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RESEARCH ARTICLE
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Abstract

The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antago-

nizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies

also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular

mechanisms underlying the antagonism are unclear. To understand the interplay between

BRM and PcG during plant development, we performed a genome-wide analysis of tri-

methylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immu-

noprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3

deposition at several hundred genes was observed in brm mutants and this increase was

partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or

SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of

the genes and prevents the inappropriate association and/or activity of PcG proteins at

these loci. Together, these results indicate a crucial role of BRM in restricting the inappropri-

ate activity of PcG during plant development. The key flowering repressor gene SHORT

VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy

at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomi-

tant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence

establishes that BRM controls flowering time by directly activating SVP expression. This
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work reveals a genome-wide functional interplay between BRM and PcG and provides new

insights into the impacts of these proteins in plant growth and development.

Author Summary

In flowering plants, the proper transition from vegetative growth to flowering is critical for

their reproductive success and must be controlled precisely. Multiple genes have been

shown to regulate the floral transition in response to environmental and endogenous cues.

Among them is SHORT VEGETATIVE PHASE (SVP), a key flowering repressor gene in

Arabidopsis. SVP is highly expressed during the vegetative phase to promote growth, but

the mechanism by which the high expression level of SVP is maintained remains un-

known. Here, we report a genome-wide study to examine the functional interplay between

the BRM chromatin remodeler and the PcG proteins that catalyze trimethylation of lysine

27 on histone H3 (H3K27me3), a histone mark normally associated with transcriptionally

repressed genes. We identify BRM as a direct upstream activator of SVP. BRM acts to keep

the levels of H3K27me3 low at the SVP locus by inhibiting the binding and activities of the

PcG proteins. Thus, our work identifies a previously unknown mechanism in regulation of

flowering time and demonstrates the power of genome-wide approaches in dissecting reg-

ulatory networks controlling plant development.

Introduction

Plant development takes place in distinct phases, each of which is characterized by the activa-

tion of a particular set of genes and the repression of others. Precise control of gene expression

in each phase is crucial for proper growth and development. The transition from the vegetative

to the reproductive phase is controlled precisely by multiple genetic pathways in response to

environmental and endogenous signals [1–4]. In Arabidopsis, a repressor complex that consists

of two MADS box transcription factors, FLOWERING LOCUS C (FLC) and SVP, serves as a

negative regulator of flowering time by directly repressing the expression of the floral pathway

integrators FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1

(SOC1) [1,5,6]. SVP is highly expressed during the vegetative phase [5,7], but is down-regulated

during the floral transition by the autonomous and gibberellin (GA) pathways [5], which re-

sults in the de-repression of FT and SOC1 to promote flowering. Despite its key role in control-

ling flowering time, the mechanisms by which SVP expression is regulated are still unknown.

Particularly, no positive regulator(s) of SVP expression in the vegetative phase have

been identified.

Polycomb Group (PcG) proteins are epigenetic repressors that maintain the repressed state

of genes in cells where the genes should be inactive [8–11]. PcG proteins repress genes through

combined activities of at least two multi-protein complexes known as Polycomb Repressive

Complex 1 (PRC1) and PRC2 [8]. PRC2 is involved in the establishment and maintenance of

the repressed chromatin state, by introducing the H3K27me3 mark. Subsequently, PRC1 binds

to the H3K27me3 mark and compacts the chromatin, resulting in the repressed state of PcG

target genes. In Arabidopsis, at least three forms of PRC2 complexes exist and each of them

acts at specific developmental phases [12–15]. CLF and SWINGER (SWN) are two putative

H3K27 methyltransferases and act redundantly during the vegetative and reproductive stages

[16]. Several thousands of Arabidopsis genes were reported to carry the H3K27me3 mark in
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young seedlings [17–19]. A fraction of PcG target genes was found to carry the H3K27me3

mark specifically in either the shoot apical meristem or leaf cells [18], suggesting dynamic regu-

lation of H3K27me3 deposition. Studies have been carried out to address how PcG proteins de-

posit H3K27me3 to target genes [12,13,20]. It is less known, however, about the mechanisms

by which PcG activities are prevented from targeting certain genes to keep these genes on at

particular developmental phases.

SWI/SNF-type chromatin-remodeling protein complexes are thought to utilize energy from

ATP hydrolysis to mobilize, disrupt or change nucleosomes to create an open chromatin struc-

ture for the access of transcriptional factors or other regulators [21,22]. The SWI2/SNF2

ATPase in Drosophila, BRM, was initially classified as a Trithorax group (TrxG) protein since

it activates the transcription of homeotic genes and thus antagonizes the function of PcG dur-

ing fly development [23,24]. However, recent studies indicate that it can either activate or re-

press target gene expression, through increasing or decreasing the accessibility of the target

DNA [24–26], yet its role in the regulation of gene expression is not well understood. Although

the biochemical activities of plant SWI/SNF complexes have not been examined, progress has

been made to identify the plant SWI/SNF complexes through genetic and molecular analysis

[27–30]. In Arabidopsis, four SWI2/SNF2 ATPases including BRM and SPLAYED (SYD), four

SWI3 proteins (SWI3A to SWI3D), two SWI/SNF ASSOCIATED PROTEINS 73 (SWP73A

and SWP73B), two ACTIN RELATED PROTEINS (ARP4 and ARP7), and a single SNF5 sub-

unit termed BUSHY (BSH) were predicted subunits of SWI/SNF complexes [27]. Previous in

vitro protein-protein interaction data [28,31] and a recent effort in protein complex purifica-

tion followed by peptide sequencing [32] suggest that these proteins could form several SWI/

SNF complexes. Subunits of Arabidopsis SWI/SNF complex(es) play crucial roles in many as-

pects of plant development [26,27,33–36]. The SWP73B (also called BAF60) subunit has been

shown to participate in the control of flowering time [37]. The SWI3C protein is involved in

gibberellin (GA) responses [38]. brmmutants show pleiotropic phenotypes, such as reduced

plant size [28,39], downward curling of leaves [28,33], mild floral homeotic defects [28,34],

hypersensitivity to abscisic acid [26] and early flowering [33,39,40]. Efforts have been made to

understand the reason why brmmutants show an early flowering phenotype [40], but the pre-

cise role of BRM in flowering time control is still not clear.

Although the roles of PcG proteins and BRM during plant development have been investi-

gated individually, how their activities are coordinated is poorly understood. Interestingly, a re-

cent report in Arabidopsis showed that loss of BRM activity led to the increased H3K27me3 at

two floral homeotic genes [34], suggesting the antagonistic relationship between BRM and

PcG. However, the current model is solely based on the characterization of a few identified tar-

gets of BRM, and it remains unknown to what extent BRM is required for antagonizing PcG

function in plant. Also the precise mechanism by which BRM antagonizes PcG activity during

plant development remains unclear. Finally, whether or not plant BRMmight work synergisti-

cally with PcG proteins is completely unknown. To address these questions, we have performed

a genome-wide analysis of H3K27me3 in brmmutant seedlings by chromatin immunoprecipi-

tation followed by next generation sequencing (ChIP-seq). We identify several hundred genes

that show increased levels of H3K27me3 upon loss of BRM activity, demonstrating the critical

role of BRM in preventing genes from H3K27me3-mediated repression in plant cells. We fur-

ther show that there is inappropriate invasion of PcG proteins. Finally, by taking advantage of

our genome-wide data, we uncover a role for BRM in repressing flowering by activating direct-

ly the expression of SVP, thus providing an explanation for the early flowering phenotype of

brmmutants. Together, our results demonstrate that BRM is essential for proper H3K27me3

distribution in the genome and thus plant development.

