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Lesions in brassinosteroid (BR) biosynthetic genes result in characteristic dwarf phenotypes in plants. Understanding
the regulation of BR biosynthesis demands continued isolation and characterization of mutants corresponding to the
genes involved in BR biosynthesis. Here, we present analysis of a novel BR biosynthetic locus, 

 

dwarf7

 

 (

 

dwf7

 

). Feeding
studies with BR biosynthetic intermediates and analysis of endogenous levels of BR and sterol biosynthetic intermedi-
ates indicate that the defective step in 

 

dwf7-1

 

 resides before the production of 24-methylenecholesterol in the sterol
biosynthetic pathway. Furthermore, results from feeding studies with 

 

13

 

C-labeled mevalonic acid and compactin show
that the defective step is specifically the 

 

D

 

7

 

 sterol C-5 desaturation, suggesting that 

 

dwf7

 

 is an allele of the previously
cloned 

 

STEROL1

 

 (

 

STE1

 

) gene. Sequencing of the 

 

STE1

 

 locus in two 

 

dwf7

 

 mutants revealed premature stop codons in
the first (

 

dwf7-2

 

) and the third (

 

dwf7-1

 

) exons. Thus, the reduction of BRs in 

 

dwf7

 

 is due to a shortage of substrate ste-
rols and is the direct cause of the dwarf phenotype in 

 

dwf7.

 

INTRODUCTION

 

Sterols are known to play at least two critical roles in plants:
as bulk components of membranes regulating stability and
permeability (Bach and Benveniste, 1997) and as precursors
of growth-promoting brassinosteroids (BRs; Fujioka and
Sakurai, 1997). Sterol biosynthesis in plants has been stud-
ied extensively through enzyme purification or gene cloning
(Grunwald, 1975; Goodwin, 1979; Benveniste, 1986; Bach
and Benveniste, 1997). Figure 1 shows the proposed biosyn-
thetic pathway from squalene to brassinolide (BL). A major
difference between photosynthetic and nonphotosynthetic
organisms is that cyclization of squalene 2,3-oxide is bifur-
cated to a different route for each system (Benveniste,
1986). In animals and yeast, squalene 2,3-oxide is cyclized
to lanosterol, whereas in photosynthetic organisms it is cy-
clized to cycloartenol (Nes and McKean, 1977). Accordingly,
photosynthetic organisms require somewhat different bio-
synthetic enzymes, such as cycloartenol synthase (Corey et
al., 1993) and cycloeucalenol–obtusifoliol isomerase, which
are required to open the cyclopropane ring in cycloartenol

(Figure 1). However, most of the enzymatic steps are shared
between the two different pathways.

In plants, sterols are subject to a series of modifications
before conversion to BL. Different sterols, such as 24-meth-
ylenecholesterol (24-MC), campesterol (CR), isofucosterol,
and sitosterol, are converted to the BL congeners doli-
cholide, BL, 28-homodolicholide, and 28-homoBL, respec-
tively, in a species-specific manner (Fujioka et al., 1995;
Sasse, 1997). The BR-specific pathway diverges into the
early and the late C-6 oxidation pathways. In the early C-6
oxidation pathway, introduction of a 6-oxo group occurs be-
fore the vicinal hydroxylation reactions at the side chain,
whereas it occurs after these hydroxylations in the late C-6
oxidation pathway (Figure 1; Choi et al., 1997).

 

Several mutants, such as 

 

constitutive photomorphogene-
sis

 

 and 

 

dwarfism

 

 (

 

cpd

 

), 

 

deetiolated2

 

 (

 

det2

 

), and 

 

dwarf4

 

(

 

dwf4

 

), have been shown to be defective in the BR-specific
pathway (Li et al., 1996, 1997; Szekeres et al., 1996; Choe et
al., 1998). These BR biosynthetic dwarfs share a character-
istic dwarf phenotype, which includes short robust stems,
reduced fertility, prolonged life cycle, and dark-green,
round, and curled leaves when grown in the light. In the
dark, these mutants exhibit short hypocotyls and expanded
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cotyledons. 

 

cpd

 

 (

 

dwf3

 

) mutants are only rescued by 23

 

a

 

-
hydroxylated compounds (Szekeres et al., 1996). The 

 

CPD

 

gene was shown to encode a cytochrome P450 steroid hy-
droxylating enzyme (CYP90A1). In addition, Li et al. (1996,
1997) showed that 

 

det2

 

/

 

dwf6

 

 is blocked in the C-5 reduc-
tion step. DET2 was found to be homologous to steroid 5

 

a

 

-
reductases. Like its animal equivalents, 

 

DET2

 

 successfully
converted progesterone (3-oxo-

 

D

 

4,5

 

 steroid) to 4,5-dihydro-
progesterone in a human cell line. In addition, the human
5

 

a

 

-reductase gene effectively complemented 

 

det2

 

 mutants
(Li et al., 1997). Recently, we have shown that 

 

DWF4

 

 en-
codes a cytochrome P450 whose amino acid sequence is
43% identical to 

 

CPD

 

; 

 

DWF4

 

 has been named CYP90B1
(Choe et al., 1998). Based on results from feeding studies
using BR biosynthetic intermediates, we showed that the
proposed rate-limiting step of BR biosynthesis, 22

 

a

 

-hydrox-
ylation, is blocked in 

 

dwf4

 

 mutants.

In the plant sterol biosynthetic pathway, several of the
genes have been cloned or identified based on heterologous
expression or sequence similarity. First, Corey et al. (1993)
isolated a cycloartenol synthase cDNA by heterologous
complementation of yeast mutants lacking lanosterol syn-
thase. In addition, two types of cDNAs encoding sterol meth-
yltransferases have been isolated from soybean (Shi et al.,
1996) and Arabidopsis (Husselstein et al., 1996). The Arabi-
dopsis cDNA has been shown to mediate a second methyl-
transferase step leading to C

 

29

 

 sterols (Bouvier-Navè et al.,
1997). For the 14

 

a

 

-demethylation reaction, Bak et al. (1997)
cloned the cDNA encoding the 14

 

a

 

-demethylase cyto-
chrome P450 enzyme (CYP51) from 

 

Sorghum bicolor.

 

Based on sequence similarity, Grebenok et al. (1997) identi-
fied an Arabidopsis sterol C-8 isomerase (GenBank acces-
sion number AF030357). Furthermore, an 

 

ERGOSTEROL25

 

(

 

ERG25

 

) homolog for Arabidopsis (C-4 demethylase) also

Figure 1. The Proposed BL Biosynthetic Pathway from Squalene to BL.

The BL biosynthetic pathway is divided into the sterol-specific pathway, squalene to campesterol, and the BR-specific pathway, campesterol to
brassinolide. Common names for the compounds are labeled, and proposed enzymes involved in each reaction are boxed and labeled. Genes
identified by mutants are marked. The acronyms for some compounds are in parentheses. In the inset, the carbon atoms of the sterol core rings
and side chain are numbered.
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has been discovered in the genome sequencing project
(GenBank accession number AL021635). Finally, a sterol C-7
reductase has been cloned by heterologous expression of
an Arabidopsis cDNA in yeast (Lecain et al., 1996).

