Epigenetic Inheritance
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The gis5 Phenotype Depends on a SEP3-FT Feedback Loop in Phloem
Tissue

To test if the elevated SEP3 expression could be the cause of the early flowering and curly leaf

phenotypes of gis5mutants, we suppressed SEP3 expression in the gis5 background using

Fig 5. The expression of SEP genes increases in a temperature-dependent way in gis5mutants. (A-B)
WT and gis5mutant plants were grown for 10 days under continuous light (A) at either 18°C or 24°C, or for 21
days under SD (B) at either temperature, together with ft and gis5 ftmutant lines. Plants grown under SD
were harvested at the end of the light period. Total RNA was extracted and SEP transcripts quantitated by
qRT-PCR relative to UBQ10mRNA. In each panel, WT mRNA levels at 18°C were scaled to one. Bars
represent the mean ±SEM of 3 independent biological replicates, each replicate analyzed in triplicate.

doi:10.1371/journal.pgen.1004975.g005
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Fig 6. The SEP3 locus is enriched in H3K4me3 and H3Ac in a temperature dependent manner.WT and gis5mutant plants were grown for 10 days
under continuous light at either 18°C or 24°C. Enrichment in H3K4me3, H3Ac and H3K27me3 was determined by ChIP followed by qRT-PCR of the
fragments depicted in the top panel. Data was relativized to a UBQ10 fragment (see S4 Fig. for data presented as a fraction of input). Bars represent the
mean ± SEM of 5–6 independent biological replicates.

doi:10.1371/journal.pgen.1004975.g006
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artificial microRNAs. Transgenic gis5 lines bearing artificial microRNAs against SEP3 showed

low SEP3 expression, decreased FT expression, later flowering and plain leaves (Fig. 7; S5A

Fig.). On the contrary, microRNAs against SEP1 did not show a significant effect on their own

and subtle effects (if any) when coexpressed together with a microRNA against SEP3 (Fig. 7A).

Further, expression of a microRNA against SEP3 under the phloem specific promoter SUC2

led to a suppression of both early flowering and curly leaf phenotypes (Fig. 7) while the same

microRNA under the FD promoter did not show any effect (Fig. 7C).

These pieces of evidence strongly support the notion that increased H3K4me3 marks on the

SEP3 locus and concomitant overexpression in phloem tissue are the main cause of the early

flowering and leaf phenotypes of the gis5mutants. Conversely, the DNA replication stress re-

sponse in gis5mutants was independent of SEP3 expression levels, since the expression of

HR marker genes BRCA1 and RAD51 in gis5 background was not suppressed by suppressing

SEP3 expression (S8B Fig.). These results strongly suggest that the DNA replication stress

response is activated upstream SEP3 in gis5mutants and it is not a byproduct of accelerated

development.

The FLC expression levels were lower in gis5mutants and interestingly, these effects were

also independent of SEP3 (S8A Fig.) suggesting that FLC might have a minor SEP3-indepen-

dent role in gis5 early flowering.

The results shown above are consistent with a model where a decrease in Polδ activity in

gis5mutants at higher temperatures leads to an increase in the expression of SEP3, resulting in

a feedback loop with FT in vascular tissue to induce flowering and curly leaves phenotypes

(Fig. 7D).

Despite SEP3 overexpression can account for the gis5 phenotypes tested here, it remains un-

clear whether the gis5mutation leads to H3K4me3 increases in other loci. Our microarray re-

sults showed that the expression of only 81 genes changed by at least two-fold in the gis5

mutant with respect to the WT, suggesting that the effects of the gis5 allele are restricted at

most, to a relatively small number of loci. To test if other loci displayed changes in H3K4me3

levels, we performed ChIP experiments with a subset of genes selected from the microarray,

SEP1, PCC1, and ASN. Both SEP1 and PCC1 were highy expressed (S1 Table) and also dis-

played a temperature-dependent increase in H3K4me3 levels (S9 Fig.), whereas ASN was

downregulated and did not display increased H3K4me3 levels (S9 Fig.). These results show

that the gis5 allele might affect other loci diffetent from SEP3 which may account for other phe-

notypes not evaluated here.