BRMDirectly Activates SVP
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Results

Loss of BRM Activity Leads to the Gain of H3K27me3 at Hundreds of
Genes

To examine whether BRM affects the patterns of H3K27me3 deposition and distribution in a

genome-wide scale, we performed ChIP-seq with anti-H3K27me3 antibodies in wild-type

Col and brm-1, a null allele with a T-DNA insertion [28]. Two independent biological DNA

samples were generated and used for sequencing. We mapped the reads to the Arabidopsis

genome and identified H3K27me3-enriched regions in both wild-type and brmmutants.

Only H3K27me3-enriched regions identified in both biological replicates were chosen for

further data analysis. In 14-day-old wild-type Col seedlings, we identified 5,591 regions,

corresponding to 7,230 genes, which were marked by H3K27me3 (S1 Dataset). H3K27me3

target genes identified in our study cover more than 95% (6,322 out of 6634) of those re-

ported in a previous ChIP-seq analysis [19]. Furthermore, in both Col and the brm-1mutant,

the patterns of H3K27me3 at several well-characterized H3K27me3 target genes, such as

AGAMOUS (AG), APETALA3 (AP3), FLC and FT, are very similar to those reported by

Lu et al [19] (Fig. 1A). In contrast, no H3K27me3 signals at two highly expressed genes,

ACTIN2/7 and TUB2, were observed (Fig. 1B), demonstrating the quality and reliability of

our ChIP-seq data.

Compared to wild-type, we identified 276 genes at which H3K27me3 levels changed more

than twofold in the brm-1mutant (see the Materials and Methods section for details). Out of

the 276 genes, 258 (93.5%) genes showed more than a twofold increase in H3K27me3 in brm-

1, while only 18 (6.5%) genes showed more than a twofold reduction in H3K27me3 in brm-1

(S2 Dataset). Our genome-wide data show that BRMmainly acts to antagonize PRC2 activity

during vegetative development, which is consistent with its expected role as a TrxG protein.

However, the decreased H3K27me3 at a smaller set of genes in brmmutant suggests that BRM

could also promote PcG activity at certain loci.

We performed a Gene Ontology (GO) analysis for the genes showing increased

H3K27me3 deposition using the BINGO software [41]. In the classification of biological pro-

cesses, these genes were highly enriched in “regulation of metabolic process” (P = 9.69E-4)

and “regulation of gene expression” (P = 3.8E-4; Fig. 1C), and in terms of molecular func-

tion, the most enriched category observed was “transcription regulator activity” (P = 1.57E-

4). Thus, BRM is involved in a wide spectrum of cellular processes such as gene expression

regulation and metabolism through preventing PcG proteins from H3K27me3 deposition.

To validate our ChIP-seq data, we randomly chose a subset of genes and performed ChIP

followed by quantitative PCR (ChIP-qPCR) using independent chromatin samples. We con-

firmed the changes in H3K27me3 levels at all 10 selected genes in brm-1 (Fig. 1D and 1E).

We did not detect any marked changes at the PcG non-targets ACTIN2/7 or the PcG target

AG (Fig. 1E).

Next, we asked whether the elevated H3K27me3 levels in the brm-1mutant caused down-

regulation of the corresponding genes. We measured the expression levels of several selected

genes that showed increased H3K27me3 levels in brm-1 by quantitative Reverse Transcription-

PCR (qRT-PCR) and observed decreased expression for most but not all of them in brm-1

(Fig. 1F). Interestingly, we also found increased expression ofWRKY23 (Fig. 1F), a gene with

decreased H3K27me3 levels in brm-1 (Fig. 1D and 1E). These data indicate that there is a posi-

tive correlation between increased H3K27me3 levels and decreased gene expression in brm-1

and also suggest that increased H3K27me3 deposition alone in brmmight not be sufficient for

gene repression at some target loci.

BRMDirectly Activates SVP
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Figure 1. Loss-of-function ofBRM results in changes of H3K27me3 distribution over several hundred endogenous genes. (A) ChIP-seq data for the
well-known H3K27me3 target genes AG, AP3, FLC and FT from wild type Col (red; top) and brm-1 (orange; bottom). Gene structures are shown underneath
each panel. Scale bars, 1Kb. The plants used were 14-day-old seedlings. (B) ChIP-seq data showing no H3K27me3 signal at two constitutively expressed
genes ACTIN2/7 and TUB2 in wild-type Col (red; top) and brm-1 (orange; bottom). Gene structures are shown underneath each panel. Scale bars, 1Kb. (C)
Gene Ontology (GO) analysis of the genes showing increased H3K27me3 levels in brm-1. Numbers on the top are P values (hypergeometric test) for GO
category enrichment generated by comparing the percentage of the corresponding categories in the genes that showed increased H3K27me3 levels with
those in the whole genome. (a) Regulation of biological process;(b) Regulation of metabolic process; (c) Regulation of macromolecule metabolic process;(d)
Regulation of gene expression; (e) Response to auxin stimulus; (f) Tissue development; (g) Gene silencing by miRNA; (h) Meristemmaintenance; (i)
Meristem determinacy; (j) Floral meristem determinacy; (k) Leaf shaping; (l) Maintenance of floral meristem identity; (m) Transcription regulator activity; (n)
Transcripiton factor activity. (D) ChIP-seq data showing changes in H3K27me3 levels at 10 selected genes in brm-1. Nine of them showed an increase and
one showed a decrease in H3K27me3 levels. Data for the wild-type Col are shown in red at the top, and brm-1 is shown in orange at the bottom. Gene
structures are shown underneath each panel. Scale bars, 1Kb. (E) ChIP-qPCR validation using independent samples. Data are shown as percentage of
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Removal of CLF or SWN Activity in brm Background Results in a
Substantial Decrease of H3K27me3 Deposition at Some Genes

In Arabidopsis, CLF is thought to be a major H3K27 methyltransferase responsible for the de-

position of H3K27me3 in tissues other than seeds [42,43]. LIKE HETEROCHROMATIN

PROTEIN 1/TERMINAL FLOWER 2 (LHP1/TFL2) associates with regions with H3K27me3

across the Arabidopsis genome and was proposed to be a key component of a plant PRC1

complex [44,45]. Both clf and tfl2 single mutants showed up-ward curling of leaves (Fig. 2A)

