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Jared , 

My apologies for not getting you a copy of this a long time ago! I’ve been waiting for 
it to  come out as a tech report and never remembered to  send an “uncovered” copy 

to you. Anyhow, here is a copy of the phase I report. If you have any comments or 

suggestions for improvements, let me know. As soon the covered versions get back, 

send you 5-10 so you can pass them around. 

Things have been moving fairly smoothly on the prototype. Mark, Richard and I have 

gone through four revisions of the rule formats and are on the second version of the 

basic interpreter. We expect to be able to run sample data through the interpreter 

within a week. I’m going to try to  push to get a report describing the rule formats 

and structure of the interpreter finished by the end of January (but don’t expect it 

until March!) 

The most important thing is that Mark and Richard are starting to  take over the 

bulk of the work involved in designing rules and implementing the interpreter. At 

this rate I am very confident that they will be able to proceed with a much smaller 

commitment on my part next semester (just as we planned). 

We’re looking forward to your visit Wednesday and expect that we’ll have something 

running by the time you get here. 

Arthur B. Maccabe 

Assistant Professor 

http://unrn.edu
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Abstract 

This paper presents the preliminary architecture of a network level in- 

trusion detection system. The proposed system will monitor base level in- 

formation in network packets (source, destination, packet size, and time), 

learning the ‘normal’ patterns and announcing anomalies as they occur. 

T h e  goal of this reserach is to  determine the applicability of current in- 

trusion detection technology to the detection of network level intrusions. 

In particular, we are investigating the possibility of using this technology 

to  detect and react to  worm programs. 

1 Introduction 

Protection of resources is an important aspect of any computing system. Three 

aspects of network/distributed systems make these systems more vulnerable to 

attack than independent machines: 1) networks typically provide more resources 

than independent machines, 2) network systems are typically configured to  fa- 
cilitate resource sharing, and 3) global protection policies which are applied to  

all of the machines in a network are rare. 

The research project described in this report is aimed at investigating the 

applicability of intrusion detection techniques to detect network level intrusions. 

In particular, we are investigating the possibility of developing a system which 

can detect and react to worm programs. A “worm” program is characterized by 

the fact that the program moves from one node in a network to another. The 

‘This work was supported in part by the Office of Safeguards and Security of the US Dep. 

of Energy through the Nuclear Safeguards Group (N-4) of Los Alamos National Laboratory. 
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Internet worm of November 1988 [ll] provided ample demonstration of the fact 

that computer networks are susceptible to this type of attack. 

Protection encompasses the Integrity, confidentzalaty, and avazlabalzty of the 

resources provided by a computing system. Historically, protection has been 

provided in the context of a security model [SI. Security models are based on 

the concept of an action which is applied to a set of resources (frequently called 

objects).  Each action can be attributed to an individual user, the ini t iator  of the 

action. A security model specifies which actions are permitted based on the ini- 

tiator of the action, the objects involved in the action, and the context in which 

the action is requested. Importantly, every action performed in the computing 

.system must be validated by an implementation of the security model. 

There are at  least three ways in which a computing system based on the 

security model approach can be compromised: an incorrect implementation of 

the model, an inaccurate authentication of the user, or an insider  attack. Any 

implementation of a security model is at  best an approximation of the model. 

The more complex the model, the more likely it is that there is a discrepancy 

between the implementation and the model. Any such discrepancy must be 

viewed as a means by which the integrity, confidentiality, or availability of a 

resource could be compromised. 

The implementation of a security model incorporates an authentication mod- 

ule which is used to identify the individual initiating actions in the system. At 

best, the authentication module provides a high level of confidence that the 

individual initiating an action has  been correctly identified. Regardless of its 

complexity, every authentication module can be compromised. When the au- 

thentication module is compromised, i.e., an individual is incorrectly identified, 

the security model no longer provides protection for the resources of the com- 

puting system. 

Finally, the security model approach does not address the problems assc- 

ciated with an insider  attack. It is possible that an individual who has been 

granted the right to manipulate an object may abuse that right. This possibil- 

ity is not addressed in most security models. As such, a privileged individual can 

compromise the integrity, confidentiality, or availability of the resources which 

he or she has been authorized to manipulate. 