As compared with the wealth of cloned genes in sterol
biosynthesis, only one mutant has been found in these
genes. Gachotte et al. (1995) screened an ethyl methane-
sulfonate (EMS)–induced mutant population (22,000 M

 

2

 

plants) for mutants displaying an altered sterol profile. The
screen yielded one mutant, 

 

sterol1

 

 (

 

ste1

 

), whose endoge-
nous level of C-5–desaturated sterols is reduced to 30% of
that of the wild type. Expression of the yeast gene 

 

ERG3

 

(the gene for 

 

D

 

7

 

 sterol C-5 desaturase) in the 

 

ste1-1

 

 mutant
increased the level of C-5–desaturated sterols 1.7- to 2.8-
fold compared with the 

 

ste1-1

 

 control, suggesting functional
conservation of the enzymes from yeast and plants. How-
ever, visible phenotypes were not found in 

 

ste1-1

 

 plants.
Thus, the authors hypothesized that the residual 30% level
of C-5–desaturated sterols was sufficient for the growth of
plants.

We have been characterizing a large collection of BR
dwarf mutants. Of the eight 

 

dwf

 

 loci identified to date, 

 

dwf3

 

(

 

cpd

 

; Szekeres et al., 1996), 

 

dwf4

 

 (Choe et al., 1998), and

 

dwf6

 

 (

 

det2

 

; Li et al., 1996) have been shown to act in the BR
biosynthetic pathway, whereas 

 

dwf2

 

 (

 

bri1

 

) probably is in-
volved in BR perception (Clouse et al., 1996; Li and Chory,
1997). In this study, we provide a morphological and genetic
characterization of 

 

dwf7.

 

 Based on our results from bio-
chemical analyses, including feeding studies and quantifica-
tion of endogenous levels of BRs, we hypothesize that 

 

dwf7

 

mutants possess lesions in the 

 

STE1

 

 gene previously cloned
by Gachotte et al. (1996). Here, we show that the 

 

STE1

 

 lo-
cus in 

 

dwf7

 

 mutants contains loss-of-function mutations,
and we designate 

 

dwf7-1

 

 and 

 

dwf7-2

 

 as 

 

ste1-2

 

 and 

 

ste1-3

 

,
respectively.

 

RESULTS

Isolation of 

 

dwf7

 

 Mutants

 

The 

 

dwf7-1

 

 mutant originally was identified in a screen of
14,000 T-DNA–transformed lines of Arabidopsis. Genetic
complementation tests with other 

 

dwf

 

 loci indicated that

 

dwf7

 

 belongs to a unique complementation group. 

 

dwf7-1

 

segregated as a monogenic recessive mutation; progeny
from a heterozygote segregated 325 (wild type):98 (

 

dwf7-1

 

).
Although 

 

dwf7-1

 

 originated from a T-DNA mutant popula-
tion, it failed to cosegregate with the kanamycin resistance
marker in the T-DNA, suggesting that 

 

dwf7-1

 

 was an un-
tagged mutant. Furthermore, mapping the 

 

dwf7-1

 

 mutation
to the Arabidopsis genome by using simple sequence length
polymorphisms (SSLPs; Bell and Ecker, 1994) confirmed
that 

 

dwf7

 

 maps to a location different from previously iso-

 

lated dwarfs. The meiotic recombination ratio between 

 

dwf7

 

and the SSLP marker 

 

nga172

 

 on chromosome 3 was scored
as 0⁄86, indicating tight linkage of 

 

dwf7

 

 to 

 

nga172.

 

 Accord-
ing to a recent recombinant inbred map of Arabidopsis,

 

nga172

 

 is located 2.2 centimorgans from the top of chromo-
some 3.

A second allele of 

 

dwf7

 

 was identified among 43 dwarf
mutants isolated by screening 

 

.

 

50,000 M

 

2

 

 seeds of an EMS
mutant population. Similar to 

 

dwf7-1

 

, the new allele was
biochemically complemented by early BR biosynthetic inter-
mediates, including 22

 

a

 

-hydroxycampesterol (22-OHCR)
and cathasterone (data not shown), and mapped near

 

nga172

 

 (data not shown). Sequencing revealed a premature
stop codon in exon 1 (see below).

 

Morphological Analysis of 

 

dwf7-1

 

dwf7

 

 displays many of the characteristics of other BR
dwarfs as shown in Figure 2. Compared with 1-month-old
wild-type plants (Figure 2A), 

 

dwf7-1

 

 plants grown for 5
weeks in the light possess short robust inflorescences,
dark-green, round leaves, reduced fertility, and short ped-
icels and siliques (Figure 2C). The wild type generally termi-
nates flowering before 7 weeks of age; however, 

 

dwf7-1
continues to produce flowers at this age, indicating a pro-
longed life span (Figure 2B). Additional morphological defects
of 5-week-old light-grown plants are summarized in Table 1.
Most noticeably, the height of dwf7-1 plants is strikingly re-
duced and is only 14% that of wild-type height. The leaf
blade width of dwf7-1 mutants is similar to that of wild-type
plants; however, the length is greatly reduced (1.8 cm) as
compared with that of the wild type (3 cm), resulting in the
round shape of dwf7-1 leaves. The overall morphology of
dwf7-2 was similar to dwf7-1 except that it was slightly
shorter and more sterile (data not shown).

Because null mutations in the BR pathway result in a
dwarf phenotype, as well as defects in skotomorphogene-
sis, we compared the dwf7-1 mutant with other BR dwarfs
for growth in the dark. Hypocotyl lengths from the longest to
the shortest were 18 6 1.6 (wild type; units in millimeters
6SE; n 5 15), 6.3 6 0.29 (dwf7-1), 4.1 6 0.03 (det2/dwf6),
1.26 6 0.09 (dwf4), 1.24 6 0.08 (cpd/dwf3), and 1.18 6 0.08
(bri1/dwf2). These data indicate that dwf7-1 displays a less
severe phenotype (35% that of wild-type hypocotyl length)
than do other BR dwarfs (e.g., 7% of wild type in dwf4;
Choe et al., 1998). Furthermore, dwf7-1 frequently displayed
closed cotyledons and hooks similar to those of the wild
type, whereas severe dwarfs, including bri1/dwf2, cpd/dwf3,
and dwf4, showed expanded cotyledons and open hooks
(data not shown).

Unlike severe dwarfs, such as dwf4 and cpd, dwf7-1 mu-
tants are not mechanically sterile (Figure 2B). However, the
average number of seeds in a silique is reduced in dwf7-1 (n 5
12) compared with that of the wild type for reasons yet to be
identified (n 5 49) (Table 1). Scanning electron microscopy
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(Figures 3A to 3C) demonstrates a relationship between fer-
tility and floral structure. In the wild type (Figure 3A), the
length of stamens is greater than or similar to that of the gy-
noecium (quantified in Figure 3D), facilitating dehiscence of
pollen on the stigmatic surface. Although dwf7-1 flowers
(Figures 3B and 3D) possess stamens and gynoecia that are
shorter than those in the wild type, the fertility of dwf7-1
flowers is possible through a concomitant reduction in the
length of both organs. In contrast, only stamen elongation is
affected more severely in dwf4 flowers (Figures 3C and 3D).
The short stamen length in dwf4 is likely to cause dehis-
cence of pollen on the ovary wall rather than on the stig-
matic surface. In fact, when dwf4 pollen is transferred to
either wild-type or dwf7-1 stigmas, viable seeds are made.

