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Introduction

By an ordered semigroup we mean a semigroup with a simple order
which is compatible with the semigroup operation. Several authors, for
example Alimov [1], Clifford [2], Conrad [4] and Hion [7], studied the
archimedean property in some special kinds of ordered semigroups. For a
general ordered semigroup, Fuchs [6] defined the archimedean equivalence as
follows:

a r^bif and only if one of the four conditions

a<,b <^an, b ^a ^ bn, an <; b ^ a, bn <i a <^ b

holds for some positive integer n.

Then he mentioned that this relation is an equivalence relation. But this
is not correct. In fact, let S = {0, a, b} with the product xy = 0 for every
x,y eS and with the order a < 0 < b. Then it is easily checked that S
is an ordered semigroup and that a ~ 0 and b ~ 0. However, a ~ b does not
hold. It seems to be troublesome to define the archimedean equivalence
suitably in a general ordered semigroup. In the present note, we restrict
our attention to nonnegatively ordered semigroups in the sense defined in
§ 1. We define the archimedean equivalence in natural way. Even in these
semigroups, the archimedean equivalence is not always a congruence rela-
tion. The main purpose of § 2 is to give necessary and sufficient conditions
in order that the archimedean equivalence is a congruence relation. Such a
nonnegatively ordered semigroup is called a-regular. Many ordered semi-
groups, for example all nonnegatively ordered commutative semigroups and
the nonnegative cones of all ordered inverse semigroups are a-regular.
In § 3, we study the structure of a-regular nonnegatively ordered semi-
groups P. The quotient semigroup of P modulo the archimedean equiv-
alence is an ordered idempotent semigroup, whose structure was completely
determined in our previous paper [8]. By the aid of this knowledge, we
show, in this note, the structure of P is known to some extent.

547

https://doi.org/10.1017/S1446788700006200 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006200


548 Toru Saito [2]

1. Preliminaries

By an ordered semigroup, we mean a semigroup S with a simple order
which satisfies

a :Sj b implies ac :g; be and ca sS cb for every c e S.

An element c of S is said to lie between a and b if either a ^, c f=^b or b iS,c f^, a.
A subset T of S is called convex if T contains with two of its elements all
elements of S which lie between them. An element p of S is called positive
if p2 > p, while q is called negative if q2 < q. Since the order is simple,
an element p of S is nonnegative if and only if p2 ^ p. An element p of S
is called positive (nonnegative) in the strict sense if ps > s and sp > s
(/>s Si s and sp S: s) for every s e S. Clearly if p is positive (nonnegative) in
the strict sense, then p is positive (nonnegative). An ordered semigroup
S is called positively (nonnegatively) ordered (in the strict sense), if every
element of S is positive (nonnegative) (in the strict sense). The number
of distinct powers of an element a of an ordered semigroup S is called the
order of a. A mapping of an ordered semigroup S into an ordered semigroup
T is called an o-isomorphism, if it is a semigroup-isomorphism and an order-
isomorphism at the same time. If there is an o-isomorphism of S onto T,
then we say that S is o-isomorphic to T.

Now we give some lemmas which we need in the following sections.

LEMMA 1.1 ([9] Lemma 1 and its Corollary). The set P of nonnegative
elements of an ordered semigroup S, if it is nonvoid, is a subsemigroup of S.
The set E of idempotents of S, if it is nonvoid, is a subsemigroup of S.

The set P of nonnegative elements of S is called the non-negative cone
of 5. If the set E of idempotents of S is nonvoid, we denote by £$E the in-
equivalence in the semigroup E, in order to distinguish it from that in the
original semigroup S.

LEMMA 1.2 ([9] Lemma 2). In an ordered semigroup S, if p is nonnegative
and q is nonpositive and if p 5S q, then both pq and qp are idempotents which
lie between p and q.

LEMMA 1.3. An idempotent semigroup S is a semilattice of rectangular
bands. Every rectangular band which is a constituent of the decomposition is
a 3>-class of S.

The first half of the above Lemma was given in [2] Exercise 1 for § 4.2.
Then the second half can be shown easily.

LEMMA 1.4 ([8] Theorem 1). In an ordered idempotent semigroup S,
each 2-class consists of either only one Sf-class or only one Si-class.