Given these difficulties, several researchers have proposed that the traditional 

security model be augmented with an intrusion detection system [6, 10, 9, 131. 
Any set of actions that attempt to compromise the integrity, confidentiality, or 

availability of a resource is termed an intruston. An intruder is the individual 

or group of individuals who initiates the actions in the intrusion. Intrusion 

detection systems are based on the belief that an intrusion will be reflected by a 

change in the ‘normal’ patterns of resource usage. As such, intrusion detection 

systems have been developed to monitor specific types of activities and announce 

anomalies in the behaviors observed. The anomalies announced by an  intrusion 

detection system serve as an indication that an intrusion may be in progress. 

If the intrusion detection system bases its monitoring on the actions per- 
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formed by an individual (as in the IDES system), the monitoring can be viewed 

as an on-going authentication process. In this sense, the individual’s behavior 

will continue to  authenticate his or her identity as long as those activities are 

within an acceptable variance of the normal behavior for the individual. How- 

ever, if the activities performed by an individual are significantly different than 

the activities normally performed by the individual, there is reason to  suspect 

the individual is not who he or she claims to be, i.e., that an intrusion has 

occurred. 

Like security models, intrusion detection systems are not immune to attack. 

Because behaviors change over time, intrusion detection systems must be capa- 

ble of adapting to reflect changes in the actions that they monitor. As such, a 

careful intruder can ‘teach’ the intrusion detection system a new behavior pat- 

tern which may culminate in invalid access to  resources in the system. In this 

context the intrusion detection system serves to  increase the time it takes to 

compromise the resources of the system and may increase the probability that 

the intruder will give up or be caught by alternative mechanisms. 

The research project described in this report represents an attempt to apply 

the techniques associated with intrusion detection to the network level of a 

computing system. 

2 Related Work 

As we have indicated this work falls into the general category of intrusion detec- 

tion systems. As with the IDES system [lo], our system is based on a statistical 

characterization of normal behavior. Like Wisdom and Sense [13] our system is 

based on a genetic algorithm which is used to learn which measures yield the 

best characterization of normal behavior. 

Perhaps the most obvious related work is the network security monitor being 

developed an the University of California, Davis [7]. In this work, the researchers 

have developed a rather elaborate model of attacks and have developed a mon- 

itoring system which is capable of detecting abnormal behavior within a local 

area network. Packets transmitted in the local area network are characterized by 

a four-tuple containing the source address, the destination address, the service 

and the connection. One of the most interesting aspects of this work is their 

implementation of “hierarchical analysis.” Give the volume of packets that  are 

transmitted in a local area network, it is unlikely that we will be able t o  analyze 
the state of the network in real-time. In the network monitor system statisti- 

cal data is collected at each level in the hierarchy. For example, the number of 

packets transmitted is collected at  five different levels: within the entire network; 

for each source machine; within a source machine, for each destination; within a 

source-destination pair, for each service; and within a source-destination-service, 

for each connection. Initially, each measure is only analyzed at  the level of the en- 

tire network. If this analysis indicates that the measure is abnormal, the deeper 
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levels are analyzed to determine the source of the anomaly. 

There are three contrasts between .the ne€work monitoring being developed 

at  UC Davis and the work described in this document. First, we have not de- 

veloped an extensive model of attacks. We recognize that such a model may 

be useful in separating false positives from true anomalies, but feel the need 

to  gain a better understanding of the kinds of measures needed to  characterize 

the network before we develop such a model. Second, we have been careful to  

only monitor data which is not subject to encryption. While encryption is rare 

in current local area networks, we expect that there will be a trend toward en- 

cryption in the near future (after all, if it is worth the cost of monitoring the 

.network, it is probably worth the cost of encrypting the data transmitted along 

the network). Moreover, if we were to make use of message components that 

might be encrypted an attacker could defeat our monitoring efforts by simply 

encrypting information. Third, we have designed our system so that i t  will be 

easy to add new measures as we think of them and remove measures when they 

fail to  characterize the network in a significant way. In this sense, we are devel- 

oping a testbed that can be used to explore which measures best characterize 

the normal behavior of a local area network. 