The common denominator for the various phenotypes
found in dwf7-1 mutants is a reduction in longitudinal
growth, which could be due to either a reduced number of
cells or a failure in cell elongation. Observations made with
other BR dwarf mutants suggest that the number of cells is
comparable in the wild type and mutants (Kauschmann et

al., 1996; Nomura et al., 1997; Azpiroz et al., 1998). Figure 4
displays cell size in the wild type (Figure 4A) and dwf7-1
(Figure 4B) mutants. The length of cells in the epidermis,
cortex, and xylem of dwf7-1 is greatly reduced (,30% of
wild type). This reduced cell size is converted to the length
of the wild type in response to application of BL (Figure 4C).
Thus, the reduced organ length in dwf7-1 also is due to a
failure of cell elongation.

We also have examined the organization of vascular
bundles in wild-type and dwf7-1 mutants. Wild-type inflo-
rescences possess eight vascular bundles (Figure 4D). How-
ever, the number of vascular bundles was reduced to six in
dwf7-1 (Figure 4E). Furthermore, the spacing between the
vascular bundles in dwf7-1 is irregular. In the wild type, in-
terfascicular parenchyma cells alternate regularly with vas-
cular bundles; however, cross-sections of dwf7-1 show that
two vascular bundles are joined without being separated by
parenchyma cells. Within a single vascular bundle, the size
and number of xylem cells in dwf7-1 plants generally are re-
duced, whereas the number of phloem cells is similar to or
even greater than that in the wild type. This characteristic
abnormality of vascular bundle organization has been ob-
served consistently in other BR dwarfs (Szekeres et al.,
1996; S. Choe, C.P. Tissier, and K.A. Feldmann, unpub-
lished data).

Biochemical Complementation of dwf7-1 with BL

Figure 5 demonstrates that dwf7-1 seedlings grown in BL-
supplemented liquid media were remarkably sensitive to BL.

Figure 2. Morphology of Wild-Type and dwf7-1 Plants.

(A) Wild-type plant at 1 month of age.
(B) and (C) dwf7-1 plants at 7 and 5 weeks of age, respectively. The
characteristic dwarf phenotype, such as short robust stems, re-
duced fertility, and dark-green, round, and curled leaves, is shown in
(B) and (C). At 7 weeks of age (B), wild-type plants had ceased
growing, whereas dwf7-1 plants continued to grow.
Bar 5 2 cm.

Table 1. Morphometric Analysis of Wild-Type and dwf7-1 Plants at 
5 Weeks of Age

Measurement (n 5 15) Wild Type dwf7-1

Inflorescence
Height (cm) 31.6 6 0.9 4.5 6 0.4
Number of inflorescences 3.9 6 0.6 4.3 6 0.5

Reproductive organs
Number of reproductive organs 130.2 6 12.9 89.3 6 20.9
Length of siliques (mm) 14.8 6 1.2 3.9 6 0.8
Number of seedsa 49.7 6 5.1 12.4 6 2.4

Leaf
Number of rosette leaves 9.1 6 1.2 10.3 6 1.9
Leaf blade width (cm)b 1.4 6 0.1 1.4 6 0.3
Leaf blade length (cm)b 3.0 6 0.3 1.8 6 0.3

Weight
Fresh weight (g) 1.50 6 0.19 0.51 6 0.10
Dry weight (mg) 215 6 29 53 6 11
Fresh weight/dry weight 7.0 6 0.3 9.7 6 0.6

aThe number of seeds per silique was determined after plant senes-
cence.
bThe second pair of rosette leaves.
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Growth in 1 nM BL induced significant elongation of dwf7-1
hypocotyls (160% increase), whereas the wild-type increase
was marginal (5%). Treatment with 10 and 100 nM BL com-
pletely rescued dwf7-1 hypocotyls to wild-type length. The
strongest response of the wild type to BL was obtained at
100 nM (Figure 5). Higher concentrations of BL (1 mM)
caused a stressed morphology, including inhibition of root
growth and swollen, twisted, and fragile hypocotyls in both
dwf7-1 and wild-type plants (data not shown). After BL
treatment of dwf7-1, cells in the treated region of the stem
are similar in length to wild-type cells (Figure 4C).

Identification of the BR Biosynthetic Defect in dwf7-1

Biochemical complementation of dwf7-1 following applica-
tion of BL suggested that dwf7-1 is likely to be defective in
BR biosynthesis. To pinpoint the defective step in the BR
biosynthetic pathway, dwf7-1 mutants were treated with BR
biosynthetic intermediates. Due to undetectable bioactivity
of some early intermediates (CR to 6-oxocampestanol) in
bioassays (Fujioka et al., 1995; Choe et al., 1998), these
were not used. Instead, we chose three biologically active
compounds, 22-OHCR, 6-deoxoCT, and BL, for these feed-
ing tests (see Figure 1). Because the 22a-hydroxylation re-
action is reported to be mediated by DWF4 (Choe et al.,
1998), biochemical complementation of dwf mutants other
than dwf4 by 22-OHCR places the defective step upstream
of CR.

Figure 6A shows the response when inflorescences were
treated daily for 1 week with these BR intermediates. Com-
plementing compounds induced growth of internodes and
strongly increased pedicel length. dwf7-1 pedicels treated
with 22-OHCR and BL showed growth greater than or equal

Figure 3. Analyses of Wild-Type, dwf7-1, and dwf4-3 Flowers.

(A) to (C) Scanning electron microscopy of flowers from wild-type
(ecotype Wassilewskija-2 [Ws-2]), dwf7-1, and dwf4-3 plants. Flow-
ers were harvested immediately after petal opening. The wild-type
flower shown in (A) has a stamen length similar to or slightly greater
than that of the gynoecium, facilitating pollen dehiscence on the
stigmatic surface. A fertile dwf7-1 flower is shown in (B) with a con-
comitant reduction in the size of the gynoecium and the stamen. A
sterile dwf4-3 flower is shown in (C) with shorter filaments than the
gynoecium, preventing pollen dehiscence on the stigmatic surface.
Bar in (A) 5 1 mm.
(D) Measurements of gynoecia and stamens shown in (A) to (C).
dwf7-1 displays a concomitant reduction in the length of gynoecia
and stamens, whereas dwf4-3 displays a greater reduction in sta-
men length. Each data point represents the average length for five
flowers. Standard errors are shown at each data point.

Figure 4. Light Microscopy of Wild-Type and dwf7-1 Stems Sec-
tioned Longitudinally and Transversally.

(A) Wild type.
(B) dwf7-1. Cell size is reduced drastically in many different tissues,
such as the epidermis, cortex, and vasculature.
(C) dwf7-1 plants treated with BL. Cells were restored to their wild-
type length in response to daily application of 1027 M BL for 1 week.
(D) and (E) Cross-sections of wild-type and dwf7-1 stems, respec-
tively. Positions of the vascular bundles are marked with triangles.
Eight evenly spaced bundles are found in the wild type, whereas
fewer and irregularly located bundles were present in dwf7-1.
Bar in (C) 5 100 mm for (A) to (C) (longitudinal sections); magnifica-
tion 3100 for (D) and (E).
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to that of the wild type. Measurements of pedicel length
shown in Figure 6B demonstrated that the three compounds
tested, 22-OHCR, 6-deoxoCT, and BL, all increased dwf7-1
pedicel length .200% as compared with the control, sug-
gesting that the defective step in BR biosynthesis is located
at or before the CR biosynthetic step. Similarly, 3-week-
old inflorescences of dwf7-2 were tested with 22-OHCR,
6-deoxoCT, teasterone, and BL. All four compounds in-
duced significant elongation of pedicels and internodes
(data not shown), indicating that dwf7-1 and dwf7-2 share
the same biosynthetic defect.