A ^-class of an ordered idempotent semigroup S which consists of only
one ^?-class (^-class) is called a i^-class of jS?-type (^-type). By Lemma 1.3,
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the set of ^-classes of an ordered idempotent semigroup S forms a semi-
lattice, which is called the associated semilattice of S. In the associated
semilattice, we denote the partial order by ^ and the semilattice operation
by o.

LEMMA 1.5 ([8] Theorem 3). The associated semilattice S* of an ordered
idempotent semigroup S is a tree semilattice, i.e. a semilattice in which {£; f =̂  a}
forms a simply ordered set for every a e S*.

In the tree semilattice S*, a e S* is called a branching element of S*,
if there exist /? and y such that a -< /?, a -< y and a = /? o y.

Finally we give the following well-known lemma, which is implicitly
included in [5] The"oreme 3 in p. 179.

LEMMA 1.6. Let S be an ordered semigroup and let p be a congruence
relation on S such that every p-class is convex. For p-classes A and B, we
define A 5j B if and only if a^b for some a eA and b e B. Then the quotient
semigroup S\p is an ordered semigroup. Moreover, if A < B, then a < b for
every a e A and b e B.

2. The archimedean equivalence

In what follows, we always denote by P a nonnegatively ordered semi-
group and by E the set of idempotents of P. For x, y e P, we define the
archimedean equivalence ~ as follows:

x •—'V if and only if x ^ y :£ xn or y 5S x rg yn for some positive integer n.

LEMMA 2.1. The archimedean equivalence in P is an equivalence relation.

PROOF. It suffices to prove only the transitivity. Let a ~ b and b ~ c.
Then

(1) if a ^ b ^ an and b ^ c ^ bm, then a ^ K c ^ i 1 1 ^ amn;
(2) if a ^ b 5S a" and c fS=b f^cm, then, according as a <; c or c ^ a,

we have « ^ c g i g a" or c ^ a ^ J ^ cffl;
(3) if b 5g a <: b" and b fg c 5S &m, then, according as a 5S c or c 5S «,

we have u ^ c g Jm ^ «m or c ^ « g 5* ^ C;
(4) if 6 ^ a ^ 6" and c ^ & ^ cm, then c^b^a^bn< cmn.

Thus, in all cases, we have a ~ c.
An equivalence class of P modulo the archimedean equivalence ~ is

called an archimedean class.

LEMMA 2.2. Each archimedean class of P is a convex subsemigroup of P
which is nonnegatively ordered in the strict sense.
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PROOF. Let A be an archimedean class of P and let a, b e A and
a ^ c 5S b. Since a ~ b, we have b -^ a ^ bn or a ^b ^ an. li b ^ a ^bn,
then a = b = c, and if a ^Lb ^ an, then a ^, c ^ b ^ an. Thus, in both
cases, we have a ~ c and so A is convex. Next we suppose that a, b e A.
Then, since a ~ b, we have a :g b fS, an or 6 rg a 5g 6". If « ^ J g a",
then a ^ a2 ^ a& ^ an+1 and so a ~ a&. If b ^ a ^ bn, then b ^ b2 ^ ab ^
frn+i a n ( j s o ^ ̂  a j Thus, in both cases, we have abeA and so A is a sub-
semigroup. Finally, by way of contradiction, we suppose that ab < a for
some a, be A. Then we have ab2 ^ «&. On the other hand, since b fS, b2, we
have a& ^ aft2. Hence a& = ab2 and so a£> = abn for every positive integer n.
Since ab < a sS a2, we have b <. a. But a ~ 6 and so 6 < a fS 6m for some
positive integer m. Hence a ^ a2 j£ a6m = ab < a, which is a contradiction.
Thus a ^ ab for every a,b e A. Similarly we can prove a ^ 6a. Thus A
is nonnegative in the strict sense.

LEMMA 2.3. For an archimedean class A of P, the following conditions
are equivalent to one another:

(1) A contains an idempotent,
(2) A has the greatest element,
(3) A has the zero element,
(4) every element of A is an element of finite order,
(5) A contains an element of finite order.

Moreover, under these conditions, an idempotent of A is the greatest element and
also the zero element of A.