3 Overview 

One approach to  designing a network security system is to define network be- 

havior patterns that indicate intrusive or improper use of the network and look 

for the occurrence of those patterns. While such an approach may be capable of 

detecting known varieties of intrusive behavior, it would allow new or undocu- 

mented types of attack to go undetected. As a result, our decision was to  build 

a system which monitors and learns normal network behavior and then detects 

deviations from it. Our assumption, therefore, is that normal network traffic 

will be characterized by discernible patterns of data flow, and that intrusive 

behavior will in some way violate those patterns. 

The description of our proposed system design will be divided into two sec- 

tions: 

1. A module which monitors a local network and captures information about 

data packet transmission. This module will sample the network transmis- 

sions to create a statistically valid profile of the full data flow, and it will 

perform some preprocessing of the saved data. 

2. A module which uses the preprocessed information from (1) as input to  

a classifier system and genetic algorithm which learns normal patterns of 

network traffic and flags deviations from those patterns. 

Figure 1 gives an overview of the system design. 
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Figure 1: Basic architecture of intrusion detection system. 

4 Data Sampling and Preprocessing 

The first step in collecting data is to determine exactly what type of data should 

be collected. Since the goal of this project is directed toward intrusion detection 

at the network level a natural choice of data is the network transmission packet. 

The network packet provides two types of information to  study, transport infor- 

mation and user information. We choose to  use only the transport information 

as a primary source of data. 

The second step in collecting data is to  develop some mechanism for mon- 

itoring network packets. Since detecting an intrusion is not dependent on the 

specific method used to monitor packets, any mechanism capable of obtaining 

a valid data sampling is satisfactory. Currently, we are using a software package 

that allows monitoring of an Ethernet network. 

The final step in collecting data is to process it in such a way that it is 

transformed into a format acceptable to the classifier system. In practice, this 

preprocessing phase is very simpIe to implement. 

4.1 A Choice of Packet Data 

In practical terms, a network packet can be partitioned into two forms of infor- 

mation, transport informatton and user rnformatron [12]. Transport information 

generally consists of the source-destination ordered pair and some type of check- 

sum on which the integrity of the packet is determined. Transport information is 

added to the packet as part of the network transmission protocol and cannot be 

5 



directly affected by the user of a network. In other words, transport information 

is an artifact of the system and not the use?. We therefore consider transport 

information to be unbiased data. Unbiased data is simply the information in a 

network packet that cannot be made deceptive by a fraudulent user. 

On the other hand, user information is information which the user wishes to 

transport from one machine to another across a network. User information may 

vary from individual key strokes to  large aggregates of text as in a file transfer. 

This type of information can be directly manipulated by the user. A fraudulent 

user can easily modify this information to be deceptive. We therefore consider 

user information to be btased data. 

< 

4.2 The Physical Connection 

Presently, all data collection takes place on a SUN Microsystems 3/60 work- 

station provided by the Computer and Information Resources and Technology 

(CIRT) center at the University of New Mexico (UNM). The SUN 3/60 is con- 

nected to  an intra-center Ethernet which receives external network traffic via the 

Campus Data Communication Network (CDCN). The CDCN is a broadband 

network and is the backbone along which U N M  traffic is handled. 

To monitor Ethernet traffic, we use the Network Interface Tap (NIT) facility 

provided by SUN Microsystems as part of their S U N  Operating System network 

software utilities [l]. At this time, NIT is the only software available on our 

hardware configurations which allows promiscuous access to  Ethernet traffic. 

There is, however, a problem involving continuous data collection when using 

NIT. A loss of Ethernet packets is attributed to  monitoring on a multitasking 

system. This problem will be discussed in greater detail below'. Let us first 

provide an overview of NIT. 