[42,46]. We reasoned that CLF might be required for the increased H3K27me3 levels at some

genes in the brm-1mutant. To test this, we first generated a brm clf double mutant to exam-

ine the genetic relationship between CLF and BRM. clf single mutants display up-wardly

curled leaves while brm single mutants show down-ward curling of leaves [28]. Up-ward leaf

curling in clfmutants can be caused by ectopic expression of floral homeotic genes such as

AG, AP1, and AP3 [16,42]. In the brm clf double mutants, the up-ward curling of leaves was

weaker than that in clf single mutants (Fig. 2A and S1 Fig.), suggesting that brm can partially

suppresses clf. We also generated brm tfl2 double mutants. The leaves of the brm tfl2 double

mutants showed down-ward curling as those in brm single mutants (Fig. 2A and S1 Fig.) sug-

gesting that brm suppresses tfl2’s phenotype of up-wardly curled leaves. These genetic data

support a notion that BRM antagonizes PcG function during vegetative development. Con-

sistent with the partially rescued up-ward leaf curling in brm clf double mutants, we found

decreased ectopic expression of several floral homeotic genes such as AG, AP1, and AP3 in

brm clf double mutant leaves compared to clf single mutants (S2 Fig.). Interestingly, the brm

clf double mutants were also smaller in terms of overall size than either single mutant, sug-

gesting the additive effect of the two mutations in plant development. Supporting this obser-

vation, we noticed that there were more genes mis-regulated in brm clf double mutants than

either single mutant (S3 Fig.).

To test if CLF is required for the increased H3K27me3 levels at some genes in the brm-1

mutant, we measured genome-wide H3K27me3 levels in brm clf double mutants by ChIP-seq

and compared them with those in brm single mutants. We found that removal of CLF activity

led to a marked reduction of H3K27me3 levels at approximately half of the genes with in-

creased H3K27me3 levels in brm-1 (133 out of 258; Fig. 2B; S3 Dataset), indicating the re-

quirement for CLF activity for the increased H3K27me3 levels at some of the genes in brm

mutants. We validated these results by ChIP-qPCR at selected genes (Fig. 2C). It is worth

noting, however, that there was no drastic loss in H3K27me3 levels at the rest of the genes in

the brm clf double mutant relative to the brm single mutant (Fig. 2B and 2C), which might be

explained by the redundant SWN activity at these loci. To examine the contribution of SWN,

we generated the brm-1 swn-4 double mutant. We found that H3K27me3 levels at the majori-

ty of the selected loci in the brm swn double mutant were lower than those in the brm single

mutant (Fig. 2C). Furthermore, we scanned the SVP locus and included a region from the

neighboring gene At2g22560, for H3K27me3 distribution in all five mutant backgrounds. As

shown in Fig. 2D, the results were consistent with those in Fig. 2B and 2C, suggesting a re-

dundant role of CLF and SWN at SVP. These observations are consistent with a scenario in

which BRM acts to protect some gene loci from PcG activity in developing seedlings so that

these genes stay active.

input. ACTIN2/7 and AGwere used as control loci that exhibited no change in H3K27me3 deposition. Error bars indicate standard deviations from three
biological replicates.*: P< 0.05; **: P< 0.01. (F) Expression analysis of selected genes by qRT-PCR. The expression of each gene was normalized to that
ofGAPDH, and the expression level in Col was set to 1. Error bars indicate standard deviations from three biological replicates.*: P< 0.05; **: P< 0.01.

doi:10.1371/journal.pgen.1004944.g001
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Increased Occupancy of CLF/SWN at Target Loci in brmMutants

To determine if the increase in H3K27me3 levels in brmmutants was due to increased CLF/

SWN presence at the loci, we first measured CLF occupancy at the loci in the brmmutant rela-

tive to wild-type using a GFP-tagged CLF line [43]. As shown in Fig. 3A, CLF occupancy was

increased at all the selected genes, suggesting that, in the absence of BRM, CLF is allowed to ac-

cess some inappropriate genomic regions, resulting in increased H3K27me3 levels. We then ex-

amined the involvement of SWN. For that, we generated an YFP-tagged SWN line and

performed ChIP with anti-YFP antibodies to measure SWN occupancy in the brmmutant rela-

tive to wild type. We found that the occupancy of SWN was also increased at the majority of

the loci when BRM was absent (Fig. 3B). Furthermore, we also scanned the SVP locus, includ-

ing the region in the neighboring gene, to compare patterns of CLF/SWN occupancy between

wild type and brm-1. As shown in Fig. 3C and 3D, the two proteins were markedly enriched in

brm-1 across the SVP locus with a strong bias towards the transcription start site (TSS), impli-

cating a redundant action of CLF and SWN at SVP. These observations suggest that increased

CLF/SWN occupancy could contribute to the elevated levels of H3K27me3 in brmmutants.

On the other hand, by comparing H3K27me3 levels and CLF/SWN occupancy at SVP relative

to the control loci such as At2g22560 and ACTIN, low but significant levels of H3K27me3

(Fig. 2D) and CLF/SWN (Fig. 3C and 3D) at SVP were found in wild-type plants. This sug-

gested that BRM prevents high levels of H3K27me3 and CLF/SWN occupancy rather than ex-

cluding them. Alternatively, it could also function to keep PcG in an inactive state. At the

WRKY23 locus, CLF/SWN occupancy was reduced in the brmmutant (Fig. 3A and 3B), consis-

tent with the decreased H3K27me3 levels observed at this locus (Fig. 1D and 1E).

Physical Occupancy of BRM at Target Loci

Next, we asked how BRM antagonizes PcG function during vegetative growth, i.e., whether it

does so directly or indirectly. One of the possibilities that could explain the increased

H3K27me3 deposition and PcG protein occupancy on chromatin in brm is the elevated expres-

sion level of genes encoding PcG subunits. To address this issue, we examined the expression

levels of genes encoding PRC2 components, including CLF, SWN, EMBRYONIC FLOWER2

(EMF2), VERNALIZATION2 (VRN2), FERTILIZATION-INDEPENDENT ENDOSPERM

(FIE) and FERTILIZATION INDEPENDENT SEED2 (FIS2) [12] in brmmutants. The expres-

sion of these genes was not increased markedly in brm-1 compared to that in wild-type (S4

Fig.), indicating that BRM does not antagonize PcG through repressing the expression of PcG-

encoding genes. We also measured histone H3 levels at selected genes, and found a slight in-

crease in brm-1 (S5 Fig.). However, the change in H3 levels was very small and thus could not

