
Jared Dreicer

DOE Center for Computer Security

Mail Stop E541

Los Alamos National Laboratories

P.O. Box 1663

Los Alamos, New Mexico 87545

Depart men t of Computer Science

University of New Mexico

Albuquerque, Nhf 871 31

maccabe@umvax.cs. unrn.edu

(505) 277-6504

November 2, 1990

r ,

i

Jared ,

My apologies for not getting you a copy of this a long time ago! I’ve been waiting for
it to come out as a tech report and never remembered to send an “uncovered” copy

to you. Anyhow, here is a copy of the phase I report. If you have any comments or

suggestions for improvements, let me know. As soon the covered versions get back,

send you 5-10 so you can pass them around.

Things have been moving fairly smoothly on the prototype. Mark, Richard and I have

gone through four revisions of the rule formats and are on the second version of the

basic interpreter. We expect to be able to run sample data through the interpreter

within a week. I’m going to try to push to get a report describing the rule formats

and structure of the interpreter finished by the end of January (but don’t expect it

until March!)

The most important thing is that Mark and Richard are starting to take over the

bulk of the work involved in designing rules and implementing the interpreter. At

this rate I am very confident that they will be able to proceed with a much smaller

commitment on my part next semester (just as we planned).

We’re looking forward to your visit Wednesday and expect that we’ll have something

running by the time you get here.

Arthur B. Maccabe

Assistant Professor

http://unrn.edu

Portions of this document may be iIlegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government oor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usc-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, proctss, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, m m -
menduion, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

The Architecture of a Network Level Intrusion

Detect ion System*

Richard Heady George Luger

Mark Servilla
Arthur Maccabe

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131

August 15, 1990

Abstract

This paper presents the preliminary architecture of a network level in-

trusion detection system. The proposed system will monitor base level in-

formation in network packets (source, destination, packet size, and time),

learning the ‘normal’ patterns and announcing anomalies as they occur.

T h e goal of this reserach is to determine the applicability of current in-

trusion detection technology to the detection of network level intrusions.

In particular, we are investigating the possibility of using this technology

to detect and react to worm programs.

1 Introduction

Protection of resources is an important aspect of any computing system. Three

aspects of network/distributed systems make these systems more vulnerable to

attack than independent machines: 1) networks typically provide more resources

than independent machines, 2) network systems are typically configured to fa-
cilitate resource sharing, and 3) global protection policies which are applied to

all of the machines in a network are rare.

The research project described in this report is aimed at investigating the

applicability of intrusion detection techniques to detect network level intrusions.

In particular, we are investigating the possibility of developing a system which

can detect and react to worm programs. A “worm” program is characterized by

the fact that the program moves from one node in a network to another. The

‘This work was supported in part by the Office of Safeguards and Security of the US Dep.

of Energy through the Nuclear Safeguards Group (N-4) of Los Alamos National Laboratory.

1

Internet worm of November 1988 [ll] provided ample demonstration of the fact

that computer networks are susceptible to this type of attack.

Protection encompasses the Integrity, confidentzalaty, and avazlabalzty of the

resources provided by a computing system. Historically, protection has been

provided in the context of a security model [SI. Security models are based on

the concept of an action which is applied to a set of resources (frequently called

objects). Each action can be attributed to an individual user, the ini t iator of the

action. A security model specifies which actions are permitted based on the ini-

tiator of the action, the objects involved in the action, and the context in which

the action is requested. Importantly, every action performed in the computing

.system must be validated by an implementation of the security model.

There are at least three ways in which a computing system based on the

security model approach can be compromised: an incorrect implementation of

the model, an inaccurate authentication of the user, or an insider attack. Any

implementation of a security model is at best an approximation of the model.

The more complex the model, the more likely it is that there is a discrepancy

between the implementation and the model. Any such discrepancy must be

viewed as a means by which the integrity, confidentiality, or availability of a

resource could be compromised.

The implementation of a security model incorporates an authentication mod-

ule which is used to identify the individual initiating actions in the system. At

best, the authentication module provides a high level of confidence that the

individual initiating an action has been correctly identified. Regardless of its

complexity, every authentication module can be compromised. When the au-

thentication module is compromised, i.e., an individual is incorrectly identified,

the security model no longer provides protection for the resources of the com-

puting system.