4.2.1 Network Interface Tap (NIT) 

NIT is a facility composed of several streams modules and drivers which pro- 

vide link-level network access. As such, NIT is capable of both reading from 

and writing to  the Ethernet device. NIT performs this service by placing itself 

between the Ethernet device and a user process. When NIT is initialized as a 

reading device, it attempts to copy the packets which enter the Ethernet device 

buffer and return them as a stream. When initialized as a writing device, NIT 

requires the user process to  supply an input stream which is then transmitted 

out onto the network through the Ethernet device. The components which col- 

lectively provide this service are the interface (ni t i f ) ,  packet f i l t e r  (nit-pf), and 

buflertng (nit-buf) modules. 

' A  software bug in NIT which prohibited continuousmonitoring was corrected by installing 

a patch to the NIT interface module. Patches can be found at a variety of anonymousflp sites. 
The particular patch that we installed is from the current version of tcpdump.tar.2, and can 

be found at ftp.ee.lbl.gov (128.3.254.68). 
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The Interface Module The primary component of NIT is the interface mod- 

ule [2]. The interface module is a streams device driver which interacts directly 

with the system’s Ethernet device. The interface module transcribes packets 

from the Ethernet device to the read side of the stream or from the write side 

of the stream to the Ethernet device for transmission on the network. When 

NIT is opened as a reading device, the interface module provides additional 

information which may be prepended to the transcribed packet if desired. This 

information includes the size of the received packet, a timestamp marking the 

time of reception, and a cumulative count of dropped packets from the time the 

device was first opened2. 

The Packet  Filter Module An optional module provided by NIT is the 

packet filter module [3]. The module subjects each packet to  a filter which 

passes only those packets that the filter accepts on to its upstream destination. 

i 

The Buffering Module Also optional, the buffering module can be used to 

increase system efficiency [4]. The buffering module places an internal buffer 

between the Ethernet device and the user process. Packets which are copied by 
NIT are buffered into larger aggregates, thereby reducing the overhead incurred 

by repeated reads of the Ethernet device buffer. 

4.2.2 Problems Inherent to N I T  

A problem that we have encountered with the NIT facility is packet loss dur- 

ing the monitoring phase. At the present time, we can only hypothesize as to 

the cause of this loss. As described above, NIT provides intermediate buffering 

between the Ethernet device and the output stream. When operating in promis- 

cuous mode, NIT attempts to  copy all of the packets which are processed by the 

Ethernet device into its internal buffer. However, NIT is a process running in a 

multitasking environment. Inevitably, NIT will be pre-empted by the operating 

system scheduler in favor of another process. While NIT is in a pre-empted state 

the Ethernet device continues to  process incoming packets; packets which are 

never seen by NIT. 

The percentage of packet loss can be empirically calculated by summing 

the sizes of packets during a file transfer over the network of a particular file 

and comparing that value with the actual size of the file. The ensuing problem 

results in a packet loss of approximately 10 percent, and is directly related to  

the saturation level of the network3. 

2NIT software documentation explains that dropped packets are a result of system con- 

3The value of 10 percent was achieved by mnning the monitor process with a n i c e  priority 

straints. Presumably, these “system constraints” are one possible source of packet loss. 

of “-10”. 
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Figure 2: NIT interface facility. 

4.2.3 The Monitor Application Program 

The network monitor application is comprised of the NIT interface module and 

the NIT buffering module. We find no practical use at  this time to filter any 

of the incoming packets by using the NIT packet filter module. Functionally, 

the monitor program polls the read side of the NIT stream device or a specified 

length of time collecting packets. 

Prior to reading the stream device, NIT is configured in the following order: 

First, the stream device is opened with the C system call open. After opening the 

stream device, the buffering module is configured and the NIT device is bound to  

the SUN Ethernet device interface. Finally, NIT’S internal read buffer is flushed 

to remove anything that may have accumulated before the device reached its 

final configuration. Once the configuration is accomplished, the monitoring pro- 
gram executes a polling loop which continues until a specified time-out occurs. 

Within the polling loop, packet information is read from the NIT stream device 

and written to  a file for processing at  a later time. The relationship between 

the Ethernet device, the NIT facility, and the monitor application program is 

demonstrated in Figure 2. 