Figure 2. Removal of CLF or SWN activity in brm background results in a substantial decrease of
H3K27me3 deposition. (A) Loss of BRM activity partially rescues the up-wardly leaf curling phenotypes of
clf-29 and tfl2-1. Scale bar: 1 cm. (B) ChIP-seq data comparing H3K27me3 levels at 10 selected genes in
Col, brm-1, clf-29 and brm-1 clf-29. Data for the wild type Col are shown in red, brm-1 in orange, clf-29 in
yellow, and brm-1 clf-29 in green. Gene structures are shown underneath each panel. Scale bars, 1Kb. (C)
ChIP-qPCR validation of the H3K27me3 ChIP-seq data using independent samples; and ChIP-qPCR
detection of H3K27me3 levels in swn-4 and brm-1 swn-4mutants. ChIP signals are shown as percentage of
input. ACTIN2/7 and AT2G22560 (a flanking gene of SVP) were used as negative control loci; and AGwas
used as a positive control locus. Error bars indicate standard deviations from three biological replicates. (D)
Top panel: schematic representation of the genomic region covering SVP and the flanking gene AT2G22560.
Dark and light blue boxes indicate exon and intron, respectively. Arrows indicate the transcription start sites.
Short blue lines indicate the positions of primer pairs used. Bottom panel: ChIP-qPCR determining the levels
of H3K27me3 across the SVP locus. ChIP signals are shown as percentage of input. Error bars indicate
standard deviations from three biological replicates.

doi:10.1371/journal.pgen.1004944.g002
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fully account for the change in H3K27me3 levels. These observations point to the possibility

that BRM acts directly at the target loci to antagonize PcG proteins.

We then tested whether BRM acts directly on the affected genes by physically binding to

these genes. We performed ChIP-qPCR experiments to examine BRM occupancy at the affect-

ed genes. For the ChIP assay, we used a transgenic Arabidopsis line expressing a GFP-tagged

BRM transgene under the control of the BRM native promoter (ProBRM:BRM-GFP) [47]. The

transgene could fully rescue the morphological defects of the brm-1 null mutant (Fig. 4A), sug-

gesting that it is functional in vivo. ChIP was performed with anti-GFP antibodies and Pro35S:

GFP plants were used as the negative control. The ChIP DNA was analyzed by qPCR to exam-

ine the enrichment of BRM at target genes. Genomic regions around the transcription start site

at all examined genes were significantly enriched in the BRM-GFP ChIP (Fig. 4B). Further-

more, we scanned the SVP locus, including the negative control region in the neighboring

gene, for BRM occupancy. As shown in Fig. 4C, the BRM was found to be significantly en-

riched at the SVP locus, particularly near the TSS. The physical association of BRM with these

selected genes, in combination with increased H3K27me3 deposition and decreased expression

of the genes in brmmutants, suggests that BRM acts directly at these target loci, to keep the

PRC2 activity off and thus promote gene activity. Loss of BRM activity allows the access to

these loci by PRC2, which turns off or decreases gene expression.

BRM Positively Regulates SVP Expression

In the sections below, we present our observations to demonstrate that SVP is a main target of

BRM in the control of flowering. SVP is a key negative regulator of flowering in Arabidopsis,

and loss-of-function of SVP results in early flowering [5,7]. Consistent with its role in main-

taining the duration of the vegetative phase, SVP is highly expressed in seedlings, but is barely

detectable in inflorescence tissues [7]. We noticed initially from our ChIP-seq and ChIP-qPCR

data (Fig. 1D and 1E) that H3K27me3 levels drastically increased at the SVP locus in brm-1

compared with wild-type. These data suggest that the SVP locus becomes a PRC2 target in the

absence of BRM activity. The increase in H3K27me3 levels at the SVP locus in brm raises the

possibility that BRMmay act to keep SVP on by antagonizing PcG activity during vegetative

growth. To test this hypothesis, we first extended the single time point expression analysis of

SVP in brm-1 as presented in Fig. 1F by examining the expression of SVP in the brm-1mutant

spanning several developmental time points. Indeed, the expression of SVP in the brm-1mu-

tant was consistently lower than that in wild-type plants over a time course spanning 8 to 14

days after germination (DAG, Fig. 5A), suggesting that BRM activity is continually required for

the high levels of SVP expression in seedlings. The decreased expression of SVP was unlikely

due to the accelerated floral transition of brm-1 plants, since the expression of AP1, a marker

gene for the vegetative-to-floral developmental transition [48,49], remained low throughout

the time course (S6 Fig.).

To confirm that BRM activates the expression of SVP, we generated XVE::aMIRBRM trans-

genic lines that harbor an inducible artificial microRNA (amiRNA) targeting BRM (Fig. 5B).

Figure 3. Physical occupancy of CLF and SWN at selected genes in brmmutants. (A) Analysis of CLF
occupancy at selected genes as determined by ChIP-qPCR using anti-GFP antibody in brm-1 Pro35S:GFP-

CLF and Pro35S:GFP-CLF plants. (B) Analysis of SWN occupancy at selected genes as determined by
ChIP-qPCR using anti-GFP antibody in brm-1 Pro35S:YFP-SWN and Pro35S:YFP-SWN plants. (C) and (D)
ChIP-qPCR to determine the levels of CLF (C) and SWN (D) occupancy across the SVP locus. The primers
used are the same as those in Fig. 2D. ChIP signals are shown as percentage of input. ACTIN2/7 and
AT2G22560 were used as negative control loci. AGwas a positive control locus. Error bars indicate standard
deviations among three biological replicates. *: P< 0.05; **: P< 0.01.

doi:10.1371/journal.pgen.1004944.g003
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As shown in Fig. 5C, BRM transcript levels in 7-day-old XVE::aMIRBRM seedlings treated

with β-estradiol to induce the amiRNA were gradually decreased by approximately 50% during

a 24h time course, indicating that the amiRNA was effective. SVP transcript levels showed a

similar reduction kinetics in the time course (Fig. 5D). This result reveals that proper BRM ac-

tivity is required for SVP expression.

Figure 4. Physical occupancy of BRM at selected genes. (A) ProBRM:BRM-GFP could complement the
brm-1 phenotype. GFP signals were detected by confocal microscopy in 14-day-old brm-1 ProBRM:BRM-

GFP roots and leaves, respectively. Scale bar: 50 μm. (B) BRM occupancy at selected genes as determined
by ChIP using anti-GFP antibody in brm-1 ProBRM:BRM-GFP plants with Pro35S:GFP plants as control.
ChIP signals are shown as percentage of input. TA3, a transposable element gene that is not targeted by
BRM [34], was used as a negative control locus. (C) ChIP-qPCR to determine the occupancy of BRM across
the SVP locus. ChIP signals are shown as percentage of input. The position of primer pairs used is the same
as in Fig. 2D. AT2G22560, a flanking locus of SVP, was used as a negative control locus. Error bars indicate
standard deviations among three biological replicates. *: P< 0.05.

doi:10.1371/journal.pgen.1004944.g004
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To further verify that BRM activates SVP expression at the transcriptional level, we obtained

a previously developed SVP promoter-GUS fusion reporter line (ProSVP:GUS) [5], and intro-

duced it into the brm-1 background by genetic crosses (brm-1 ProSVP:GUS). As shown in