Discussion

Here we describe the isolation of a novel flowering mutant, gis5, which flowers early and dis-

plays curly leaves. These phenotypes are due to an A707V substitution in the catalytic subunit

of the Arabidopsis Polδ encoded by the POLD1 gene. Null POLD1 alleles are embryo lethal

(http://www.seedgenes.org/ [31]). To our knowledge, gis5 is the first hypomorphic and viable

allele to be isolated and, interestingly, it is thermosensitive. This is supported by the weak phe-

notypes of gis5mutants grown at 18°C, the strong early flowering and curly leaf phenotypes of

plants grown at 24°C and the lethality of plants grown at 28°C. Further, the gis5mutation also

produced a DNA replication stress response and an increase in HR which were also tempera-

ture-dependent. It is likely that at 18°C both Polε and Polδ advance in the replication fork in a

coordinated manner. At 24°C the lower activity of the gis5 allele would lead to larger single

strand DNA stretches and eventually to DSB and increased HR, which is the mechanism to re-

pair DSB [20]. Genetic instability was previously reported in Arabidopsis lines with low

POLD1 expression levels [31]. However, defects in epigenetic inheritance were not observed in
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Fig 7. High levels of SEP3 expression are required for gis5 early flowering and leaf phenotype. (A) SEP3 downregulation delays flowering in gis5

mutants. Plants of the genotypes indicated in coloured bars were grown under either LD (left panel) or SD (right panel) at 23°C. The total leaf number (cauline
and rosette leaves) was recorded at the time of flowering. Bars represent the mean ± SEM of at least 12 plants for each genotype. (B) SEP3 and SEP1mRNA
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those RNAi lines and transcriptomic analysis in those lines did not reveal changes of impor-

tance. These results, together with our data suggest that the gis5 effects on epigenetic inheri-

tance might result from a specific change in Polδ behavior rather than just decreased levels.

In a previous report, the incorporation of H2AZ to nucleosomes was proposed to be a

mechanism of temperature perception, and its failure led to early flowering [42]. It is unlikely

that a similar effect in temperature responsiveness is occurring in gis5mutants because the

genes misexpressed in gis5mutants do not overlap with those misexpressed in mutants that fail

to incorporate H2AZ [42]. Only one out of ten of the temperature responsive markers followed

up by Kumar &Wigge (2010) showed a significant change in our microarray data of

gis5mutants.

The early flowering and curly leaves phenotypes of gis5mutants are caused by high expres-

sion levels of SEP3 which activates FT in phloem tissue. This is supported by our expression

and genetic data and also consistent with previous reports showing that SEP3 overexpression

accelerates flowering and produces curly leaves [36–38]. SEP3 is well known to play roles in

flower development downstream of FT [36,37], which is also consistent with SEP3mRNA lev-

els decreasing by about 50% in the ft gis5 double mutants with respect to gis5 single mutants.

However, SEP3mRNA levels were still very high (about 30-fold) in ft gis5 double mutants

compared to either ft single mutants or WT plants indicating that gis5 increases SEP3 expres-

sion independently of FT. These results led us to propose that SEP3 and FT form a positive

feedback loop in gis5mutants, similar to the mutual activation of SEP3 and FT reported in clf

mutants [38], although we do not have evidence to assume that this mutual regulation is direct.

The SEP3-FT feedback loop also explains why gis5 early flowering is more dependent on tem-

perature under SD compared to LD and continuous light. Under LD, FTmRNA levels increase

in response to the photoperiod pathway contributing to the feedback loop and compensating

for the decrease in SEP3 gene activation at lower temperatures.