Finally, the security model approach does not address the problems assc-

ciated with an insider attack. It is possible that an individual who has been

granted the right to manipulate an object may abuse that right. This possibil-

ity is not addressed in most security models. As such, a privileged individual can

compromise the integrity, confidentiality, or availability of the resources which

he or she has been authorized to manipulate.

Given these difficulties, several researchers have proposed that the traditional

security model be augmented with an intrusion detection system [6, 10, 9, 131.
Any set of actions that attempt to compromise the integrity, confidentiality, or

availability of a resource is termed an intruston. An intruder is the individual

or group of individuals who initiates the actions in the intrusion. Intrusion

detection systems are based on the belief that an intrusion will be reflected by a

change in the ‘normal’ patterns of resource usage. As such, intrusion detection

systems have been developed to monitor specific types of activities and announce

anomalies in the behaviors observed. The anomalies announced by an intrusion

detection system serve as an indication that an intrusion may be in progress.

If the intrusion detection system bases its monitoring on the actions per-

2

formed by an individual (as in the IDES system), the monitoring can be viewed

as an on-going authentication process. In this sense, the individual’s behavior

will continue to authenticate his or her identity as long as those activities are

within an acceptable variance of the normal behavior for the individual. How-

ever, if the activities performed by an individual are significantly different than

the activities normally performed by the individual, there is reason to suspect

the individual is not who he or she claims to be, i.e., that an intrusion has

occurred.

Like security models, intrusion detection systems are not immune to attack.

Because behaviors change over time, intrusion detection systems must be capa-

ble of adapting to reflect changes in the actions that they monitor. As such, a

careful intruder can ‘teach’ the intrusion detection system a new behavior pat-

tern which may culminate in invalid access to resources in the system. In this

context the intrusion detection system serves to increase the time it takes to

compromise the resources of the system and may increase the probability that

the intruder will give up or be caught by alternative mechanisms.

The research project described in this report represents an attempt to apply

the techniques associated with intrusion detection to the network level of a

computing system.

2 Related Work

As we have indicated this work falls into the general category of intrusion detec-

tion systems. As with the IDES system [lo], our system is based on a statistical

characterization of normal behavior. Like Wisdom and Sense [13] our system is

based on a genetic algorithm which is used to learn which measures yield the

best characterization of normal behavior.

Perhaps the most obvious related work is the network security monitor being

developed an the University of California, Davis [7]. In this work, the researchers

have developed a rather elaborate model of attacks and have developed a mon-

itoring system which is capable of detecting abnormal behavior within a local

area network. Packets transmitted in the local area network are characterized by

a four-tuple containing the source address, the destination address, the service

and the connection. One of the most interesting aspects of this work is their

implementation of “hierarchical analysis.” Give the volume of packets that are

transmitted in a local area network, it is unlikely that we will be able t o analyze
the state of the network in real-time. In the network monitor system statisti-

cal data is collected at each level in the hierarchy. For example, the number of

packets transmitted is collected at five different levels: within the entire network;

for each source machine; within a source machine, for each destination; within a

source-destination pair, for each service; and within a source-destination-service,

for each connection. Initially, each measure is only analyzed at the level of the en-

tire network. If this analysis indicates that the measure is abnormal, the deeper

3

levels are analyzed to determine the source of the anomaly.

There are three contrasts between .the ne€work monitoring being developed

at UC Davis and the work described in this document. First, we have not de-

veloped an extensive model of attacks. We recognize that such a model may

be useful in separating false positives from true anomalies, but feel the need

to gain a better understanding of the kinds of measures needed to characterize

the network before we develop such a model. Second, we have been careful to

only monitor data which is not subject to encryption. While encryption is rare

in current local area networks, we expect that there will be a trend toward en-

cryption in the near future (after all, if it is worth the cost of monitoring the

.network, it is probably worth the cost of encrypting the data transmitted along

the network). Moreover, if we were to make use of message components that

might be encrypted an attacker could defeat our monitoring efforts by simply

encrypting information. Third, we have designed our system so that i t will be

easy to add new measures as we think of them and remove measures when they

fail to characterize the network in a significant way. In this sense, we are devel-

oping a testbed that can be used to explore which measures best characterize

the normal behavior of a local area network.