As shown in Table 2, more definitive results indicating a
specific defect in BR biosynthesis have been obtained from
gas chromatography–selective ion monitoring (GC-SIM) anal-
ysis of endogenous BRs and sterols in dwf7-1 plants. The
endogenous levels of sterols, such as 24-MC, CR, and
campestanol (CN), in wild-type plants, were 3800, 32,900,
and 1140 ng/g fresh weight, respectively. However, the lev-
els of all three sterols in dwf7-1 mutants were extremely di-
minished at 3.1, 1.1, and 1.4% of the wild type, respectively,
suggesting that the biosynthetic block is located before
24-MC. These data are consistent with the results of inter-
mediate feeding studies (Figure 6).

Further biochemical feeding studies with 13C-labeled mev-
alonic acid (MVA) and compactin, a MVA biosynthetic inhibitor,
were performed to identify the specific sterol biosynthetic
step defective in dwf7-1 plants. In a preliminary experiment,
the effects of compactin and MVA on the growth of Arabi-
dopsis seedlings in liquid media were investigated. The
growth of wild-type Arabidopsis seedlings was almost com-

pletely inhibited in the presence of 10 mM compactin. The
inhibition, however, was restored to the level of controls by
the simultaneous application of 4.5 mM of MVA (data not
shown). Therefore, 4.5 mM 13C-MVA and 10 mM compactin
were added to Arabidopsis seedling cultures in the meta-
bolic feeding studies. After 11 days in culture, sterols were
extracted and purified by silica and octadecylsilane (ODS)
cartridge columns and ODS-HPLC. Purified samples were
derivatized and analyzed by gas chromatography–mass

Figure 5. Response of Light-Grown Wild-Type and dwf7-1 Hypoco-
tyls to Different Concentrations of BL.

dwf7-1 responds to 1029 M BL and is completely rescued by 1028 M BL.
Error bars indicate 6SE.

Figure 6. Wild-Type and dwf7-1 Inflorescences Treated with BR In-
termediates.

(A) From left to right, dwf7-1 inflorescences treated with water, 22-
OHCR, BL, and a wild-type inflorescence treated with water, re-
spectively.
(B) Quantification of the inflorescence feeding test shown in (A). The
lengths of pedicels treated with water, 6-deoxoCT, 22-OHCR, and
BL were measured to the nearest millimeter (n . 15). The pedicels
elongated greater than twofold in response to all the BRs tested,
suggesting that the biosynthetic defect in dwf7-1 resides before the
production of CR. Error bars indicate 6SE.
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spectrometry (GC-MS). As shown in Figure 7, 13C-MVA was
converted to 13C5-episterol and subsequent sterols, such as
13C5–24-MC and 13C5-CR in the wild type. However, the
13C5–5-dehydroepisterol and downstream compounds were
not detected in dwf7-1 mutants, whereas the precursor 13C5-
episterol accumulated fourfold as compared with the wild
type. In addition, an uncommon sterol, 13C5–7-dehydrocam-
pestanol (24-epifungisterol), greatly accumulated (Figure 7).
Two lines of evidence—a failure to convert episterol to sub-
sequent sterols, such as 24-MC and CR, and accumulation
of 7-dehydrocampestanol in dwf7-1—suggest that the de-
fective step in dwf7-1 is the C-5 desaturation stop.

Molecular Characterization of dwf7

An EMS-induced mutant (ste1-1) of STE1 encoding a D7 ste-
rol C-5 desaturase did not possess a dwarf phenotype
(Gachotte et al., 1995). However, because it is likely that
ste1-1 is a leaky allele, we hypothesized that dwf7-1 might
be a strong or null allele. We first sequenced the genomic
DNA of the STE1 gene and identified two introns and three
exons by comparing them with the published STE1 cDNA
sequence. The organization of the STE1 gene is represented
schematically in Figure 8. Sequencing the STE1 locus in the
dwf7 alleles revealed mutations. The mutations found in
dwf7-1 and dwf7-2 were located in the third and the first ex-
ons, respectively. Both of the dwf7 alleles contained a base
change from a guanine to an adenine, converting tryptophan
(TGG) to a stop codon (TAG in dwf7-1 and TGA in dwf7-2).

In addition to creating a stop codon, the mutation in dwf7-1
eliminated a HaeIII restriction enzyme recognition site
(GGCC to AGCC). Taking advantage of this restriction en-
zyme site change, we tested the linkage of this mutation to
the dwf7-1 phenotype. DNAs isolated from 17 different
dwarf plants from a segregating F2 population were sub-

jected to polymerase chain reaction (PCR) analysis by using
S5D_3F and S5D_1R primers (underlines were used to dis-
tinguish forward or reverse primers from the gene acronym
S5D), and the PCR products were digested with HaeIII. Aga-
rose gel electrophoresis definitively showed that none of
the PCR products from 17 mutant templates was restricted,
whereas products from wild-type templates were all re-
stricted at the HaeIII site (data not shown). These data sug-
gest that the creation of the premature stop codon in exon 3
is the cause of the dwf7-1–conferred phenotype.

To better understand the importance of these nonsense
mutations, we analyzed the sequence of STE1 in relation to
other C-5 desaturase proteins isolated from fungi. The STE1
protein is composed of 281 predicted amino acids with a
theoretical pI of 6.39 and molecular mass of 33 kD. Whereas
yeast ERG3 (38% identical; Arthington et al., 1991; Gen-
Bank accession number M62623) is predicted to contain
four transmembrane domains, STE1 possesses three puta-
tive transmembrane domains. The overall amino acid se-
quence identities of STE1 with C-5 desaturases from fission
yeast (GenBank accession number AB004539) and Candida
glabrata (Geber et al., 1995; GenBank accession number
L40390) were 37 and 33%, respectively (gap creation weight
of 4; gap extension weight of 1). In addition, multiple se-
quence alignment of STE1 with the three yeast sequences,
shown in Figure 9, revealed that the transmembrane do-
mains and histidine clusters, which were first reported by
Gachotte et al. (1996), are well conserved between the pro-
teins. The three characteristic histidine boxes flank the last
transmembrane domain. The nonsense mutations are lo-
cated in the first exon (dwf7-2) and the third exon, immedi-
ately before the third histidine box (dwf7-1), indicating that
at least one histidine domain is deleted in each of the dwf7
mutants as a result of the premature stop codons.

DISCUSSION

In this report, we present morphological, biochemical, and
molecular analysis of Arabidopsis dwf7 mutants. Morpho-
logically, dwf7-1 plants display a dramatic reduction in the
length of many different organs examined, and this size re-
duction is attributable to a defect in cell elongation. Bio-
chemically, dwf7-1 hypocotyls were converted completely
to wild-type length with the application of BL, suggesting a
deficiency in BRs. In agreement with this, BR intermediate
feeding analysis, accompanied by analysis of endogenous
levels of BRs and sterols by using GC-SIM, indicated that
dwf7-1 is defective specifically in the D7 sterol C-5 desatu-
rase step of the sterol biosynthetic pathway. Sequencing of
the D7 sterol C-5 desaturase gene in dwf7-1 and dwf7-2 re-
vealed premature stop codons, suggesting loss-of-function
mutations. Thus, we propose that a shortage of sterols leads
to a drastic reduction of BR levels in dwf7-1 and dwf7-2 and
to the characteristic dwarf phenotype.