The strong changes in SEP3 expression and the increases in H3K4me3 at the SEP3 locus

were both temperature-dependent and correlated well with the DNA replication stress re-

sponses and the increase in HR, suggesting that changes in SEP3 epigenetic marks and expres-

sion were produced by the changes in the dynamics of DNA replication. Despite the fact that

we cannot exclude the possibility that the effects on the SEP3 locus were indirect (i.e. by activat-

ing a SEP3 activator), we find this explanation rather unlikely because i) SEP3 was the top upre-

gulated gene in gis5mutants by our microarray data, ii) known SEP3 regulators or SEP3

corregulated genes such as FUL and SPL3 were not upregulated in our microarrays and iii) two

direct transcriptional repressors of SEP3, SVP and AGL24 [43], were not downregulated in our

microarrays. Hence, these pieces of evidence strengthen the idea that the effects of gis5 are di-

rect on the SEP3 locus.

gis5 could affect SEP3 expression by changing its pattern of histone post-translational modi-

fications. Increased H3Ac more likely reflects the increased transcriptional activity at the SEP3

locus [41,44]. H3K4me3 also correlates with increased transcriptional activity but it was also

expression levels were determined in the same genotypes shown in (A) as described in Fig. 5. Bars represent the mean ± SEM of 3 independent biological
replicates, each replicate analyzed in triplicate. (C) SEP3 downregulation suppresses gis5 curly leaf phenotype. Plants of the indicated genotypes were
grown under LD at 23°C and photographed at flowering stages. Scale bar: 1 cm. (D) A model explaining the temperature-dependent effect of the gis5 allele.
The replication fork is represented and works normally at 18°C (green arrow) but is stalled at 24°C (red arrow). Small colored circles represent Polε (leading
strand) and Polδ (lagging strand). At higher temperatures Polδ is delayed (red circle), triggering a DNA replication stress response and increased H3K4me3
at the SEP3 locus which participates in a positive feedback loop with FT to induce flowering and the curly leaf phenotype. Blue arrows indicate tentative
relationships, not tested yet. The Compass complex was tentatively included because of its role in H3K4me3 establishment. Orange short lines represent
trimethylation in H3K4.

doi:10.1371/journal.pgen.1004975.g007
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shown to function as a memory of recent transcriptional activity [41,44,45]. Two scenarios are

then possible, that the gis5mutation produces an increase in SEP3 expression and as a conse-

quence, an increase in H3K4me3, or that an increase in H3K4me3 causes an increase in SEP3

transcription. We favor this second hypothesis. An increase H3K4me3 deposition at the SEP3

locus could result from of an interaction between Polδ and the local chromatin during the mat-

uration of Okazaki fragments. In yeast, the ligation of Okazaki fragments take place at nucleo-

some midpoints, implying that nucleosomes are loaded immediately after the passage of the

replication fork [46]. Further, some transcription factor binding sites are also preferentially

sites of Okazaki fragment ligation. These DNA bound proteins restrain excessive strand dis-

placement by Polδ during Okazaki fragment maturation, causing Polδ to dissociate from

DNA. When Polδ processivity was perturbed, the site of Okazaki fragment ligation changed

consistently with Polδ dissociating before the nucleosome mid-point [46]. These data raise the

possibility that the gis5 allele of Polδmay be more sensitive to the local chromatin structure

at the SEP3 locus dissociating earlier during local Okazaki fragment maturation. If strand-

displacement synthesis by Polδ is required to remove H3K4me3 incorporated during the

previous Okazaki fragment synthesis, Polδ premature dissociation would eventually lead to

overaccumulation of H3K4me3, which could then be involved in a positive feedback loop

with transcription.

Whether the mechanisms underlying the early flowering and curly leaf phenotypes of mu-

tants affected in Polα and Polε are similar to the mechanisms underlying gis5 phenotypes is

currently unclear. First of all, the Polδ has two chances of interacting with specific nucleosomes

and DNA bound proteins, first during the extension of Okazaki fragments and then during

their maturation, distinguishing Polδ from Polα and Polε. Interestingly, hypomorphic alleles

of POLA1 and POLE1 also led to higher SEP3 expression levels [11,16,18,19], raising the possi-

bility that common mechanisms may produce the phenotypes of all DNA polymerase mutants.

However, the role of epigenetic modifications at the SEP3 locus were neither investigated fur-

ther nor were the epistatic interactions between the SEP3 locus and the polymerases alleles.