3 Overview

One approach to designing a network security system is to define network be-

havior patterns that indicate intrusive or improper use of the network and look

for the occurrence of those patterns. While such an approach may be capable of

detecting known varieties of intrusive behavior, it would allow new or undocu-

mented types of attack to go undetected. As a result, our decision was to build

a system which monitors and learns normal network behavior and then detects

deviations from it. Our assumption, therefore, is that normal network traffic

will be characterized by discernible patterns of data flow, and that intrusive

behavior will in some way violate those patterns.

The description of our proposed system design will be divided into two sec-

tions:

1. A module which monitors a local network and captures information about

data packet transmission. This module will sample the network transmis-

sions to create a statistically valid profile of the full data flow, and it will

perform some preprocessing of the saved data.

2. A module which uses the preprocessed information from (1) as input to

a classifier system and genetic algorithm which learns normal patterns of

network traffic and flags deviations from those patterns.

Figure 1 gives an overview of the system design.

4

Network

1

1

1

Classifier

System

Figure 1: Basic architecture of intrusion detection system.

4 Data Sampling and Preprocessing

The first step in collecting data is to determine exactly what type of data should

be collected. Since the goal of this project is directed toward intrusion detection

at the network level a natural choice of data is the network transmission packet.

The network packet provides two types of information to study, transport infor-

mation and user information. We choose to use only the transport information

as a primary source of data.

The second step in collecting data is to develop some mechanism for mon-

itoring network packets. Since detecting an intrusion is not dependent on the

specific method used to monitor packets, any mechanism capable of obtaining

a valid data sampling is satisfactory. Currently, we are using a software package

that allows monitoring of an Ethernet network.

The final step in collecting data is to process it in such a way that it is

transformed into a format acceptable to the classifier system. In practice, this

preprocessing phase is very simpIe to implement.

4.1 A Choice of Packet Data

In practical terms, a network packet can be partitioned into two forms of infor-

mation, transport informatton and user rnformatron [12]. Transport information

generally consists of the source-destination ordered pair and some type of check-

sum on which the integrity of the packet is determined. Transport information is

added to the packet as part of the network transmission protocol and cannot be

5

directly affected by the user of a network. In other words, transport information

is an artifact of the system and not the use?. We therefore consider transport

information to be unbiased data. Unbiased data is simply the information in a

network packet that cannot be made deceptive by a fraudulent user.

On the other hand, user information is information which the user wishes to

transport from one machine to another across a network. User information may

vary from individual key strokes to large aggregates of text as in a file transfer.

This type of information can be directly manipulated by the user. A fraudulent

user can easily modify this information to be deceptive. We therefore consider

user information to be btased data.

<

4.2 The Physical Connection

Presently, all data collection takes place on a SUN Microsystems 3/60 work-

station provided by the Computer and Information Resources and Technology

(CIRT) center at the University of New Mexico (UNM). The SUN 3/60 is con-

nected to an intra-center Ethernet which receives external network traffic via the

Campus Data Communication Network (CDCN). The CDCN is a broadband

network and is the backbone along which U N M traffic is handled.

To monitor Ethernet traffic, we use the Network Interface Tap (NIT) facility

provided by SUN Microsystems as part of their S U N Operating System network

software utilities [l]. At this time, NIT is the only software available on our

hardware configurations which allows promiscuous access to Ethernet traffic.

There is, however, a problem involving continuous data collection when using

NIT. A loss of Ethernet packets is attributed to monitoring on a multitasking

system. This problem will be discussed in greater detail below'. Let us first

provide an overview of NIT.

4.2.1 Network Interface Tap (NIT)

NIT is a facility composed of several streams modules and drivers which pro-

vide link-level network access. As such, NIT is capable of both reading from

and writing to the Ethernet device. NIT performs this service by placing itself

between the Ethernet device and a user process. When NIT is initialized as a

reading device, it attempts to copy the packets which enter the Ethernet device

buffer and return them as a stream. When initialized as a writing device, NIT

requires the user process to supply an input stream which is then transmitted

out onto the network through the Ethernet device. The components which col-

lectively provide this service are the interface (ni t i f) , packet f i l t e r (nit-pf), and

buflertng (nit-buf) modules.