As mentioned earlier, only the transport information portion of the network 

packet is recorded. All other information is discarded by either the NIT buffer- 

ing module or the monitor application program. The NIT buffering module is 

configured t o  build 1024 byte aggregates. Ethernet packets exceeding the 1024 

byte size are truncated. The monitor application program reads only the first 

38 bytes of each Ethernet packet that is provided by the NIT stream. The 38 

8 



bytes include the prepended packet informati-on which the NIT interface module 

supplies and the Ethernet packet header information. The monitor application 

places this information into a temporary buffer and filters out the timestamp 

value, the packet length value, the cumulative packet drop value4, the Ethernet 

source-destination ordered pair, and the network protocol type descriptor. A 

total of 30 bytes from each observed packet is written to  a data file. 

During an average monitoring session we are able to collect approximately 

160 packets in a one second interval. This results in a file growth rate of 4,800 
bytes per second or more than 1 Megabyte every four minutes. Data accumula- 

tion at this rate will inundate even the largest storage disks after a day of mon- 

4itoring the network. Even with data compression, we realize that the amount 

of data collected during a 24 hour monitoring session would be overwhelming. 

Therefore, we are currently looking at various methods of discrete sampling to 

reduce the amount of data to be collected. 

4.3 Data Preprocessing 

Of the data currently saved, there are only four of the six values which are 

important to the classifier system. These are the packet size value, the times- 

tamp value, and the Ethernet source-destination ordered pair5. The cumulative 

packet drop value is of interest only to verify the performance of our monitor- 

ing application program. Future plans include using the network protocol type 

descriptor in the classifier system. 
There are two reasons for preprocessing the data: 

1. In the cases of source and destination addresses and packet sizes, the raw 

data can be compressed without loss of relevant information. This results 

in data which is easier for the classifier system to manipulate and which 

requires less off-line disk space for storage. 

2. In the case of timestamp information, the basic second count provided is 

augmented to  include the contextual information of hour of day and day 

of week. This allows the building of network behavior profiles that are 

based on human temporal patterns. 

4.3.1 Address 

Representation of an Ethernet address, whether destination or source, requires 

6 bytes. This ensures that there will be a sufficient number of distinct addresses 

available for each unique Ethernet controller within a computer system. How- 

ever, we will only see a very small set of these addresses in any given LAN. 

4T0 date, we have been unable to determine the meaning of the number in the packet drop 

5We refer to the Ethernet source-destination ordered pair as if it is a single value. It is 

field. 

actually comprised of two independent values. 
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Therefore, each Ethernet address in our LAN will be mapped into a two byte 

value. 

4.3.2 Size 

The size of an Ethernet packet can vary from 64 to  1518 bytes (121. However, 

the packets can be readily grouped into a much smaller number of categories. 

For example, a single keystroke packet may contain transport information and 

the data which represents the keystroke - one or two bytes. In contrast, a file 

transfer program will attempt to utilize the largest available packet size possible 

, to  transfer a large aggregate of data in a single packet. Data size information, 

'therefore, can be compressed into groups of naturally occurring clusters. We 

expect the reduction to be from 1518 to  on the order of 4 to 16 categories. 

4.3.3 Time 

The timestamp value provided by the NIT facility is a relative time based on 

the absolute time 0O:OO:OO GMT January 1, 1970. To capture the full potential 

of time information we will transform the NIT timestamp to one that includes 

second, minute, hour, and day of week information. 

5 Learning Norma1 Network Patterns and Flag- 

ging Deviations: The CIassifier System and 

Genetic Algorithm 

The input for this module of the system consists of simple packet transmission 

4-tuples. These 4-tuples include the packet's source, destination, size, and time 

of transmission, with the time including the contextual information of hour of 

day and day of week. While these individual events are simple enough, over 

time a great deal can be inferred from them about the operation of a network. 

They can be grouped in an impressive number of ways. A brief list of possible 

characteristics that might be relevant to  the problem at hand includes: 

0 Has a packet transmission been received from a previously uncatalogued 

source? 

0 Is the total network traffic over the last n minutes within the expected 
bounds for this hour of day and day of the week? 

0 Is the pattern of transmission from a given source to all other processors 

in the network over the last hour outside the bounds of expected difference 

by some statistical measure for this time of the day? 
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Does the shape of a size histogram of all packet transmissions over the last 

n minutes match the normal shape ofsuch a histogram closely enough? 