Figure 5. SVP expression is tightly controlled by BRM. (A) The expression of SVP is drastically decreased in developing brm-1 seedlings compared with
that in Col (grown at 22°C) as determined by qRT-PCR. (B) Schematic diagram of the region between the right and left T-DNA borders of the XVE::aMIRBRM

construct. The precursor of aMIRBRMwas inserted behind a LexA operator sequence fused to the-45 35S minimal promoter (OLexA-45). Other components
of the vector were described previously (Curtis and Grossniklaus 2003). (C) BRM expression in 7-old-day XVE::aMIRBRM transgenic seedlings mock treated
or treated with 10μm β-estradiol for 0, 8, 12, and 24h, respectively. (D) SVP expression in 7-day-old XVE::aMIRBRM transgenic seedlings mock treated or
treated with 10μm β-estradiol for 0, 8, 12, and 24h, respectively. The expression of each gene in A, C, and D was normalized to that ofGAPDH. Error bars
indicate standard deviations among three technical replicates from one representative experiment. (E) GUS activity patterns of ProSVP:GUS in Col and brm-

1 backgrounds in 7, 11, and 14-DAG (days after germination) seedlings. Col and brm-1were included as negative controls. Scale bar: 0.5 mm.

doi:10.1371/journal.pgen.1004944.g005
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Fig. 5E, GUS activity in brm-1 ProSVP:GUS was almost invisible compared to that in ProSVP:

GUS at all three time points (Fig. 5E), suggesting that the promoter of SVP has no detectable

activity when BRM is absent. As negative controls, we also stained Col wild-type and brm-1

mutants but saw no signals (Fig. 5E). Documented Arabidopsis gene expression data indicate a

temporal and spatial overlap of the SVP and BRM expression patterns in leaves (S7 Fig.) [50],

which is consistent with a role for BRM as a positive regulator of SVP in developing seedlings.

These observations demonstrate a positive spatial and temporal correlation between BRM and

SVP expression, and when combined with our BRM-GFP ChIP data (Fig. 4B and 4C) that

showed a direct BRM binding to the SVP locus, indicate that BRM directly promotes SVP ex-

pression during vegetative development.

BRMRepresses Flowering Mainly via Regulating SVP Transcription

Having shown above a positive role for BRM in regulating SVP expression, we next sought to

investigate whether the BRM-SVP module can largely explain the early flowering phenotype of

the brmmutant. Both brm and svp single mutants show early flowering phenotypes under

long-day conditions [6,7,33,39,40], but it is not known whether there is a common molecular

mechanism underlying their flowering phenotypes. We first estimated the flowering time in

the two mutants by counting the number of leaves at bolting (Fig. 6A and 6B, top panel). brm-

1 and svp-31, a null T-DNA insertion mutant [6], flowered at roughly the same time. The svp-

31 heterozygous plants flowered significantly later than their homozygous siblings but earlier

than wild-type Col plants, indicating that SVP controls flowering in a dosage-dependent man-

ner, consistent with previous observations [7]. Next, taking advantage of the dosage-dependent

nature of flowering control by SVP, we quantified SVP transcript levels by qRT-PCR in the mu-

tant plants to estimate the contribution of SVP to the flowering control by BRM (Fig. 6B, mid-

dle panel). Our qRT-PCR data confirmed that svp-31 is a null allele and the heterozygous

plants accumulated approximately half the amount of SVP transcripts found in wild-type

plants (Fig. 6B, middle panel). SVP expression in brm-1 was drastically decreased to less than

half that of svp-31 heterozygous plants. In brm-1 ProBRM:BRM-GFP plants, both the flowering

time and SVP expression were restored to the wild-type level (Fig. 6A and 6B), further confirm-

ing that BRM activity is responsible for the normal expression level of SVP. Our quantification

of flowering time and SVP transcript levels in brm-1, when compared quantitatively to those

from svp-31mutants, suggests that 1) BRM is a major activator of SVP expression; and 2) The

early flowering phenotype of the brm-1mutant can largely be accounted for by the down regu-

lation of SVP transcription in the mutant, although other BRM targets also have

minor contributions.

To provide additional evidence to strengthen our conclusion, we tested whether restoration

of SVP in brmmutant background could overcome its early flowering phenotype by expressing

SVP from a promoter that is not controlled by BRM (Pro35S:SVP) [51] in brm-5, a chemically

induced mutant that has a single nucleotide change in the region encoding the ATPase domain

[33]. Indeed, introduction of Pro35S:SVP into brm-5 could rescue the early flowering of the

brm-5mutant (Fig. 6C). We also generated a brm-1 svp-31 double mutant to test the genetic in-

teraction between BRM and SVP in flowering time control. The brm-1 svp-31 double mutant

flowered only slightly earlier than either single mutant (Fig. 6B), suggesting that BRM and SVP

act largely in a common pathway in determining flowering time, and only minor contributions

from other BRM targets. It is worth mentioning that three other flowering time genes also dis-

played increased H3K27me3 levels in the brmmutant (S2 Dataset and S8 Fig.). When we

checked the expression of these genes, we only saw a clear decrease of AGAMOUS-LIKE24

(AGL24) expression but not the other two in brm-1 (S8 Fig.). AGL24 is a MADS-box protein

BRMDirectly Activates SVP

PLOSGenetics | DOI:10.1371/journal.pgen.1004944 January 23, 2015 13 / 25



involved in flowering time control. agl24mutants show delayed flowering while agl24 svp dou-

ble mutants are early flowering as svp single mutants [52]. The data thus suggest that the early

flowering phenotype of brmmutants is unlikely caused by these flowering time genes. In

Figure 6. BRM represses floweringmainly through regulating SVP transcription. (A) Comparison of flowering phenotypes of plants with various genetic
backgrounds shortly after bolting. For direct comparison, pictures of wild-type and brm-1 ProBRM:BRM-GFP, svp-31 /+ (heterozygous) and svp-31, and
brm-1 and brm-1 svp-31 were taken at the same age, respectively. All plants were grown at 22°C under long-day conditions. Scale bar: 2 cm. (B) Reduction
of SVP expression is associated with the early flowering of brm-1 at 22°C. Top panel: rosette leaf number at bolting of plants in different genetic backgrounds.
Error bar indicates standard deviations from at least 20 plants. Lowercase letters indicate significant differences between genetic backgrounds, as
determined by Post-hoc Tukey’s HSD test. Middle panel: expression analysis of SVP. Bottom panel: expression analysis of FT. The expression of SVP and
FT was calculated relative to that ofGAPDH. Error bars indicate standard deviations among three technical replicates from one representative experiment.
(C) Overexpression of SVP rescues the early flowering phenotype of brmmutant. Top panel: flowering phenotype of brm-5, Pro35S:SVP and brm-5 Pro35S:

SVP plants grown for five weeks at 22°C under long-day conditions. Scale bar: 2 cm. Bottom panel: rosette leaf number of brm-5, Pro35S:SVP and brm-5

Pro35S:SVP plants at bolting. Lowercase letters indicate significant differences between genetic backgrounds, as determined by Post-hoc Tukey’s HSD test.

doi:10.1371/journal.pgen.1004944.g006
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addition, we also examined the expression of FT, a well-established SVP target, in the various

genetic backgrounds (Fig. 6B, bottom panel). As expected, FT transcript levels correlated nega-

tively with those of SVP and positively with flowering time in the corresponding genetic back-

grounds. In summary, our observations strongly suggest that BRM represses flowering mainly

through activating SVP.