' A software bug in NIT which prohibited continuousmonitoring was corrected by installing

a patch to the NIT interface module. Patches can be found at a variety of anonymousflp sites.
The particular patch that we installed is from the current version of tcpdump.tar.2, and can

be found at ftp.ee.lbl.gov (128.3.254.68).

6

http://ftp.ee.lbl.gov

i

The Interface Module The primary component of NIT is the interface mod-

ule [2]. The interface module is a streams device driver which interacts directly

with the system’s Ethernet device. The interface module transcribes packets

from the Ethernet device to the read side of the stream or from the write side

of the stream to the Ethernet device for transmission on the network. When

NIT is opened as a reading device, the interface module provides additional

information which may be prepended to the transcribed packet if desired. This

information includes the size of the received packet, a timestamp marking the

time of reception, and a cumulative count of dropped packets from the time the

device was first opened2.

The Packet Filter Module An optional module provided by NIT is the

packet filter module [3]. The module subjects each packet to a filter which

passes only those packets that the filter accepts on to its upstream destination.

i

The Buffering Module Also optional, the buffering module can be used to

increase system efficiency [4]. The buffering module places an internal buffer

between the Ethernet device and the user process. Packets which are copied by
NIT are buffered into larger aggregates, thereby reducing the overhead incurred

by repeated reads of the Ethernet device buffer.

4.2.2 Problems Inherent to N I T

A problem that we have encountered with the NIT facility is packet loss dur-

ing the monitoring phase. At the present time, we can only hypothesize as to

the cause of this loss. As described above, NIT provides intermediate buffering

between the Ethernet device and the output stream. When operating in promis-

cuous mode, NIT attempts to copy all of the packets which are processed by the

Ethernet device into its internal buffer. However, NIT is a process running in a

multitasking environment. Inevitably, NIT will be pre-empted by the operating

system scheduler in favor of another process. While NIT is in a pre-empted state

the Ethernet device continues to process incoming packets; packets which are

never seen by NIT.

The percentage of packet loss can be empirically calculated by summing

the sizes of packets during a file transfer over the network of a particular file

and comparing that value with the actual size of the file. The ensuing problem

results in a packet loss of approximately 10 percent, and is directly related to

the saturation level of the network3.

2NIT software documentation explains that dropped packets are a result of system con-

3The value of 10 percent was achieved by mnning the monitor process with a n i c e priority

straints. Presumably, these “system constraints” are one possible source of packet loss.

of “-10”.

7

Controller

I Ethernet Buffer

Monitor

Driver

Figure 2: NIT interface facility.

4.2.3 The Monitor Application Program

The network monitor application is comprised of the NIT interface module and

the NIT buffering module. We find no practical use at this time to filter any

of the incoming packets by using the NIT packet filter module. Functionally,

the monitor program polls the read side of the NIT stream device or a specified

length of time collecting packets.

Prior to reading the stream device, NIT is configured in the following order:

First, the stream device is opened with the C system call open. After opening the

stream device, the buffering module is configured and the NIT device is bound to

the SUN Ethernet device interface. Finally, NIT’S internal read buffer is flushed

to remove anything that may have accumulated before the device reached its

final configuration. Once the configuration is accomplished, the monitoring pro-
gram executes a polling loop which continues until a specified time-out occurs.

Within the polling loop, packet information is read from the NIT stream device

and written to a file for processing at a later time. The relationship between

the Ethernet device, the NIT facility, and the monitor application program is

demonstrated in Figure 2.

As mentioned earlier, only the transport information portion of the network

packet is recorded. All other information is discarded by either the NIT buffer-

ing module or the monitor application program. The NIT buffering module is

configured t o build 1024 byte aggregates. Ethernet packets exceeding the 1024

byte size are truncated. The monitor application program reads only the first

38 bytes of each Ethernet packet that is provided by the NIT stream. The 38

8

bytes include the prepended packet informati-on which the NIT interface module

supplies and the Ethernet packet header information. The monitor application

places this information into a temporary buffer and filters out the timestamp

value, the packet length value, the cumulative packet drop value4, the Ethernet

source-destination ordered pair, and the network protocol type descriptor. A

total of 30 bytes from each observed packet is written to a data file.