Table 2. Quantification of Endogenous BRs from Wild Type and 
dwf7-1 by Using GC-SIM

BRs Wild Typea dwf7-1a

24-MC 3,800 118
CR 32,900 379
CN 1,140 16
6-Deoxoteasterone 0.05 NAb

6-Deoxotyphasterol 2.3 NA
6-Deoxocastasterone 4.0 NDc

Typhasterol 0.27 ND
CS 0.28 0.13
BL 0.2 ND

aThe unit of measurement is nanograms per gram fresh weight.
b NA, not analyzed.
cND, not detected. The endogenous amount of the BR is less than
the detection limit (z0.05 ng/g fresh weight).



214 The Plant Cell

BRs Regulate Cell Elongation and Cell Differentiation

The overall morphology of plants is dependent on three fac-
tors: cell size, shape, and number (Cosgrove, 1997). Various
signals modulate these factors. Environmental signals, such
as water, temperature, and light, are transduced to invoke
internal hormone signals, including auxins, gibberellins, and
BRs. These signals then trigger the cell elongation process,
including but not limited to cell wall loosening by xyloglucan
endotransglycosylases and expansins. Thus, a block in any
of the signal transduction cascades from the environmental
signals to the cell elongation process could result in dwarf-
ism. Mutants resistant to or deficient in classic hormones,
such as auxin (e.g., auxin resistant2 [axr2]; Timpte et al.,
1992) and gibberellin ([ga1 to ga5 and gai ]; Koornneef and
van der Veen, 1980; Koornneef et al., 1985), often result in
dwarfism. Thus, we first tested whether dwf7 is either res-
cued by or resistant to exogenous application of these hor-
mones. Three-week-old dwf7-1 plants sprayed with 0.1 mM
GA3 responded, as did the wild type (,10% increase of in-
florescence height; data not shown); however, GA3 did not
rescue the dwf7-1 phenotype. In addition, dwf7-1 roots
grown on indole acetic acid–supplemented agar media (0.1
mM) displayed stunted morphology similar to that of the wild
type, suggesting that dwf7-1 is not resistant to the exoge-
nous application of auxin (data not shown). The reduction of

hypocotyl length in dwf7-1 was rescued by the application
of BL (Figure 5). Both wild-type and dwf7-1 plants re-
sponded to BL, but dwf7-1 plants were hypersensitive. The
length of dwf7-1 hypocotyls was increased 160% in re-
sponse to 1 nM BL as compared with the untreated control,
whereas the wild type responded marginally (5%). In addi-
tion, application of BRs to 3-week-old dwf7-1 plants in-
duced the growth of many different organs, including stems,
leaves, siliques, petioles, and pedicels, suggesting that the
major defect in dwf7-1 is a deficiency of BL.

Apart from a reduction in cell elongation, a deficiency of
endogenous BRs resulted in altered organization of vascular
tissue in the inflorescence (Figure 4E). Szekeres et al. (1996)
showed that the number of xylem cells in cpd was de-
creased as compared with the wild type, whereas the num-
ber of phloem cells was increased. The authors reasoned
that this could be due to unequal division of cambial cells.
Furthermore, previous studies on the effects of BRs on vas-
cular development indicated that BRs play a role in tra-
cheary element formation (Clouse and Zurek, 1991; Iwasaki
and Shibaoka, 1991). Because BRs also have been found in
the cambial region of pine, indicative of an important role
in this tissue (Kim et al., 1990), we hypothesize that the de-
ficiency of BRs in dwarf mutants caused changes in cell
fate in vascular cambial cells through yet unknown mech-
anisms.

Figure 7. GC-MS Analysis of Wild-Type and dwf7-1 Seedlings Fed with 13C-MVA in the Presence of Compactin, an Inhibitor of MVA Biosynthesis.

Accumulation of episterol with a simultaneous decrease of downstream intermediates, including 24-MC and CR, predicts that the C-5 desatura-
tion step is blocked in dwf7-1 plants. The units are in micrograms per 5 g fresh weight of tissue. The designation ND (not detected) means that
the quantity is lower than the detection limit. Ws-2, Wassilewskija-2 wild type.
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Auxins also are known to be a major factor affecting dif-
ferentiation of the vascular system (Aloni, 1987). Lincoln et
al. (1990) showed that stem cross-sections of axr1 dis-
played altered development of the vascular system. The
vascular bundles in axr1 mutants are located peripherally
and are not as regularly spaced as compared with those in
wild-type plants (Lincoln et al., 1990). Furthermore, as op-
posed to the reduced number of vascular bundles in dwf7-1
(five to seven), axr1 plants possess a greater number of bun-
dles (eight to nine) as compared with the wild type (six to
eight). Thus, it seems that auxins and BRs play opposing
roles in determining the number of vascular bundles. Two
other assays in which auxin and BR interactions have been
demonstrated are the rice lamina bending assay and hypo-
cotyl hook opening bioassay. Results from these assays in-
clude the fact that the degree of effect caused by the
combined application of auxin and BR was greater than was
the sum of the effect of each, indicative of a synergistic ef-
fect of the two hormones (Yopp et al., 1981; Takeno and
Pharis, 1982; reviewed in Mandava, 1988). However, the de-
tails of the mechanisms for interactive and independent ac-
tion remain to be elucidated.

It needs to be pointed out that hypocotyl growth in dark-
ness is accomplished through both GA- and BR-dependent
cell elongation processes. One piece of evidence for depen-
dence on both GA and BR is that dwf7-1 hypocotyls elon-
gated fivefold in response to darkness as compared with
light-grown hypocotyls (data not shown), although they are
still shorter than those of the wild type. Because BL levels are
not detectable in dwf7-1 plants (Table 2), growth of dwf7-1 in
the dark could be accomplished mostly by GA-dependent
cell elongation processes. Peng and Harberd (1997) and
Azpiroz et al. (1998) found that both gai and dwf4,
respectively, partially suppressed the stem elongation phe-

notype of a light receptor mutant, hy, suggesting that hypo-
cotyl elongation in the absence of light inhibition requires
independent growth contributed by both GA and BRs.

dwf7 Plants Are Defective in Sterol Biosynthesis
Leading to BRs

A defect either in a biosynthetic enzyme or a factor modulat-
ing an enzymatic activity could lead to deficiency of endoge-
nous BRs. To place dwf7 at a specific step in the proposed
BR biosynthetic pathway, we first chose to perform feeding
studies with BR biosynthetic intermediates. Rescue of dwf7-1
by exogenous application of 22-OHCR suggests that the
biosynthetic defect likely resides before the production of
CR (Figure 6A). Consistent with the results from feeding
studies, the endogenous levels of 24-MC, CR, and CN were
extremely reduced in dwf7-1 (Table 2). These data indicate
that the biosynthetic defect is before 24-MC; dwf7-1 con-
tains only 3% of 24-MC as compared with the wild type.
When the phenotypes of dwf7-1 are compared with the
downstream biosynthetic mutant dwf4 and the BR-insensi-
tive bri1 (dwf2) mutant (Clouse et al., 1996; S. Choe and K.A.
Feldmann, unpublished data), it is obvious that dwf7-1 dis-
plays a weaker phenotype despite being a presumptive null
mutation. This suggests that there could be an alternative
sterol and BR biosynthetic pathway or that there are dupli-
cate genes at individual steps. Providing evidence for the
duplicate gene hypothesis, we recently cloned a homolog of
the DWF7/STE1 gene (named HOMOLOG OF DWF7, HDF7).
HDF7 is 80% identical in amino acid sequence with STE1 (A.
Tanaka, S. Choe, and K.A. Feldmann, unpublished data).
Similarly, Fujioka et al. (1997) reported that the endogenous
level of CN in det2, which is defective in a step between CR

Figure 8. Schematic Representation of the STE1 Gene.