How about for a given source-destination pair, or for some subset of all 

source-destination pairs? 

Has the number of packet transmissions increased every minute for the 

last n minutes? 

0 Has some combination of the above events occurred in the last n minutes? 

The list of questions and categories can be enlarged indefinitely. The point 

,is that individual events acquire meaning only by being given a context. The 

context that is needed is a set of categories, existing in time, into which indi- 

vidual events and parts of events can be placed. The analysis of these categories 

can then reveal patterns of normal network behavior, which can in turn be used 

to detect abnormal behavior. 

Proper choice of meaningful categories, however, is a difficult task. The dif- 

ficulty lies in the fact that patterns of normal network behavior will not be 

apparent unless good classification of event categories are chosen. A good cate- 

gory, however, is by definition one which reveals patterns of normal behavior. 

For instance, suppose the number of packet transmissions between a source- 

destination pair over a ten minute period is chosen as a category to be monitored. 

Whether this is indeed a meaningful category will depend on whether a statis- 

tical characterization of the source-destination transmissions over ten minutes 
can be found such that normal network behavior fails within the characteriza- 

tion and intrusive or questionable behavior falls outside of it. This is a question 

that can only be answered by experience. We are left with a circular definition, 

which suggests an iterative approach to  defining categories. 

The design we plan to  implement is based on the classifier system and genetic 

algorithm model described by Booker, Goldberg, and Holland 151. The model 

consists of three main components: 

1. A classifier system, which is a parallel, message-passing, rule-based system. 

The system uses rules that are sensitive to input messages, as well as rules 

that  integrate messages from other rules, to eventually develop an output 

message. 

2. A credit assignment algorithm, which evaluates the usefulness and pre- 

dictive power of individual rules. Each rule has  a strength factor which is 

increased or decreased each time a rule is part of a chain that effects the 

output message, depending on whether the rule contributed to  a correct 

or incorrect prediction. 

3. A genetic algorithm that periodically modifies the set of rules in the clas- 

sifier system. Rules whose low strength factors indicate they are poor 
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Figure 3: The classifier system learning and decision process, with feedback from 

the credit assignment and genetic algorithms. 

predictors are removed. They are replaced by new rules formed by com- 

bining parts of rules whose high strength factors indicate they are good 

predictors. 

The components of the model, illustrated in Figure 3 are now described in 
more detail. 

5.1 The Classifier System 

As stated above, the classifier system is a parallel, message-passing, rule-based 

system. All rules are of the condition/action form; the condition is the receipt 

of messages containing information that activates the rule, and the action is 

the sending of messages when the rule is satisfied. All messages contain a tag 

specifying their origin and an information field. For concreteness, all messages 

can be thought of as being a bit string of fixed length. The first n bits could 

represent the tag field. Each of the remaining bits could encode the presence or 

absence of some simple condition, depending on whether they contained a 0 or 

a 1. 

A classifier system, then, consists of four parts: 

Networi 

Packets 

1 

1 

1 

Classifier 

System 

Rule Credit 
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\ J l  
Genetic Algorithm 
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Figure 4: Classifier rules to determine the normal transmission threshold of 

packets of size 100 over a one second period. 

1. An input interface. In our case this will be a message that contains the 

information from a 4-tuple describing an individual packet transmission. 

2. The classifiers. These are rules which define the ways in which the system 

consumes and creates messages. 

3. The message list. A list of all messages yet to be considered by the classifier 

rules. The messages may be from the input interface or from satisfied rules. 

4. An output interface. In our case this will consist of a message indicating 

whether current network behavior is believed to be normal or abnormal. 

In the event of abnormal behavior, the message may also contain a list of 

rules that fired to flag the abnormality and a confidence factor for each 

rule. 

As a simple example of how the classifier system works, suppose that trans- 

missions of packets of size 100 were being considered as an indicator of normal 

network behavior. Suppose also that we were interested in the number of packets 

of size 100 over a one second period and that we wished to evaluate 5 ,  50, and 

150 as possible thresholds of abnormality. Then we would have the following 

four classifier rules, illustrated in Figure 4. 