Further, for both Polα and Polε it was proposed that their mutations affected the interaction

with LIKE HETEROCHROMATIN 1 (LHP1) [11,16–19], a protein with H3K27me3 binding

activity which is required to repress target genes [47,48], although some level of controversy re-

mained on whether the proposed interactions were direct [17]. Protein modeling of the gis5 al-

lele suggests that the A707V substitution is unlikely to change the direct interactions with

other proteins, given that this residue is not solvent accessible and very close to the nucleotide

binding site, favoring the interpretation that gis5 changes the dynamics of DNA replication

rather than the recruitment of histone methylation complexes, which is supported by the ex-

pected movements of the finger domain α-helix that contains the A707V substitution. Obtain-

ing analogous mutations to gis5 in DNA Polα and Polε catalytic subunits will likely shed light

on the possible common mechanisms that replicative polymerases may use to reestablish epige-

netic marks during DNA replication.

The presence of the SEP3-FT feedback loop and the possible interaction of gis5 with the

SEP3 locus accounts for the specificity of gis5 effects. However, one remaining important ques-

tion is whether the gis5 effects are widespread all over the genome. Despite we found epigenetic

changes in other loci different from SEP3 (S9 Fig.), the relatively low number of genes whose

expression is altered in gis5mutants (81 with a two-fold difference with WT, S1 Table), sup-

ports the notion that the effects of gis5 are specific for a relatively low number of loci. As dis-

cussed above for the SEP3 locus, these effects in some specific loci could result from

interactions that may occur during the maturation of Okazaki fragments between Polδ and

DNA bound proteins, which are loaded immediately after the passage of the replication fork

[46]. Noteworthy, specific effects of mutations in the catalytic domain of Polδ are not exclusive
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of plants. A high specific effect was also observed in humans; a Ser605 deletion in the Polδ cata-

lytic site is lethal in homozygosis but heterozygous individuals showed unexpected tissue spe-

cific phenotypes: mandibular hypoplasia, deafness and progeroid features (MDP) syndrome

[49]. Other mutations which affect the proofreading domains of human Polδ and Polε were as-

sociated to cancer susceptibility, which is consistent with the mutator phenotype expected for

these alleles [23]. In contrast, the molecular basis for the Ser605-deletion-triggered MDP is cur-

rently unknown and there is no evidence supporting a mutator phenotype or an increase in

cancer susceptibility [49]. Our work raises the possibility that an epigenetic change on a small

subset of master regulators could also explain the apparent specificity of the MDP produced by

deletion of Ser605 in humans, as we show here for SEP3 in plants. In the same line of reasoning,

epigenetic effects could also be part of the equation in the progression of tumors bearing defec-

tive alleles of replicative DNA polymerases, which could add to the mutator phenotypes of

these defective alleles [23]. We think that the characteristics of the gis5 allele will be invaluable

in future studies on the interplay between the replication of the lagging strand, DNA replica-

tion stress, epigenetic inheritance and development in multicellular organisms.

Materials and Methods

Plant Material and Growth Conditions

All the alleles and transgenic lines used were obtained in the Columbia background: ft-10

(GABI_290E08) [34], tsf-3 (SALK_087522) [50], soc1–2 (SALK_006054) [51], co-9

(SAIL_24_HO4) [52], gi-2 (CS3397) [53], flc-201 (SALK_003346) [54], fca-9 [55] and fve-3

[56], recombination GUS reporter lines 1406 (direct repeat line) and 1415 (inverted repeat

line) [57,58], P8.1kbFT:GUS [6], PCycB1;1:GUS [32], and transgenic lines expressing amiRNA-

FT (artificial microRNAs) under the 35S, SUC2 and FD promoters [3]. Seeds were sterilized

with chlorine in the vapour phase and, depending on the experiments, plants were grown on a

1:1:1 soil, vermiculite and perlite mix and every two weeks plants were fertilized with a 0.1%

solution of Hakaphos (Compo Agricultura, http://www.compo.es), or on plates with MS salts

medium (DUCHEFA). Plants were grown at 16, 18, 23, 24 and 28°C under LDs (16-h light/8-h

dark), SDs (8-h light/16-h dark) or continuous light, with a light intensity of 80 μmolm-2s-1

produced by cool white fluorescent tubes.