PROOF. (1) implies (2). In fact, let e be an idempotent of A and let
a e A. Then we wave a :£ e ^ a" or e ^ a fS en = e. Thus, in both cases,
we have ai=Le. Incidentally we have shown that an idempotent of A is the
greatest element of A. (2) implies (3). In fact, let g be the greatest element
of A and let a e A. By Lemma 2.2, we have g 5g ga and g ^ ag, and also
age A and ga e A and so ga sS g and ag sS g. Thus ga = ag = g. Incidentally
we have shown that the greatest element of A is the zero element of A.
(3) implies (4). In fact, let A have the zero element 0 and let a e A. Then
0 ^ a ^ 0" = 0 or a ^ 0 ^ a". In the former case, we have a = 0 and
a = a2. In the latter case, we have 0 g a" ^ 0" = 0 and so an = 0 and
an _ an+i_ (4) implies (5) trivially. Finally (5) implies (1). In fact, let a be an
element of finite order in A. Then an = an+1 for some positive integer n,
and an is an idempotent of A.

COROLLARY 2.4. Every archimedean class of P contains at most one
idempotent.

If an archimedean class A satisfies any one of the conditions in Lemma
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2.3, then A is called a periodic archimedean class. Otherwise A is called a
nonperiodic archimedean class.

LEMMA 2.5. In P, each nonperiodic archimedean class A is positively
ordered in the strict sense.

PROOF. By Lemma 2.2, we have a ^ ab for every a, b e A. Now, by
way of contradiction, we assume that a = ab. Then we have a = abm for
every positive integer m. Since a ~ b, we have either a f^b fSL an or
b ^a^bn. If 6 g a ^ S", then a2 ^ a&" = a ^ a2 and so a = a2. If
a ^.b -£an, then a" <S 6n and so a ^ a2 ^ an+1 ^ abn = a and a = a2.
Hence, in both cases, a is an idempotent of A, which contradicts that A
is non-periodic. Thus we have a < ab. We can prove a < ba in a similar
way.

EXAMPLE 2.6. Let Kx = {e, f, a, g) be a system with the multiplication
table

e

f
a

g

e

e

f
f
g

f
e

f
g
g

a

e

f
g
g

g

e

f
g
g

and with the order e < f < a < g. It is easily checked that Kx is an ordered
semigroup.

EXAMPLE 2.7. Let K2 = {e, f, a, g] be an ordered semigroup with the
product multiplicatively dual to that of Kx and with the same order relation

THEOREM 2.8. In order that the archimedean equivalence in a nonnegatively
ordered semigroup P is not a congruence relation, it is necessary and sufficient
that P contains a subsemigroup o-isomorphic to either Kx or K2 in the above
Examples.

PROOF. Necessity. Let the archimedean equivalence ~ in P be not a
congruence relation. Then there exist elements a, b, c e P such that a ~ b
but either ac ~ be or ca ~ cb does not hold. First we consider the case when
ac ~ be does not hold and suppose without loss of generality that a f^b :£ a".
Then ac ^bc ^anc and, since ac ̂  be, we have n > 1. Now we give a
series of relations which hold for a, b and c.

(1) (ac)m < a for every positive integer m.
In fact, if (ac)m 7> a for some m, then

anc = a"-1(ac) 5S (ac)m("-1)(ac) = (ac)m(l
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Hence we have ac fS.bc ^ anc rS, (ac)m{n~1)+l which contradicts that ac ~ be
does not hold.

(2) ac < a.
The special case of (1) for m = 1.

(3) acm = ac for every positive integer m.
In fact, by (2), we have ac2 5S ac. On the other hand, since c 5S c2,

we have ac fS, ac2. Hence ac = ac2 and so ac = ac™.

(4) ca < ac.
In fact, if ac 5S ca, then, by (3), we have anc = a"cn rg, (ac)n. Hence

ac ^Lbc fS, anc £= (ac)n, which contradicts that ac ~ be does not hold.

(5) ca = cac.
In fact, by (4), we have ca 5S c2a = c(ca) :S cac. On the other hand,

by (2), we have cac rgj ca. Hence we have ca = cac.