Discussion

In both animals and plants, a group of proteins that counteract PcG function have been de-

scribed and referred to as TrxG proteins [9,13]. Several putative TrxG proteins have been pro-

posed in Arabidopsis, including the H3K4 methyltransferase ATX1 [53], the SAND-domain

DNA binding protein ULTRAPETALA1 (ULT1) [54], the chromatin remodeling ATPase

PICKLE (PKL) [55], the H3K27me3 demethylase REF6 [19], and the SWI2/SNF2 ATPases

SPLAYED (SYD) and BRM [34]. A challenge for the field is to understand the specific roles of

the putative TrxG proteins and the functional relationship among them in antagonizing PcG.

The nature of the antagonism between SWI/SNF-type chromatin remodeling ATPases and

PcG proteins has been investigated in several studies in animals; and several models of counter-

action have been proposed [23,25,56–58]. Interestingly, a very recent report in Arabidopsis

showed that BRM overcomes the repression of AG and AP3 by the PcG pathway during the ini-

tiation of floral development [34], however, how it does so and to what extent BRM is required

for antagonizing PcG function in plants remains unclear. Our genome-wide study shows that

BRM deficiency led to an increase in H3K27me3 levels at several hundred genes across the ge-

nome during vegetative development in Arabidopsis. We further observed increased occupancy

of CLF/SWN-containing PcG complex(es) at these genes when BRM is not located there

(Fig. 3; S1 Table). Considering that there are low but significant levels of H3K27me3 (Fig. 2B–

2D) and CLF/SWN occupancy (Fig. 3) at SVP in wild-type plants, we favour a model of antago-

nism between BRM and PcG, in which BRMmight function to prevent high levels H3K27me3

and CLF/SWN occupancy instead of excluding them (Fig. 7). It is also possible that BRM could

function to keep PcG in an inactive state. In addition to chromatin remodelers, plants might

employ transcription factors to counteract PcG. A recent study showed that the binding of

transcription factor AG to the promoter of zinc finger repressor KNUCKLES (KNU) causes the

eviction of the PcG proteins from the locus, leading to the induction of KNU [59]. Thus, both

transcription factors and chromatin remodeling proteins could be involved in counteracting

PcG. It will be interesting to determine whether and how these two machineries work together

in antagonizing PcG function.

Our genome-wide analysis of H3K27me3 occupancy in brmmutant indicates that BRM

does not only antagonize PcG function during plant development, but also cooperates with

PcG at some loci (Fig. 1D and 1E). For example, the H3K27me3 level atWRKY23 is decreased

and the expression of the gene is up-regulated in both brm and fiemutant (FIE is a PcG sub-

unit) seedlings [17] (this study), suggesting that both BRM and PcG are required for the proper

expression ofWRKY23. Further, we show that the decreased H3K27me3 observed atWRKY23

loci in brmmutant could be because of, at least partly, the decreased CLF binding. Therefore,

this observation suggests that BRMmay work with the PcG proteins at some of the common

loci and thus repress the targets expression. WRKY23 was recently found to be needed for

proper root development and the over-expression ofWRKY23 results in the reduction of root

length [60]. It will be interesting to test whether the increased transcription ofWRKY23 could

explain the short root phenotype of brm [28]. The synergistic relationship between BRM and

PcG reported here was also observed by a study in human embryonic stem cell showing that an

embryonic stem cell specific SWI/SNF complex acts synergistically with PRC2 at all four Hox
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loci [25]. The mechanism by which BRM cooperates with PcG is currently unknown. One pos-

sibility would be that BRM directly interacts with PcG and facilitates the targeting of PcG to

genes. Indeed, we found that BRM co-localizes with H3K27me3 at theWRKY23 locus in wild-

type seedlings (Fig. 4), suggesting that BRMmight interact with PcG proteins. However, no

study so far has demonstrated a direct physical interaction between BRM and PcG proteins. It

is possible that these two complexes might interact transiently or indirectly. Nevertheless, the

synergistic relationship between BRM and PcG found in both animals and plants might suggest

its biological relevance and warrants further studies.

The proper transition from vegetative growth to flowering is critical for the reproductive

success of angiosperm plants and must be controlled precisely. BRM has been proposed as a re-

pressor of flowering as suggested by the early flowering phenotype and the elevated FT expres-

sion of brmmutants [39,40]. However, it was not clear whether BRM acts directly or indirectly

to repress FT. SVP has been demonstrated to be a direct repressor of FT [5,6], and thus serves

as a key repressor of floral transition. The precise regulation of SVP is obviously of critical im-

portance for our understanding of flowering control. Thus far, however, no direct upstream

Figure 7. A model for BRM in preventing inappropriate PcG activities at SVP to promote vegetative growth. In wild-type plants, BRM is physically
present at the target chromatin sites, and suppresses the inappropriate silencing of target genes by PcG, thus maintaining the expression of the target loci
where such expression is needed at the specific developmental phase. Without BRM, PcG is allowed access to some inappropriate genomic sites, resulting
in increased H3K37me3 levels and consequently down-regulation of the expression of the genes. For example, SVP is highly expressed in wild-type
seedlings and its downstream target FT is repressed, therefore, vegetative growth is promoted. Conversely, SVP expression is repressed by the mistargeting
of PRC2 in brmmutants, and FT is de-repressed as a result to lead to early flowering. Red star: the H3K27me3 mark.

doi:10.1371/journal.pgen.1004944.g007
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activator of SVP has been identified. In this work, we provide evidence demonstrating that

BRM represses FT by directly maintaining a high level of SVP expression (Fig. 7). First, loss of

BRM activity results in decreased expression of SVP (Fig. 5A–5E), which is associated with in-

creased H3K27me3 levels (Fig. 1D and 1E) and increased occupancy of CLF and SWN (Fig. 3C

and 3D). Second, BRM directly binds to the SVP locus in vegetative tissues where SVP is highly

expressed (Fig. 4B and 4C). Together, these observations suggest that BRM represses the floral

transition through directly activating SVP. This is consistent with the genetic evidence showing

that the brm-1 svp-31 double mutant displays almost the same early flowering phenotype as

brm-1 and svp-31 single mutants (Fig. 6A and 6B). Although our data support a scenario that

BRM represses flowering mainly through SVP, some evidence suggests that BRMmay also re-

press flowering through other pathways. For example, the expression of CONSTANS (CO), an

activator of FT in the photoperiod pathway, was increased in brmmutants [40]. In addition, el-

evated expression of both FLC and FT in brmmutants was also reported previously [39,40].

Since FLC is a repressor of FT expression [61], it seems hard to understand why the expression

levels of both FLC and FT were increased in brmmutants. Our results presented here provide

an explanation for this apparent discrepancy: mutation of BRM results in reduced expression

of SVP and consequently lower abundance of the SVP-FLC repressor complex, ultimately lead-

ing to activation of FT, regardless of the increased expression of FLC.