0 Rule 1 would read all messages from the input interface. I t  would use the 

size and time values in those messages to maintain a count of packets of 
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size 100 over a sliding time window of one second. After processing an 

input message it will put a message of its own on the message list with 

the updated count for the last second. 

e Rule 2 reads all messages put on the message list by Rule 1. If the current 

count of packets of size 100 over the last second exceeds 5 then Rule 2 
in turn puts a message on the message list saying its threshold has been 

crossed. 

e Rules 3 and 4 also read all messages from Rule 1, and if the current count 

exceeds their respective thresholds of 50 and 150 they also put messages 

on the list. 

The output interface attends to  all messages from Rules 2, 3, and 4. When 

any of those rules has fired and put a message on the  list indicating its threshold 

has been exceeded the output interface will notify the environment that the rule 

is predicting the occurrence of abnormal behavior. Over time the thresholds 

embedded in each of the rules can be evaluated by how well their predictions 

correlate with the actual occurrence of normal and abnormal network activity. 
This brings us to the need for a credit assignment algorithm. 

5.2 The Credit Assignment Algorithm 

As mentioned earlier, each classifier rule will have a strength factor associated 

with it. When it is created a rule’s strength factor will be initialized to  some 

standard value. Each time a rule fires and puts a message on the message list its 

strength factor will be decremented. If feedback through the output interface 

shows that the rule was correct in its prediction of the type of activity that 

was occurring then it will be rewarded by having its strength factor increased. 

In the example just described, if it was in fact perfectly normal to  see 120 
transmissions of packets of size 100 over a one second period then the rules with 

thresholds of 5 and 50 would fire frequently. Each time they posted a message 

they would pay for the privilege with part of their strength factor. If they were 

never rewarded for having correctly predicted abnormal activity, their strength 

would gradually dissipate and they would become candidates for removal by the 

genetic algorithm. The rule with threshold of 150, however, might only fire when 

abnormal activity was in fact occurring. In that case its strength factor would 

increase. That increase would ensure its continued existence and also make it a 

candidate for combination with other strong rules under the genetic algorithm 

to make new conjunctive rules. 

Unfortunately, the assignment of credit to  rules is not quite so straightfor- 

ward as the discussion so far might indicate. For instance, consider the classifier 

rules represented in Figure 5. Rules 1 and 2 both read the input message and 

fire when they detect the presence of some condition. Rule 3 reads messages 

from both 1 and 2 and fires only when both of them have fired. Messages from 
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Figure 5: An example illustrating the need for a “bucket brigade” credit assign- 

ment algorithm. 

all three rules are read by the output interface. It may be that Rules 1 and 2 
predict abnormality too often individually, but that in conjunction, as Rule 3,  

they are very accurate predictors. If reenforcement for correct prediction only 

came directly from the output interface, then 1 and 2 would grow weaker over 

time even though they had considerable value when used together in 3. 

The solution to the problem is in what is known as a “bucket brigade” 

algorithm. The algorithm is based on the recognition that many rules which 

send messages to the output interface are actually the result of longer, more 

complex reasoning chains. When a rule is given credit by the output interface 

for a correct prediction, therefore, it in turn passes some of that credit back 

up to all of the rules that had to fire in order for it to  fire. These contribut,ing 

rules, in their turn, pass back some portion of the credit they receive to the rules 

that enabled them to fire. The result is that all rules in the chain that  leads 

to the rule that ultimately makes a prediction receive some of the reward when 

that prediction is correct. Returning to the simple example of the preceding 

paragraph, when Rule 3 is correct it takes some fraction of the increase to its 

own strength factor, divides it evenly, and passes the resulting strength increases 

back to  Rules 1 and 2. 
In addition to evaluating rules to guide their manipulation by the genetic 

algorithm, strength factors can also be used to manage the size of the computa- 

tion performed by the classifier system after each input message. The classifier 

system is essentially a system to generate and test hypotheses. Especially in its 

early stages it may consist of a very large number of rules. If the number of 

messages generated by each event becomes larger than desired, then the rules 
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governing the firing of a given classifier rule can be changed. Rather than firing 

every time it receives all the messages that-enable it to fire, a rule only fires 

probabilistically, based on its strength factor. That is, the higher its strength 

factor, the higher the chance it will fire when its conditions are met. The lower 

its strength factor, the lower the chance it will fire. The size of each computation 

is thereby constrained, and the attention of the system is focused on the rules 

that have proven to be most successful in the past. At the same time, even weak 

rules are periodically tested and given a chance to either increase or decrease 

their strength. 