Comparison of cDNA and genomic DNA sequences revealed three exons (thick boxes) and two introns (horizontal bars). The single open reading
frame encodes a protein of 281 amino acids. The dwf7-2 (ste1-3) mutation is located in the first exon, changing a tryptophan to a stop codon.
The dwf7-1 (ste1-2) mutation also changes a tryptophan to a stop codon (amino acid position 230). The three white boxes indicate the trans-
membrane domains, and the three histidine boxes are lightly shadowed. The figure is drawn to scale by using the GCK software (Textco, Inc.,
West Lebanon, NH). Bar 5 120 bp.
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and CN, is z10% that of the wild-type amount. The authors
hypothesized that the 10% leakage through the defective
step in det2 mutants, even in a null allele, could be associ-
ated with a second copy of DET2 that lightly hybridizes in
DNA gel blot analyses.

Placing dwf7 at a single sterol biosynthetic step was ac-
complished through feeding studies with 13C-MVA and com-
pactin. A greater than fourfold accumulation of episterol
accompanying the absence of downstream intermediates in
dwf7-1 indicates that the D7 sterol C-5 desaturase step is
blocked in dwf7. In addition, the feeding studies identified
an accumulation of 7-dehydrocampestanol, which is an un-
common sterol in plants (Figure 7). Accumulation of this
compound only in dwf7-1 suggests that sterol biosynthesis in
dwf7-1 could proceed to a C-24 reduction step, skipping C-5

desaturation as well as the next immediate C-7 reduction. The
C-24 reductase seems to convert episterol independently of
the immediate upstream enzyme. The absence of a detect-
able amount of C-7–reduced compounds in dwf7-1 suggests
that the enzymatic step is highly dependent on the C-5 de-
saturation reaction. This confirms the sequence of reactions
originally proposed by Taton and Rahier (1991, 1996).

dwf7 Mutants Produce Nonfunctional D7 Sterol C-5 
Desaturase Due to Premature Stop Codons

The D7 sterol C-5 desaturase–mediated reaction is common
to both photosynthetic and nonphotosynthetic organisms.
Many genes encoding a C-5 desaturase have been cloned

Figure 9. Multiple Sequence Alignment of DWF7/STE1 with Known Sequences for D7 Sterol C-5 Desaturases.

GenBank accession numbers for the sequences are M62623 (S. cerevisiae), AB004539 (Schizosaccharomyces pombe), L40390 (C. glabrata),
and AF105034 (DWF7/STE1, Arabidopsis). The conserved transmembrane domains and histidine clusters are boxed and labeled. The positions
of the premature stop codons in dwf7-1 and dwf7-2 are indicated with filled circles. Histidine residues in each conserved histidine box are iden-
tified with filled triangles. A consensus sequence is shown in the bottom row of the alignment. Capital letters stand for residues conserved
among all sequences, whereas lowercase letters mean >50% identical. Dashes indicate gaps introduced to maximize alignment. Multiple se-
quence alignment was performed using PILEUP in the Genetics Computer Group software (Madison, WI) with a gap creation penalty of 4 and a
gap extension parameter of 1. The annotation of the aligned sequences was performed using the ALSCRIPT software (Barton, 1993).
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from fungi. First, Arthington et al. (1991) cloned the ERG3
gene from Saccharomyces cerevisiae. The authors found
that viable erg3 mutants, which normally accumulate D7 ste-
rols, were restored to wild-type phenotype when trans-
formed with a wild-type genomic clone of the D7 sterol C-5
desaturase gene. Taguchi et al. (1994) showed that the yeast
mutant syr1 displays dual phenotypes, resistance to the
phytotoxin syringomycin and susceptibility to higher con-
centrations of Ca21, presumably due to altered membranes.
Sequencing the ERG3 locus in the syr1 mutant revealed that
syr1 is an allele of ERG3. Furthermore, Geber et al. (1995)
cloned both ERG3 and ERG11 (14a-sterol-demethylase)
from C. glabrata. The authors found that lethal erg11 muta-
tions can be suppressed by an additional mutation in erg3.
They reasoned that formation of toxic 3b,6a-diol sterols in
erg11 mutants is prevented due to the defect in C-5 desatu-
ration in erg11 erg3 double mutants.

In plants, Gachotte et al. (1995) found that the Arabidop-
sis ste1-1 mutant, which is deficient in C-5 desaturated ste-
rols, can be partially complemented by the yeast ERG3
gene. Accordingly, the authors hypothesized that ste1-1
possesses a mutation in the sterol C-5 desaturase gene.
They isolated the Arabidopsis C-5 desaturase gene through
heterologous complementation of a yeast erg3 null mutant
with an Arabidopsis cDNA library (Gachotte et al., 1996). Fi-
nally, the partial human cDNA for the C-5 desaturase has
been identified by Matsushima et al. (1996). Alignment of the
sequences of these enzymes revealed that C-5 desaturases
from different organisms are highly conserved in overall se-
quence as well as in specific domains. The overall amino
acid sequence identity and similarity among STE1 and
ERG3 and the human ortholog is 38% (50%) and 35%
(47%), respectively (similarity within parentheses). As indi-
cated in Figures 8 and 9, key domains including the trans-
membrane domains and the histidine clusters are well
conserved between all the C-5 desaturases.

Closely spaced histidine residues, HX3H in a helices,
serve as typical metal binding motifs in many proteins
(Regan, 1993). Shanklin et al. (1994) showed that three
membrane-associated bacterial enzymes, fatty acid desatu-
rase, alkane hydroxylase, and xylene monooxygenase, pos-
sess eight histidine residues that are conserved in three
regions dispersed in these enzymes, HX(3-4)H, HX(2-3)HH, and
HX(2-3)HH (where X stands for any amino acid). DNA con-
structs containing site-directed mutations at any of these
eight histidine residues of the rat D9 desaturase failed to
complement the yeast mutant ole1, which is defective in the
same enzymatic step, suggesting that the individual histi-
dine residues are essential for the function of the enzyme.
On the basis of these observations, Shanklin et al. (1994) hy-
pothesized that the histidine clusters conserved in these en-
zymes constitute new structural domains of diiron binding
centers (Shanklin et al., 1994). Gachotte et al. (1996) first
recognized the conserved histidine clusters in STE1 and
yeast proteins. We confirmed that the motifs are highly con-
served in STE1 and the yeast ERG3 enzymes with the same

context of HX3H, HX2HH, and HX2HH (Figure 9), revealing
the presence of a putative iron binding motif in D7 sterol C-5
desaturases.