Map-Based Cloning and Mutant Complementation

Seeds of the late flowering gi-2 background were mutagenized with ethyl methanesulfonate

(EMS) in order to isolate early flowering, suppressors of gi-2mutants. The gis5 gi-2mutant was

crossed with gi-5 (gi in an Arabidopsis Landsberg erecta accession) to generate the mapping

population. About 600 F2 early flowering plants were used for fine mapping by analyzing re-

combination events using different molecular markers (InDels and dCAPS [26,59]). The gis5

mutation was mapped to chromosome 5 in a 120 kb interval between CER436434 and

CER436454 markers. Sequencing revealed a C-to-T point mutation in the At5g63960 locus.

For genetic analysis, the gis5mutant was backcrossed to WT four times. A fragment of

10831bp, containing the full length of At5g63960, was released from the MBM17 BAC clone

by using SalI and subcloned to the pPZP212 binary vector [60]. The construct was transformed

into Agrobacterium tumefaciens strain GV3101, which was then used to transform gis5mu-

tants by floral-dipping as described [61]. The transformed seedlings were screened on MS salts

plates, containing 50 mg L-1 kanamycin. Only homozygous, single-locus insertion lines were

selected in the T3 generation and used for subsequent experiments. The primers used are de-

scribed in S1 Text.
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Protein Modeling

Protein structures 3IAY, that correspond to the crystal structure of the catalytic subunit of

yeast Polδ in ternary complex with a template primer and an incoming nucleotide (closed con-

formation), 4FVM, that correspond to the catalytic subunit of yeast Polα in ternary complex

with the template primer and the incoming nucleotide (closed conformation) and 4FYD, that

correspond to the catalytic subunit of yeast Polα alone (open conformation), were used as tem-

plates and were obtained from the PDB website (http://www.rcsb.org/pdb/home/home.do).

Three-dimensional model of the GIS5 (wild-type and mutated) proteins were obtained by

homology-modeling using Modeller V9.9 [62]. The stereochemical quality of the modelled

structure was checked by assessment of the Ramachandran plot plot [63] with the rampage

server (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php), being 95.2% of the residues in

the favoured regions. The analysis of the compatibility of the atomic model (3D) with its own

amino acid sequence (1D) was performed with Verify3D [64]. Finally, the global superimposi-

tion between the template (3IAY) and the model has 881 equivalent positions with an rmsd of

0.43, without twists [65]. These parameters support the correctness of the model.

Genetic Analysis

Double mutants were obtained by crossing gis5mutants with ft-10, tsf-3, co-9, gi-2, fve-3, fca-9,

soc1–201 and flc-201mutants. After F1 selfing, F2 progeny was secreened by phenotyping and

genotyping and verification by PCR-based methods. Primers are listed in S1 Text.

Quantitative RT-PCR

Seedlings were frozen in liquid nitrogen and total RNA was prepared using a Plant Total RNA

Mini Kit (YRP50; Real Biotech Corporation, http://www.real-biotech.com), and 1 μg was used

to synthesize cDNA with M-MLV reverse transcriptase (Invitrogen, http://invitrogen.com),

and used to quantitate UBQ10, SEP1-3, FT, FLC, RAD51 and BRCA1 expression with the

Mx3005P real-time PCR system (Stratagene, http://www.genomics.agilent.com) in conjunction

with SyBR Green I (Invitrogen). UBQ10 was used as a housekeeping gene to normalize gene ex-

pression [66]. Relative expression levels were determined using the comparative cycle threshold

(Ct) method [67]. The primers used are described in S1 Text.

Microarray Experiments

ATH1 microarrays (Affymetrix) were used to compareWT and gis5 transcriptomes. Total

RNA was isolated, as described above, from Col and gis5 10-d-old seedlings grown under con-

tinuous light at 24°C. The experimental design comprised three biological replicates of each ge-

notype. Synthesis of cDNA, cRNA labelling and hybridizations were made according to

Affymetrix protocols, and probe signal intensities were processed using the Affymetrix Gene-

Chip operating software. The resulting cell intensity (CEL) files were analyzed for data quality

control using the same software package. Subsequent normalization of the raw data and esti-

mation of signal intensities were performed using ‘robust multi-chip average’ (RMA) [68] with

the CARMAWeb web application (https://carmaweb.genome.tugraz.at). Genes with a P-value

lower than 0.05 and fold changes representing log2 ratio�1 (upregulated) or�−1 (down regu-

lated) were considered to be differentially expressed. The data discussed in this publication

have been deposited in NCBI's Gene Expression Omnibus [69].
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ChIP Assays