45.3 The Genetic Algorithm 

If the classifier system is viewed as a mechanism to evaluate hypotheses, then the 

genetic algorithm can be viewed as a means of eliminating hypotheses that have 

proven to be incorrect and generating new ones to be evaluated. Periodically the 

genetic algorithm removes the rules with the lowest strength factors from the 

list of rules. It then generates new rules to replace the rules it has removed. The 

new rules are generated by using various genetic operators to join together parts 

of existing rules. For instance, if, as mentioned earlier, messages are viewed as 

bit strings where 1 represents the presence of a condition and 0 represents the 

absence of a condition, then new rules can be created by switching the conditions 

required over some substring of the messages between two rules. 

Rather than simply using the rules with the highest strength factors to gen- 

erate the new rules, strength factors are used to generate a probability that a 

given rule will be used in new rule generation. Just using the strongest rules 

would run the danger of biasing the search of the possible rule space too heav- 

ily based on the order in which events in the event space were encountered. 

Occasionally generating new rules using some of the weaker existing rules al- 

lows exploration of parts of the rule space that might otherwise be completely 

ignored. 

5.4 The Feedback Loop Problem in a Network Security 
System 

The classifier system requires feedback from the environment in order to assign 

credit to its individual rules. In the context of computer network security that 

means that a decision must be made whether the current state of data flow in 

the network is normal or abnormal. Without knowledge about the current state 

the predictions of normality or abnormality made by individual rules cannot be 

determined to be either correct or incorrect. 

Initially the classifier system can be considered to be in a learning phase, 

and all encountered network behavior can be considered normal. At some point, 

however, it will be necessary to present the system with examples of actual 

abnormal conditions in order to make sure that these are not simply regarded 

16 



as normal as well. The problem, of course, is that very little information is 

available about the appearance of a security 'attack at the network level. 

We currently plan to  investigate the following approaches: 

1. Obtain records of actual network attacks, simulate them, and test whether 

the security system detects them. 

2. Generate arbitrary situations of abnormal network data flow and test 

whether the system detects them. 

3. Generate our own scenarios of network intrusion or attack, implement and 
execute them, and test whether the system detects them. 

4. Monitor an operating network and wait for an actual intrusion to occur. 

6 Summary 

Considerable work has been done in the area of computer system protection. For 

the most part, however, that work has concentrated on protection at the level of 

individual machines and operating systems. The widespread existence of com- 

puter networks, combined with events such as the Internet worm of November, 

1988, demonstrate the need to address protection issues at  the network level as 

well. The focus of our research is to  determine the feasibility of network level 

monitoring to protect network resources from attack. 

Our initial goal is to build an off-line prototype system capable of learning 

normal patterns of network use and flagging departures from those patterns of 

normality. Such a system will permit verification of the hypothesis that  intrusive 

attacks are in fact detectable as deviations from a rule-based profile of normal 

behavior. In addition, the prototype will allow us to establish whether the be- 

havior profile eventually reaches a state of statistical stability. Our belief is that 

after an initial learning phase during which both rules and the confidence factors 

attached to  them vary rapidly a state of equilibrium will be reached. At that 

point the system will need to  be flexible enough to  adjust to  genuine incremental 

changes in normal network behavior, but not so flexible as to  allow an intruder 

to gradually teach the system to accept new behavior which opens the network 

to attack. 

Our longer term research goals include moving from an off-line to  an on-line 

system in order to provide real-time network level protection. The move to  an 

on-line system will in turn raise the issue of developing appropriate reactions to 

detected intrusions. Attempts to  lessen the impact of detected intrusions may 

include delaying or ignoring communications involving the suspected participat- 

ing nodes. 
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