More direct evidence of metal ion involvement in D7 sterol
C-5 desaturase function was obtained by Taton and Rahier
(1996). These authors discovered that the enzyme prepared
from maize microsomes is inhibited by cyanide, whereas it is
insensitive to carbon monoxide, indicative of the involve-
ment of a metal ion, presumably an iron, for the proper func-
tion of the enzyme. Furthermore, we noticed that the typical
histidine moiety also was conserved in a different group of
oxidases such as RANP-1 (Uwabe et al., 1997), C-4 methyl
sterol oxidase (Li and Kaplan, 1996), and aldehyde decarbon-
ylase (Aarts et al., 1995). Occurrence of these histidine
boxes in a wide variety of oxidases indicates that this do-
main plays a common and essential role in the function of
membrane oxidases. Therefore, it is likely that the mutations
in dwf7-1 and dwf7-2 would be deleterious to protein func-
tion. The premature stop codon in dwf7-2 would eliminate
all important known domains, whereas the third histidine
box and several amino acid residues that are 100% con-
served in the C terminus of the protein are eliminated in
dwf7-1. Intriguingly, the location of the mutations in dwf7-1
and dwf7-2 seems to be related to the phenotypic severity
of the mutant alleles. dwf7-2, which contains an earlier stop
codon, was shorter in height and less fertile than dwf7-1. A
more precise comparison between the two alleles is not
possible because the EMS allele, dwf7-2, has not been out-
crossed to remove any background mutations that might
have increased the severity of the phenotype of dwf7-2. De-
spite the differences in severity, both dwf7 alleles would be
predicted to be complete loss-of-function alleles. The result-
ing nonfunctional enzyme would cause a block in sterol bio-
synthesis. This shortage of substrate sterols in dwf7-1 and
dwf7-2 would lead to a deficiency of endogenous BRs and
cause the characteristic dwarfism in dwf7 plants.

METHODS

Plant Growth

For sterile growth of Arabidopsis thaliana plants, seeds of mutants and
the wild type were sterilized (50% Clorox and 0.005% Triton X-100) for
8 min, washed three times with sterile distilled water, and dried with
95% ethanol. The seeds were sprinkled on 0.8% agar-solidified me-
dia or in liquid media containing 1 3 Murashige and Skoog (1962) salts
and 0.5% sucrose (pH 5.8 with KOH). For the plants grown in the dark,
the seeds on the plates were illuminated for 3 hr (240 mmol m22 sec21)
before being wrapped with two or three layers of aluminum foil. For the
mature plants used for morphometric analysis and gas chromatogra-
phy–selective ion monitoring (GC-SIM) studies, seeds were planted
on soil (Metromix 350; Grace Sierra Co., Milpitas, CA) presoaked
with distilled water. The flats containing the pots were covered with
plastic wrap and cold-treated at 48C for 2 days before transfer to a
growth chamber (16 hr of light [240 mmol m22 sec21] and 8 hr of dark
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at 22 and 218C, respectively, and 75 to 90% humidity). The plastic
wrap was removed after 2 to 3 days. The pots were subirrigated in
distilled water or Hoagland’s nutrient solution as required.

Morphometric and Physiological Analysis

At 5 weeks of age, the various morphological traits listed in Table 1
were measured. The number of seeds per silique was determined after
the plants were completely dried. Unopened siliques from each plant
were selected and crushed, and the number of seeds was counted
under a dissecting microscope. To measure the fresh and dry
weight, we cut the aerial parts of the plants and immediately weighed
them to obtain the fresh weight; the plants were then completely dried
in a 608C oven for 5 days before measuring the dry weight. Observa-
tions on the structure of flowers were made with flowers at stage 14
(Smyth et al., 1990), which are right beneath the cluster of developing
flowers at the shoot apices. Individual organs of a flower were sepa-
rated under the dissecting microscope. The length of the organs was
measured to a tenth of a millimeter, and the four longest stamens for
each flower were measured and the mean value calculated.

The anatomical studies using a scanning electronic microscope
and a light microscope were performed as described by Azpiroz et
al. (1998).

Mapping and Sequencing of the DWARF7 Locus

The mapping of dwarf7 (dwf7) was performed using simple sequence
length polymorphism (SSLP) markers (Bell and Ecker, 1994). Briefly,
dwf7-1 mutants (Wassilewskija-2 [Ws-2] background) were crossed
to Columbia wild-type plants. Genomic DNA was isolated (Dellaporta
et al., 1983) from individual F2 dwarf plants. To locate the mutation to
one of the five chromosomes, 20 individual plants were tested with at
least two SSLP markers per chromosome. The polymerase chain
reaction (PCR) amplified products were analyzed on 4% agarose gels
in 1 3 TAE buffer (40 mM Tris-acetate and 10 mM EDTA). Once the
dwf7-1 mutation was shown to be linked to the nga162 marker lo-
cated on chromosome 3 (recombination ratio 11.9%), we tested
marker nga172, which maps at 2.2 centimorgans. No recombination
was detected between the dwf7-1 mutation and nga172 when 86
chromosomes were tested, suggesting that dwf7-1 is linked closely
to the nga172 marker. Linkage between the markers and the dwarf
phenotype was determined according to Koornneef and Stam (1992).

PCR products amplified using primer sets derived from the cDNA
sequence of STEROL1 (STE1) were subjected to sequencing. To de-
sign sets of primers that do not fall in exon–intron junctions, we pre-
dicted possible splice sites by using the RNASPL program available
at the Internet site of Baylor College of Medicine (Houston, TX; http://
dot.imgen.bcm.tmc.edu:9331/seq-search/gene-search.html). Prim-
ers were designed using the Primer Selection software of DNAstar
(DNASTAR Inc., Madison, WI). Oligonucleotide sequences 59 to 39

are CAGTGTGAGTAATTTAGCATTACTA (S5D_FF), GGAAAGATCATC-
AAACATTTACATGT (S5D_LR), GCGCAATCTTCTTTCGTTT (S5D_1F),
TGGACAACAACAACACAAGA (S5D_1R), GATGCACAGAGAGCT-
TCATGAC (S5D_2F), CCGGCAAATGGAGAGAGTGTAT (S5D_2R),
CACCCATCATATCTACAACAA (S5D_3F), and CATCT TTTGCCG-
GCGAATCTAT (S5D_4F) (underlines were added to distinguish for-
ward or reverse primers from the gene acronym S5D). Primers were
purchased from Genosys Biotechnologies, Inc. (The Woodlands, TX).

For template DNA, genomic DNA was isolated from two or three
leaves of dwf7-1 and wild-type plants according to the method de-
scribed by Krysan et al. (1996). Amplification of the DNA fragment span-
ning the whole coding region was performed with the S5D_4F and
S5D_1R primer set with Taq polymerase (Boehringer Mannheim).