Three 10 cm plates of 10 day-old plants (gis5 and Col) grown onMS agar under continuous light

at 18 and 24°C were harvested and immersed in PBS supplemented with 1% formaldehyde. The

seedlings were vacuum infiltrated for 20 min. Glycine was added to a final concentration of 0.1 M

and incubated for 5 min. The seedlings were removed from the solution and frozen in liquid ni-

trogen. Approximately 2.0 g of seedlings were ground and resuspended in 25 ml NIB (50 mM

HEPES [pH 7.4], 25 mMNaCl, 5 mMMgCl2, 5% sucrose, 30% glycerin, 0.25% Triton X-100,

0.1% beta-mercaptoethanol, 0.1% protease inhibitor cocktail (SIGMA P9599). After centrifuga-

tion at 2500 g for 20 min at 4°C, the nuclear pellet was resuspended and washed in NWB (17 mM

HEPES [pH 7.4], 7 mMMgCl2, 33 mMNaCl, 13% sucrose, 13% glycerin, 0.25% Triton X-100,

0.1% beta-mercaptoethanol, 0.1% protease inhibitor cocktail). After centrifuging, the pellet was

resuspended in 1mL TE buffer supplemented with 0.5% SDS andmixed on a rotator for 20 min

at 4°C. The chromatin was diluted with TE buffer to a final SDS concentration of 0.25%. The

DNAwas sheared by sonication to approximately 500–1000 bp fragments. After centrifugation

(10 min at 13,000 rpm, 4°C), approximately one tenth (4–6 μg of DNA) was mixed with RIPA

dilution buffer (80 mM Tris-Hcl [pH 7.4], 230 mMNaCl, 1.7% NP40, 0.17% deoxycholate) in a

2:3 ratio and 1mMDTT, 0.5 μg/ml RNAse A, 0.2% proteinase inhibitor cocktail and 1,5 μl anti-

H3K4me3 (Millipore, catalogue number: 07–473), anti-H3K27me3 (Millipore, catalogue number:

07–449) or anti-H3K9K14ac (Millipore, catalogue number: 06–599) were added. After overnight

incubation with rotation at 4°C, the samples were cleared by centrifugation (14000rpm, 10 min,

4°C). A 30 μl aliquot of washed ProteinA-coupled agarose beads was added to the supernatant

and the incubation continued on the rotating wheel for 1 hr at 4°C. The agarose beads were then

washed with 5 times 1 mL of RIPA buffer (20 mM Tris-Hcl [pH 7.4], 140 mMNaCl, 1.0% NP40,

0.1% deoxycholate, 0.1% SDS). The immunocomplexes were eluted from the beads with two

times 200 μl of glycine elution buffer (100 mM glycine, 500 mMNaCl, 0.05% Tween 20 [pH2.5])

and the combined elutes neutralized with 100 μl of 1 M Tris-HCl (pH 9.7). Crosslinks were re-

versed by incubation at 37°C for at least 6 hr in the presence of 60 μg/ml Proteinase K followed by

at least 8 hr incubation at 65°C. The DNAwas purified by two successive phenol/chloroform/

isoamyl alcohol extractions and ethanol precipitation. Pellets were washed with 70% ethanol and

resuspended in 100 μl of H2O; 4 μl were used for each q-PRC. All immunoprecipitations were

quantified in comparison to an appropriate dilution of the input which was obtained by process-

ing 10% of the supernatant of each NO-antibody precipitation (only beads) in parallel to the

immunoprecipitated samples during the decrosslinking and DNA purification procedure. When

indicated, data was relativized to a UBQ10 or FUS3 fragment. Each of the immunoprecipitations

was performed 5–6 independent times. The primers used are described in S1 Text.