It is also relevant to note that down-regulation of BAF60/SWP73B was recently reported to

cause increased FLC expression and delayed floral transition [37]. The apparently opposing

flowering time phenotype of brmmutants and the BAF60 knockdown line is puzzling. It is un-

known whether and how BAF60 regulates SVP expression. It might be possible that the pres-

ence of BAF60 in a SWI/SNF complex inhibits the activity of BRM, thus reduction of BAF60

could allow BRM to activate SVP expression, which, in turn, leads to delayed floral transition.

Alternatively, it might also be possible that BRM and BAF60 are present in distinct complexes

that differ in their regulatory activities and target genes, e.g., BRM activates SVP, while BAF60

represses FLC.

Our genome-wide H3K27me3 profiling data also reveal that BRM is involved in the regula-

tion of a number of other important developmental genes including, most noticeably, members

of themiR166 andmiR156 families (S2 Dataset). It is well established that themiR166 family

miRNAs target the transcripts of the HD-ZIPIII genes, controlling the level and domain of

their expression to allow their proper functions in plant development [62–64]. More recently,

we uncovered a new role formiR166 in repressing the seed maturation program during vegeta-

tive development [65]. An earlier study demonstrated the involvement of BRM in repression of

the seed maturation genes in leaves [33] – a brmmutation was isolated in a reporter-assisted

genetic screen for Arabidopsismutants exhibiting ectopic expression of seed storage protein

genes [33,65,66]. Our new data presented here thus provide a potential link between the two

early studies [33,65]: it strongly suggests that BRM promotes the accumulation ofmiR166,

which in turn represses seed maturation genes in developing seedlings. In conclusion, our

work demonstrates that BRM promotes vegetative development by harnessing PcG proteins

(mainly by preventing their activities) at key developmental genes.

Materials and Methods

Plant Materials and Growth Condition

Arabidopsis seeds were stratified at 4°C for 3 days in dark condition. Then the seeds were sown

on soil or on agar plates containing 4.3 g/L Murashige and Skoog nutrient mix (Sigma-Al-

drich), 1.5% sucrose, 0.5 g/L MES (pH 5.8), and 0.8% agar. Plants were grown in growth rooms

with 16-h-light/8-h-dark cycles (Long-day, LD) at 22°C or 16°C. T-DNA insertion mutants

BRMDirectly Activates SVP

PLOSGenetics | DOI:10.1371/journal.pgen.1004944 January 23, 2015 17 / 25



were obtained from the ABRC, unless otherwise indicated. The brm-1 (SALK_030046), brm-5,

clf-29 (SALK_021003), tfl2-1 (CS3796), svp-31 (SALK_026551) and SWN-4 (SALK_109121)

mutants are all in the Col background and have been described previously [6,28,33,46,67,68].

Homozygous T-DNA insertion mutants were identified by PCR-based genotyping. Transgenic

plants ProBRM:BRM-GFP, ProSVP:GUS, Pro35S:SVP, Pro35S:GFP-CLF and Pro35S:GFP have

been described [5,43,47,69].

Chromatin Immunoprecipitation (ChIP) Assays

ChIP was carried out as described [70,71] with minor modifications. Briefly, two grams of 14-

day-old seedlings grown on MS agar were cross-linked with 1% formaldehyde and then ground

into fine power with liquid nitrogen. Chromatin was isolated and sheared into 200–800 base

pair fragments by sonication. The sonicated chromatin was immunoprecipitated with 5 μL of

anti-H3K27me3 (07–449, Millipore), anti-GFP (ab290, Abcam) or anti-H3 (Ab1791, Abcam)

antibodies. The precipitated DNA was then recovered with the MiniElute PCR Purification Kit

(Cat#28004, Qiagen) according to the manufacturer’s instructions. ChIP-qPCR was performed

with three technical replicates, and results were calculated as percentage of input DNA accord-

ing to the Champion ChIP-qPCR user manual (SABioscience). If fold enrichment was used,

the calculated percentage input of the wild-type control plant at the regions tested was set to

1. The fold enrichment represents the fold change relative to the wild-type. Independent ChIP

experiments were performed at least two more times and similar results were obtained. Primer

sequences used for ChIP-qPCR were listed in S2 Table.

ChIP-seq Analysis

Ten ng of ChIP DNA immuoprecipitated by the anti-H3K27me3 antibody was used for ChIP-

seq library construction. End repair, adapter ligation and amplification were carried out using

the Illumina Genomic DNA Sample Prep Kit according to the manufacturer’s protocol. Illu-

mina Genome Analyser IIx or HiSeq 2500 was used for high-throughput sequencing of the

ChIP-seq library. The raw sequence data were processed using the Illumina sequence data

analysis pipeline GAPipeline1.3.2. Then Bowtie [72] was employed to map the reads to the

Arabidopsis genome (TAIR10) [73]. Only perfectly and uniquely mapped reads were retained

for further analysis. Then the data were analyzed as described [19]. Briefly, the alignments

were first converted to WIG files using MACS [74]. Then the data were imported to Integrated

Genome Browser (IGB) [75] for visualization. Secondly, the program SICER [76] was used to

identify ChIP-enriched domains (peaks) in histone modification signals. Thirdly, quantitative

comparisons between wild-type Col and mutants were performed using the ChIPDiff program

[77]. Regions with more than twofold changes were kept for further analysis. Finally, the iden-

tified regions were annotated according to the Arabidopsis annotation gff file (TAIR10, www.

arabidopsis.org) using a customized Perl script. Two independent biological replicates were

used for sequencing, and only the regions of H3K27me3 found in both replicates were included

in the analyses.

Gene Expression Analysis

Total RNA was isolated from*100 mg of plant tissues using the RNeasy Plant Mini kit

(Qiagen). One μg RNA was reverse transcribed into cDNA using the High Capacity cDNA

Reverse Transcription kit (ABI). Random primers from the kit were used as primers. Real-time

quantitative PCR was conducted using the SsoFast EvaGreen Supermix kit with the Bio-Rad

CFX96 real-time PCR detection system (Bio-Rad Laboratories, Inc.). The data shown in the

figures are the average of three technical replicates. Results were repeated with two additional
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independent RNA samples (biological replicates). GAPDH served as the internal reference.

PCR primers used in real-time PCR are listed in S2 Table.

For genome-wide expression analysis, three biological replicates of Col, brm-1, clf-29 and

brm-1 clf-29 samples were analyzed on Affymetrix ATH1 arrays. Genes showing 1.5 fold

changes were considered to be differentially expressed.