Standard PCR reaction mixtures, 1 3 PCR buffer (10 mM Tris-HCl,
1.5 mM MgCl2, and 50 mM KCl, pH 8.3), 0.2 mM each of forward and
reverse primer, 0.2 mM each deoxynucleotide triphosphates, 1 ng of
genomic DNA, and 2 units of Taq polymerase were subjected to a
PCR program consisting of an initial denaturation at 958C for 2 min
and then for 35 cycles (958C for 30 sec, 568C for 30 sec, and 728C for
2.5 min ), with a final elongation step of 7 min at 728C. PCR-amplified
DNA was size-separated on 0.8% agarose gels in 1 3 TAE, and the
resulting DNA bands were gel-purified using a DNA purification kit
(Bio-Rad). The concentration of the extracted DNA was measured by
comparing the band intensity with a DNA mass standard (Bethesda
Research Laboratories). Sequencing of the DNA was performed at
the Arizona Research Laboratory (University of Arizona, Tucson).
DNA sequence analysis was conducted using software packages,
including one from Genetics Computer Group (Madison, WI) and
other database search tools available on the Internet.

The base change in dwf7-1 eliminated the recognition site for a
restriction enzyme HaeIII by converting the sequence from GGCC to
AGCC. Thus, we utilized this polymorphism to test the cosegregation
of the dwarf phenotype with the mutation. The 0.8 kb of DNA span-
ning the mutation was amplified using S5D_3F and S5D_1R primers
from 17 different dwarf plants from the mapping lines. Two microliters
from each 20 mL of PCR-amplified DNA was digested with the restric-
tion enzyme HaeIII (Boehringer Mannheim). After complete digestion,
the samples were resolved on a 2% agarose gel in 1 3 TAE buffer.

Genomic DNA sequence flanking the cDNA was identified by se-
quencing the products obtained from thermal asymmetric interlaced
PCR (TAIL PCR) (Liu et al., 1995). Two sets of primers were used to
amplify the 59 and 39 flanking DNA. Oligonucleotide sequences 59 to
39 are GTAGAAGCACCAGAGGAAACCGGAGATGAAGT (D7-5-1;
melting temperature of 698C), AAGTATAGTAGGGTTCCGGCGAGG-
TA (D7-5-2; melting temperature of 64 8C), ATAGATTCGCCG-
GCAAAAGATGACTC (D7-5-3; melting temperature of 638C), TGC-
AGGATACCATACGATACACCACACGACAT (D7-3-1; melting tem-
perature of 688C), CATACGATACACCACACGACATACAAGCAT-
AACTA (D7-3-2; melting temperature of 678C), and ATATGGATG-
GATTGGATGTTTGGCTCTC (D7-3-3; melting temperature of 638C).
The melting temperature of each primer was calculated with the for-
mula 69.3 1 0.41 (%GC) 2 650/L (Mazars et al., 1991), where L is
length of primer. Arbitrary degenerate primers AD1, AD2, and AD3
were synthesized according to the sequence described by Liu et al.
(1995). TAIL PCR was performed according to the program originally
described by Liu et al. (1995). TAIL PCR–amplified DNA was sepa-
rated on 1% agarose gels and gel extracted for sequencing.

Feeding Experiments

Biochemical complementation of dwf7-1 plants with different concen-
trations of brassinolide (BL) was performed in liquid media. BL-supple-
mented (control, 1029, 1028, and 1027 M) sterile liquid media (1.5 mL)
was dispensed into wells of a 24-well plate (Corning Co., Corning,
NY). Three seedlings, germinated on agar-solidified media, were trans-
ferred into each well. After a week of growth with continuous shaking
(230 rpm), the seedlings were lightly stained with toluidine blue, and
hypocotyls and roots were measured to the nearest millimeter.
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Feeding experiments using biosynthetic intermediates were per-
formed with 3-week-old mutant plants. The intermediates tested
were diluted to the desired concentration with water containing
0.01% Tween 20. Two microliters of each brassinosteroid (BR) solu-
tion was applied daily to the shoot tips of plants by using a micro pi-
pettman. After 1 week of treatment, total growth of inflorescence and
pedicels was measured to the nearest millimeter (n 5 15).

Analysis of Endogenous BRs

Plants were grown for 5 weeks on soil. Two hundred grams of the
aerial parts of plants, including stems, flowers, leaves, and siliques,
was harvested and subjected to BR extraction. The procedure for ex-
traction and analysis of BR intermediates by using GC-SIM has been
described (Fujioka et al., 1997).

13C-Labeled Mevalonic Acid Feeding Experiments

Before feeding experiments, seedlings were germinated and grown
on 0.5 3 Murashige and Skoog agar medium in the light at 228C (25
mL per dish). Eight days after sowing, the seedlings were transferred
to a 200-mL flask containing 30 mL of Murashige and Skoog media
supplemented with 3% sucrose (Ws-2, five seedlings; dwf7-1, 40
seedlings).

Compactin (mevastatin; Sigma) was converted to its sodium salt
as described previously (Kita et al., 1980). DL-Mevalonolactone-2–
13C (13C-MVA; Isotec, Miamisburg, OH) was dissolved in methanol.
Solutions of compactin and 13C-MVA were added aseptically to each
200-mL flask (final concentration, 10 mM compactin and 4.5 mM
13C-MVA) just after the seedlings were transferred, and seedlings
were allowed to grow for 11 days at 228C in the light on a shaker (110
rpm). After incubation, the seedlings (z5 g fresh weight of both Ws-2
and dwf7-1 plant materials) were extracted with methanol (250 mL),
and the extract was partitioned between CHCl3 and H2O. The CHCl3-
soluble fraction was purified with a silica cartridge column (Sep-Pak
Vac 12 cc; Waters, Milford, MA), which was eluted with 20 mL of
CHCl3. The eluate was purified with an octadecylsilane (ODS) car-
tridge column (Sep-Pak PLUS C18; Waters), which was eluted with
20 mL of methanol. The fraction was subjected to HPLC on an ODS
column as follows: column, Senshu Pak ODS 4150-N (150 3 10 mm);
solvent, methanol; flow rate, 2 mL/min; and detection, UV 205 nm.
Fractions were collected every 0.5 min (between retention times of
10 to 20 min). Main fractions of each sterol were as follows:
5-dehydroepisterol (retention time of 11.5 to 12 min), episterol (re-
tention time of 12.5 to 13 min), 24-methylenecholesterol (24-MC;
retention time of 13 to 13.5 min), 7-dehydrocampestanol (retention
time of 14.5 to 15 min), and campesterol (CR; retention time of 15.5
to 16 min).

Each fraction was converted to a trimethylsilyl derivative and ana-
lyzed by gas chromatography–mass spectrometry (GC-MS). GC-MS
analyses were performed on a JEOL Automass JMS-AM 150 mass
spectrometer (Tokyo, Japan) connected to a Hewlett-Packard
5890A-II gas chromatograph with a capillary column DB-5 (0.25 mm 3
15 m; 0.25-mm film thickness). The analytical conditions were the
same as previously described (Fujioka et al., 1997).

5-Dehydroepisterol, episterol, and 7-dehydrocampestanol were
chemically synthesized (S. Takatsuto, C. Gotoh, T. Noguchi, and S.
Fujioka, unpublished data).
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NOTE ADDED IN PROOF

While this article was under review, Husselstein et al. (Husselstein,
T., Schaller, H., Gachotte, D., and Benveniste, P. [1999]. Delta7-ste-
rol-C5-desaturase. Molecular characterization and functional ex-
pression of wild-type and mutant alleles. Plant Mol. Biol., in press)
also showed that a weak allele ste1-1 contains a substitution muta-
tion in the D7 sterol C-5 desaturase gene, changing a threonine at po-
sition 114 to isoleucine.
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