(6) a < a2c.
In fact, if a2c :£ a, then, by (3), we have a?c = a2c2 = (a2c)c 5j ac.

On the other hand, since a fS, a2, we have ac 5S a2c. Hence ac = a2c and
so ac = anc. Therefore ac ^ be ^ anc = ac, which contradicts that ac ~ be
does not hold.

(7) aca < a.
In fact, by (5) and (1), we have aca = acac = (ac)2 < a.

(8) (ac)2 = ac, (ca)2 = ca.
In fact, by (7), we have (ac)2 = acac £a ac and (ca)2 = caca 5S ca.

On the other hand, since ac and ca are nonnegative, these elements are
idempotents.

(9) (a2c)2 = a2c = a2.
In fact, by (5) and (8), we have

(a2c)2 = a2(ca)ac = a2(cac)ac = a(ac)3 = a(ac) = a2c.

Hence, by (6) and (2), we have a2 ^ (a2c)2 = a2c ^ a2 and so (a2c)2 =
a2c = a2.

Now we put ca = e, ac = /, a2 = a2c = g. Then, by (4), (2) and (6),
we have e < / < a < g. Moreover

e = e2 ^ ef rgj ea 5S eg = (ca)aa = (cac)aa = ca(cac)a = (ca)3 = ca = e
by (8) and (5),

/ = ac = acac = a(ca) = ac2a = fe ^ f2 5S fa rg fg = acaa = acaca =

acacac = (ac)3 = ac = / b y (8), (5) and (3),

/ = ac = acac = aca = ae by (8) and (5),

g = a2c = af ^ a2 ^ ag = aa2 = a3 = g by (9),
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g = a(ac) = a(ac)2 = a2cac = a2(ca) = ge ^ gf gj ga 5i g2 = (a2c)2 =
a2c = gby (8), (5) and (9).

Thus the set consisting of four elements e, f, a and g forms a subsemigroup
o-isomorphic to Kx. In the case when ca ~ cb does not hold we can prove
similarly that P contains a subsemigroup o-isomorphic to K2.

Sufficiency. We suppose that P contains a subsemigroup o-isomorphic
to K1. Without loss of generality, we assume P contains the ordered semi-
group Kx. Then, since a2 = g, we have a ~ g. But ae = /, ge = g and so
ae ~ ge does not hold. Thus the archimedean equivalence is not a congruence
relation. In the case when P contains a subsemigroup o-isomorphic to K2,
we can obtain the same conclusion in a similar way.

A nonnegatively ordered semigroup P is called a-regular if the archime-
dean equivalence in P is a congruence relation.

COROLLARY 2.9. A nonnegatively ordered semigroup P is a-regular if one
of the following conditions is satisfied:

(1) P is commutative,
(2) P contains no elements of finite order except idempotents,
(3) P is the nonnegative cone of an ordered inverse semigroup.

PROOF. In cases (1) and (2), it is trivial that P does not contain a sub-
semigroup o-isomorphic to Kx or K2. Since an ordered inverse semigroup
contains no elements of finite order except idempotents ([9] Theorem 6),
the case (3) is reduced to the case (2).

REMARK. When P is the nonnegative cone of an ordered regular semi-
group which contains a non-idempotent element of finite order, then, by
[9] Theorems 2 and 3, P contains a subsemigroup o-isomorphic to Kx or K2.
Hence P is not a-regular.

THEOREM 2.10. A nonnegatively ordered semigroup P is a-regular if and
only if it satisfies the condition

(a) a ~ g = g2, e = e2 < g and e@>Eg imply either ea — g or ae = g.

PROOF. Let P be a-regular and let a ~ g = g2, e = e2 < g and e3>Eg.
Then, by Lemma 2.3, we have a 5S g. Now we have also e < a. In fact,
otherwise, a 5S e < g and so, by Lemma 2.2, we have e ~ g, which contra-
dicts Corollary 2.4. First we suppose that the ^£-class of E which contains
e is of J§?-type. Then e = e2 ^ ea :£> eg = e. Hence we have ea = e. There-
fore (ae)2 = aeae = ae and so ae is an idempotent. Since ~ is a congruence
relation, we have ae ~ ge = g. Hence, by Corollary 2.4, we have ae = g.
If the ^-c lass which contains e is of ^-type, we can prove ea = g in a similar
way. Conversely we suppose that P is not a-regular. Then, by Theorem 2.8,
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P contains a subsemigroup o-isomorphic to either K1 or K2. If P contains
K-y, then three elements e, a and g of Kx satisfy the assumption of the
condition (a). But we have ea = e =/= g and ae = f =£ g and so the condition
(a) does not hold. If P contains K2, we can obtain the same conclusion in a
similar way.