Histochemical GUS Assays

For HR frequency determination, we counted the number of GUS positive spots, each indicat-

ing a recombination event. The recombination reporter lines 1406 (direct repeat line) and 1415

(inverted repeat line) [57,58] were crossed with gis5. gis5 1406, gis5 1415, 1406 and 1415 plants

were grown on MS salts plates under LD conditions at 18 and 24°C. At bolting, 15 plants for

each genotype and condition were dissected, and the first true leaf of 12 individual plants was

used for spot number determination. A picture of each first leaf was obtained under micro-

scope and further analyzed with the ImageJ software for spot number determination. For FT

tissue expression studies, the P8.1kbFTpro:GUS transgenic line [6] was crossed with gis5, and

GUS assays were performed on 10 day-old gis5 P8.1kbFT:GUS and P8.1kbFT:GUS seedlings

grown on MS salts plates. For CycB1 expression analysis gis5 was crossed with PCycB1;1-GUS

reporter lines and GUS assays were performed as previously described [32].
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amiRNA Constructs

The constructs directed against SEP1 and SEP3 genes were designed using WMD2Web Micro

RNA designer (http://wmd2.weigelworld.org/cgibin/mirnatools.pl; [70]). Overlapping PCR

was used to replace MIR319a precursor by each microRNA and finally subcloned into pBI19

derived binary vectors for plant transformation. amiRNAs expression was driven by 35S

(ectopic expression), SUC2 (expression in phloem companion cells) and FD (expression in the

meristematic cells of the shoot apex). Transgenic lines were selected on medium supplemented

with 50 μg mL-1 kanamycin. The primers used are described in S1 Text.

Accesion Numbers

Sequence data from this article can be found in GenBank/EMBL data libraries under accession

numbers: At5g63960 (POLD1), At1g65480 (FT), At4g20370 (TSF), At2g45660 (SOC1),

At5g15840 (CO), At1g22770 (GI), At5g10140 (FLC), At4g16280 (FCA) and At2g19520 (FVE).

The transcriptome data can be found in GenBank (http://www.ncbi.nlm.nih.gov/geo) under

Gene Expression Omnibus accession number GSE58036.

Supporting Information

S1 Fig. gis5 affects the catalytic subunit of the Arabidopsis DNA Polymerase δ. (A) The WT

POLD1 sequence complements gis5 curly leaf phenotype. gis5mutant plants were transformed

with a plasmid containing the WT POLD1 sequence (Fig. 2). T2 plants were grown on MS

plates and the segregation for the T-DNA bearing the WT POLD1 sequence was analyzed. As

expected, about 3/4 of the plants displayed a WT leaf phenoype. Plants not segregating for the

T-DNA displayed the curly leaf phenotype typical of gis5mutants (arrows). (B) Multiple se-

quence alignment of the “finger B” from eukaryotic DNA polymerases. The green bar corre-

sponds to the highly conserved distance between the K residue and the YG-pair. The K and

YG-pair, in red, are fully conserved amino acids [71]. The arrow indicates the A residue mutat-

ed in gis5; #, essential aminoacids for DNA polymerization. Protein sequences were retrieved

from SWISS-PROT (At, Arabidopsis thaliana; Sc, Saccharomyces cerevisiae; Os, Oriza sativa;

Gm, Glycine max; Dd, Dictiostelyum discoideum; Rn, Rattus norvergicus; Mn,Mus musculus;

Ma,Mesocricetus auratus; Bt, Bos taurus; Hs, Homo sapiens; Dm, Drosophila melanogaster; Ce,

Caenorabditis elegans; Ca, Candida albicans; Sp, Schizosaccharomices pombe; Pf, Plasmodium

falciparum. The program ClustalW2 was used for the alignment (https://www.ebi.ac.uk/Tools/

msa/clustalw2/). (C) Substrate bound and substrate-free structural model of the catalytic sub-

unit of DNA Polymerase d. The program “Modeller” [62] was used to construct the model

using the X-ray structure of the yeast DNA Polymerase a catalytic subunit in its substrate-

bound form (4FYD model, colored in light blue) and free form (4FVMmodel,colored in light

brown). Note the displacement o the finger helix which contains Ala707 (arrows).