Construction of YFP-SWN Transgenic Line

The SWN gene without the stop codon was amplified by PCR and cloned into the pDONR221

vector (Invitrogen) by BP reaction according to the manufacturer’s instructions. The resulting

transgene in the entry vector was sequenced to make sure that no mutation was introduced

during PCR. The transgene was then transferred into the pEarlyGate 104 Gateway-compatible

destination vector [78] by LR reaction, according to the manufacturer’s instructions, to make

Pro35S:YFP-SWN. The construct was introduced into Agrobacterium tumefaciens GV3101,

which was then used to transform swn-4mutant plants using the floral dip method [79]. Trans-

genic plants were selected in MS agar media containing 50 μg/ml of Hygromycin B and allowed

to grow in soil to maturity to yield seeds. PCR primers used in making the construct are listed

in S2 Table.

Artificial miRNA Transgene Constructs

For generating the XVE::aMIRBRM construct, the pRS300 vector [80] was used as the back-

bone to first generate aMIRBRM. The primers used were designed according to WMD3

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi) and are listed in S2 Table. aMIRBRM was

subcloned into the pDONR221 vector (Invitrogen), confirmed by sequencing, and then recom-

bined into the pMDC7 Gateway-compatible destination vector [78] where the aMIRBRM

transgene is controlled by a Estradiol-inducible promoter. The construct was transformed into

Col wild-type plants by the floral dip method [79]. Transgenic plants were selected for Hygro-

mycin B resistance and allowed to grow to maturity to yield seeds. Seven-day-old T2 transgenic

plants were treated either by 10μmol β-Estradiol or DMSO (as the mock control) and samples

were collected at different time points after the treatment.

Histochemical GUS Staining

The standard GUS staining solution (0.5 mg/mL 5-bromo-4-chloro-3-indolyl-glucuronide,

20% methanol, 0.01 M Tris-HCl, pH 7.0) was used. Seedlings immersed in GUS staining solu-

tion were placed under vacuum for 15 min, and then incubated at 37°C overnight. The staining

solution was removed and samples were cleared by sequential incubation in 75% and

95% ethanol.

Flowering Time Measurement

Wild-type and mutant plants were grown side by side in soil at 22°C or 16°C with 16-h-light/

8-h-dark cycles. The number of rosette leaves was counted when the length of the inflorescence

stem was 1 cm. For each genotype, at least 20 plants were analyzed, and the analysis was repeat-

ed 3 times independently.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome Initiative or Gen-

Bank/EMBL databases under the following accession numbers: BRM (AT2G46020), SVP

(AT2G22540), CLF (AT2G23380), BEL1 (AT5G41410), TCP2 (AT4G18390),WRKY23
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(AT2G47260),miR156D (AT5G10945), LHP1/TFL2 (AT5G17690), EMF2 (AT5G51230), FIE

(AT3G20740), SWN (AT4G02020), VRN2 (AT4G16845), AP1 (AT1G69120), TA3

(AT1G37110), ACTIN2/7 (AT5G09810), AG (AT4G18960), AP3 (AT3G54340), FLC

(AT5G10140), AGL24 (AT4G24540), SMZ (AT3G54990) and FT (AT1G65480). All raw

ChIP-seq dataset and ATH1 expression array dataset have been deposited in the Gene Expres-

sion Omnibus database under accession number GSE47202 and GSE53623.

Supporting Information

S1 Fig. Leaf curling phenotype of brm-1, clf-29, brm-1 clf-29, brm-1 tfl2-1, and brm-1 swn-

4. (A) Top panel: Rosette leaves from 14-d-old plants are shown. Scale bar: 2 mm. Bottom

panel: Percentage of upwardly curled leaves in each genetic background is shown. Error bar in-

dicates standard deviations from at least 20 plants. P values were determined by two-tailed t-

test. (B) Comparison of brm-1 and brm-1 swn-4 double mutants grown in soil for 14 days.

Scale: 1cm.

(PDF)

S2 Fig. Ectopic expression of floral homeotic genes in the clfmutant could be partially re-

stored by removing BRM activity. Expression data of floral homeotic genes, AG (A), AP1 (B),

AP3 (C) and AGL24 (D), in different genetic backgrounds were determined by qRT-PCR with

three biological replicates.

(PDF)

S3 Fig. The number of genes showing at least 1.5 fold change in 14-d-old brm-1, clf-29, and

brm-1 clf-29 seedlings as determined by microarray-based gene expression profiling.

(PDF)

S4 Fig. Expression analysis of PcG-encoding genes in brm-1 and col seedlings as deter-

mined by qRT-PCR. The expression levels of each gene were normalized to that of GAPDH,

and the expression level in Col was set to 1. Error bars indicate standard deviation among three

technical replicates from one representative experiment.

(PDF)

S5 Fig. ChIP-qPCR analyses of histone H3 levels at selected genes in brm-1 and Col seed-

lings. ChIP signals are shown as fold changes relative to that in wild-type plants. Error bars in-

dicate standard deviation among three technical replicates from one

representative experiment.

(PDF)

S6 Fig. Expression analysis of AP1 in brm-1 and Col seedlings as determined by qRT-PCR.

The expression level of AP1 gene was normalized to that of GAPDH. Error bars indicate stan-

dard deviation among three technical replicates from one representative experiment.

(PDF)

S7 Fig. Expression patterns of BRM and SVP. The data were extracted from Schmid et al [50]

and displayed using the AtGenExpress Visualization Tool (http://jsp.weigelworld.org/expviz/

expviz.jsp).

(PDF)

S8 Fig. Analysis of H3K27me3 and expression levels at several flowering time Genes in

brm-1. (A) ChIP-seq data showing an increase in H3K27me3 levels at several genes in brm-1.

Data from the wild-type Col is shown in red at the top, and brm-1 is shown in orange at the

bottom. (B) ChIP-qPCR validation using independent samples. Data are shown as percentage
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of input. Error bars indicate standard deviations among three technical replicates from one

representative experiment. (C) Expression analysis of AGL24 and SMZ by qRT-PCR. The ex-

pression of each gene was normalized to that of GAPDH, and the expression level in Col was

set to 1. Error bars indicate standard deviations among three technical replicates from one rep-

resentative experiment. (D) Small RNA northern blot analysis ofmiR156 in brm-1 compared

with Col. Two time points were used (10 days and 14 days after germination). The levels of

small RNAs in brm-1 were compared with those in Col, which was set as 1. The numbers

below the gel images indicate relative abundance. U6 served as loading control. RNA isolation

and hybridization for miRNA detection was performed as described [65]. Digoxigenin-labeled

miRNA probes were generated using the mirVana miRNA Probe Construction Kit (Ambion).

Oligonucleotide probes used are listed in S2 Table.

(PDF)

S1 Table. Summary of changes in H3K27me3 levels, CLF occupancy and gene expression in

brm-1mutants.

(PDF)

S2 Table. Oligonucleotides used in this study.

(PDF)

S1 Dataset. List of genes occupied by H3K27me3 in 14-day-old Col seedlings.

(XLSX)

S2 Dataset. List of genes with more than 2-fold changes in H3K27me3 levels in brm-1 seed-

lings compared with Col.

(XLSX)

S3 Dataset. Genes at which increased H3K27me3 levels in brm-1 are dependent on CLF.

(XLSX)
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