3. o-regular nonnegatively ordered semigroups

In this section, we denote by P an a-regular nonnegatively ordered
semigroup and by A (p) the archimedean class which contains an element
p e P. Since P is a-regular, the archimedean equivalence ~ is a congruence
relation and so, by Lemmas 2.2 and 1.6, the quotient semigroup P / ~ is an
ordered semigroup with the order defined in Lemma 1.6. We denote by P
the ordered semigroup P / ~ .

THEOREM 3.1. P is an ordered idempotent semigroup.

PROOF. Let A (p) be an element of P. Then, since p ~ p2, we have
{A(p))* = A{p*) = A{p).

LEMMA 3.2. The mapping <p which maps e e E to A (e) e P is an o-iso-
morphism of E into P.

PROOF. By Corollary 2.4, <p is a one-to-one mapping. Then it is easily
seen that y is a semigroup-isomorphism and an order-isomorphism.

The image set of the o-isomorphism cp in the above Lemma 3.2 is denoted
by E. E is a subsemigroup of P. For an archimedean class A, we have A e E
if and only if A contains an idempotent. Hence E is the set of periodic
archimedean classes. The ^-equivalence in the ordered idempotent semi-
group P is denoted by 3i. For A e P, the ^-class which contains A is denoted
by "2[A).

THEOREM 3.3. If A e£, then W(A)QE.

PROOF. Let B e P such that A2B. First we suppose that Si (A) is a
^-class of £P-type. Since A e E, A contains an element e e E. We take b e B
arbitrarily. lib ^ e, then, by Lemma 1.2, be is an idempotent of P and be e
BA = B.lie g j , then we have e = e2 5S eb e AB = A. Hence, by Lemma
2.3, we have e = eb and so (be)2 = bebe = be and be e BA = B. Hence be
is an idempotent of B. Thus, in both cases, we obtain B e E. In the case
when 2 (A) is of ^-type, we can prove B e E in a similar way.

By Theorem 3.3, each ^-class D in P belongs to one and only one of the
following two types:

(1) all archimedean classes in D are periodic,
(2) all archimedean classes in 25 are nonperiodic.
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If a ^-class D belongs to the type (1), then JD is called a periodic ^-class,
while if D belongs to the type (2), it is called a nonperiodic ££-class.

THEOREM 3.4. / / A is an archimedean class which belongs to a periodic
2-class D and if A is not the least element of D with respect to the order in P,
then, in P, every element of A is at most of order 2.

PROOF. Let a e A. By assumption, there exists an archimedean class
B e D such that B < A. Since D is a periodic ^-class, both A and B are
periodic archimedean classes. Let e and / be idempotents of A and B,
respectively. Then, since B < A, we have / < a sS e. First we suppose
that the H-class D is of JSf-type. Then ef e AB = A and fe e BA = B. Since
ef e E and fe e E, we have ef = e and fe = f by Corollary 2.4, and so e3sEf.
In the case when T) is of ^-type, we can prove e&>Bf in a similar way. Hence,
in both cases, by Theorem 2.10, we have fa = e or af = e. On the other hand,
since / < a 52 e, we have fa t== a2 f^, e2 = e and af ^ a2 £S e% = e. Therefore
we have a2 = e.

THEOREM 3.5. Suppose that, for A e P, there exists B e P such that A < B
and 3s{A) =̂  @(B). Then A is a periodic archimedean class.

PROOF. First we suppose that 2 (A) is a S-class of =£?-type. Then, since
W(A) = W(A) oW(B) = W(AB), we have ^fi = A(AB) = A. We take
a e A and J e B arbitrarily. Then ab e AB = A and so a6 < b. Hence we
have a2b 5S a&. On the other hand, since a ^ a2, we have a6 ^ a2 b. There-
fore ab — a2b = a(ab) with aeA and abeA. Hence, by Lemma 2.5,
A is a periodic archimedean class. In the case when 3>{A) is of ^-type, we
can obtain the same conclusion in a similar way.