(TIF)

S2 Fig. The gis5 allele of the catalytic subunit of DNA Polymerase δ is thermosensitive. The

gis5mutants display increased HR in a temperature-dependent manner. gis5mutant plants

were crossed into HR reporter lines 1406 and 1415. WT and gis5mutant plants bearing the

1406 or the 1415 reporters, as indicated, were grown inMS Agar plates under LD at either 18°C

or 24°C. At bolting time, plant tissues were fixed and stained with X-Gluc. First leaves and cotye-

dons are shown. Dots indicate HR events which restored GUS activity [31]. Scale Bar: 1mm.

(TIF)

S3 Fig. Expression of FT in phloem tissue is required for gis5 early flowering. (A) The gis5

mutation affects FLC expression. WT, gis5, fve, fca, fve gis5 and fca gis5mutant plants were
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grown for 10 days under continuous light at 24°C. Total RNA was extracted and quantitative

Reverse Transcriptase-PCR (q-PCR) was performed as described in Materials and Methods to

quantitate FLCmRNA expression relative to UBQ10mRNA. Bars represent the mean ±SEM of

3 independent biological replicates, each replicate analyzed in triplicate. Note that fve and fve

gis5 double mutants showed similar expression levels of FLC although they flower very differ-

ently (Fig. 3). (B) FT is expressed in vascular tissue in gis5mutants. gis5mutants were crossed

into transgenic plants bearing P8.1kbFT:GUS. The 8.1 kb promoter fragment was shown to re-

capitulate endogenous FT expression patterns [6]. gis5 (right panels) and WT (left panels)

plants homozygous for the reporter construct were grown in LD at the indicated temperatures.

Plants were then fixed and tissue specific GUS activity revealed with X-Guc as a substrate.

(TIF)

S4 Fig. Data from Fig. 6 represented as % of input.WT and gis5mutant plants were grown

for 10 days under continuous light at either 18°C or 24°C. Enrichment in H3K4me3, H3Ac and

H3K27me3 was determined by ChIP followed by qRT-PCR of the fragments depicted in the

top panel. Bars represent the mean ± SEM of 5–6 independent biological replicates.

(TIF)

S5 Fig. The gis5mutant shows normal H3K4me3, H3Ac and H3K27me3 deposition on FT

and FLC loci.WT and gis5mutant plants were grown for 10 days under continuous light at

either 18°C or 24°C. Enrichment in H3K4me3, H3Ac and H3K27me3 was determined by ChIp

followed by q-PCR of the fragments depicted in the top panel. Data was relativized to a UBQ10

fragment. Bars represent the mean ±SEM of 5–6 independent biological replicates.

(TIF)

S6 Fig. Same data as in S5 Fig., but represented as % of Input. Bars represent the mean ±SEM

of 5–6 independent biological replicates.

(TIF)

S7 Fig. Enrichment of H3K27me3 on loci FLC, FT, SEP3 from Figs. 6 and S5 expressed rela-

tive to the FUS3 fragment.

(TIF)

S8 Fig. High levels of SEP3 expression are required for maximal FT expression but not for

FLC, BRCA1 and RAD51 expression. (A) SEP3 overexpression in phloem tissue is required

for FT expression but not for FLC expression. Plants of the genotypes indicated on the abscissa

were grown for 10 days under continuous light at 23°C. Total RNA was extracted and quantita-

tive Reverse Transcriptase-PCR (q-PCR) was performed as described in Materials and Meth-

ods to quantitate FT (top panel) and FLC (lower panel). (B) The DNA replication stress

response does not depend on SEP3 overexpression. mRNAs for BRCA1 (top panel) and RAD51

(lower panel) genes were quantified as above. In each panel, WT mRNA were scaled to one.

Bars represent the mean ±SEM of 3 independent biological replicates, each replicate analyzed

in triplicate.

(TIF)

S9 Fig. The gis5 effects in H3K4me3 are not unique to SEP3.WT and gis5mutant plants

were grown for 10 days under continuous light at either 18°C or 24°C. Enrichment in

H3K4me3 was determined by ChIP followed by qRT-PCR at the loci indicated in the abcissas.

Data were expressed as a fraction of input. Bars represent the mean ± SEM of 3 independent

biological replicates.

(TIF)
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S1 Text. List of primers used in this study.
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S1 Table. Expression profiling data from gis5 and WT (Columbia background) seedlings.
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