THEOREM 3.6. Every nonperiodic Sfi-class D consists of only one non-
periodic archimedean class.

PROOF. By way of contradiction, we assume that T) contains two
distinct archimedean classes A and B. Without loss of generality, we suppose
that A < B. Then Qt(A) = D = @i(B) and A is a nonperiodic archimedean
class, which contradicts Theorem 3.5.

COROLLARY 2.7. Let A be a nonperiodic archimedean class and let B be
an archimedean class such that A < B. Then there exists an archimedean
class C such that A <C and W(A) > @{C).

PROOF. We put C == AB. Then, by Lemma 1.2, we have A ^ C ^ B.
If it were true that A = C, then A = C < B and W{A) = W(C) = W{AB)
=̂  2(B), which contradicts Theorem 3.5. Hence we have A < C. Moreover
W{C) ~W(AB) < W(A) and the equality is excluded by Theorem 3.6.
Thus we have W{A) > W{C).
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REMARK. Intuitively speaking, when we pursue the course on the associ-
ated semilattice of P according to the order, every nonperiodic archimedean
class appears in the descending path. In particular, every branching element
of the associated semilattice is a periodic S-class.

THEOREM 3.8. Let A and B be archimedean classes such that A < B.

(1) If AB < B, then AB is a periodic archimedean class and, for every
a e A and b e B, the product ab is equal to the idempotent of A B.

(2) / / BA < B, then BA is a periodic archimedean class and, for every
a e A and b e B, the product ba is equal to the idempotent of BA.

PROOF. First we consider (1) and suppose that AB < B. Then ~3)(A B) =
2{A) oW(B) <; 3(B) and so, by Theorem 3.5, AB is a periodic archi-
medean class. Let g be the idempotent of AB and let a e A and b e B. Then,
since A B < B, we haveg < b and so ag :£ ab. On the other hand, by Lemma
2.3, g is the greatest element of AB and A s£ AB. Hence we have a ^ g.
Therefore, by Lemma 1.2, ag is an idempotent and also ag eA (AB) = AB.
Hence we have g = ag. Since ab e AB, we have ab ^ g = ag by Lemma 2.3
again. Thus ab = ag — g. The assertion (2) can be proved in a similar way.

REMARK. If A B — B, the product ab varies in general according to the
choice of elements a e A and b e B. For the study of the structure in this
case, it needs to discuss beforehand the inner structure of archimedean
classes.

Appendix

I express my hearty thanks to the referee for his suggestions given to
this paper.

References

[1] N. G. Alimov, 'On ordered semigroups', Izv. Akad. Nauk SSSR 14 (1950), 569—576
(Russian).

[2] A. H. Clifford, 'Naturally totally ordered commutative semigroups', Amer. J. Math. 76
(1954), 631—646.

[3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups I (Amer. Math. Soc.
Math. Surveys No. 7, 1961).

[4] P. Conrad, 'Ordered semigroups', Nagoya Math. J. 16 (1960), 51—64.
[5] M. L. Dubreil-Jacotin, L. Lesieur and R. Croisot, Lecons sur la theorie des treillis, des

structures algebriques ordonnees et des treillis geometriques (Gauthier-Villars, 1953).
[6] L. Fuchs, Partially ordered algebraic systems (Pergamon Press, 1963).
[7] Ya. V. Hion, 'Ordered semigroups', Izv. Akad. Nauk SSSR 21 (1957), 209—222 (Russian).
[8] T. Saito, 'Ordered idempotent semigroups', / . Math. Soc. Japan 14 (1962), 150—169.
[9] T. Saito, 'Regular elements in an ordered semigroup', Pacific J. Math. 13 (1963), 263—295.

Correction, 14 (1964), 1505.
[10] E. Ya. Gabovits, Ordered semigroups (Autoreview of dissertation, Leningrad, 1967)

(Russian).

Tokyo Gakugei University

https://doi.org/10.1017/S1446788700006200 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006200