During an average monitoring session we are able to collect approximately

160 packets in a one second interval. This results in a file growth rate of 4,800
bytes per second or more than 1 Megabyte every four minutes. Data accumula-

tion at this rate will inundate even the largest storage disks after a day of mon-

4itoring the network. Even with data compression, we realize that the amount

of data collected during a 24 hour monitoring session would be overwhelming.

Therefore, we are currently looking at various methods of discrete sampling to

reduce the amount of data to be collected.

4.3 Data Preprocessing

Of the data currently saved, there are only four of the six values which are

important to the classifier system. These are the packet size value, the times-

tamp value, and the Ethernet source-destination ordered pair5. The cumulative

packet drop value is of interest only to verify the performance of our monitor-

ing application program. Future plans include using the network protocol type

descriptor in the classifier system.
There are two reasons for preprocessing the data:

1. In the cases of source and destination addresses and packet sizes, the raw

data can be compressed without loss of relevant information. This results

in data which is easier for the classifier system to manipulate and which

requires less off-line disk space for storage.

2. In the case of timestamp information, the basic second count provided is

augmented to include the contextual information of hour of day and day

of week. This allows the building of network behavior profiles that are

based on human temporal patterns.

4.3.1 Address

Representation of an Ethernet address, whether destination or source, requires

6 bytes. This ensures that there will be a sufficient number of distinct addresses

available for each unique Ethernet controller within a computer system. How-

ever, we will only see a very small set of these addresses in any given LAN.

4T0 date, we have been unable to determine the meaning of the number in the packet drop

5We refer to the Ethernet source-destination ordered pair as if it is a single value. It is

field.

actually comprised of two independent values.

9

Therefore, each Ethernet address in our LAN will be mapped into a two byte

value.

4.3.2 Size

The size of an Ethernet packet can vary from 64 to 1518 bytes (121. However,

the packets can be readily grouped into a much smaller number of categories.

For example, a single keystroke packet may contain transport information and

the data which represents the keystroke - one or two bytes. In contrast, a file

transfer program will attempt to utilize the largest available packet size possible

, to transfer a large aggregate of data in a single packet. Data size information,

'therefore, can be compressed into groups of naturally occurring clusters. We

expect the reduction to be from 1518 to on the order of 4 to 16 categories.

4.3.3 Time

The timestamp value provided by the NIT facility is a relative time based on

the absolute time 0O:OO:OO GMT January 1, 1970. To capture the full potential

of time information we will transform the NIT timestamp to one that includes

second, minute, hour, and day of week information.

5 Learning Norma1 Network Patterns and Flag-

ging Deviations: The CIassifier System and

Genetic Algorithm

The input for this module of the system consists of simple packet transmission

4-tuples. These 4-tuples include the packet's source, destination, size, and time

of transmission, with the time including the contextual information of hour of

day and day of week. While these individual events are simple enough, over

time a great deal can be inferred from them about the operation of a network.

They can be grouped in an impressive number of ways. A brief list of possible

characteristics that might be relevant to the problem at hand includes:

0 Has a packet transmission been received from a previously uncatalogued

source?

0 Is the total network traffic over the last n minutes within the expected
bounds for this hour of day and day of the week?

0 Is the pattern of transmission from a given source to all other processors

in the network over the last hour outside the bounds of expected difference

by some statistical measure for this time of the day?

10

Does the shape of a size histogram of all packet transmissions over the last

n minutes match the normal shape ofsuch a histogram closely enough?

How about for a given source-destination pair, or for some subset of all

source-destination pairs?

Has the number of packet transmissions increased every minute for the

last n minutes?

0 Has some combination of the above events occurred in the last n minutes?

The list of questions and categories can be enlarged indefinitely. The point

,is that individual events acquire meaning only by being given a context. The

context that is needed is a set of categories, existing in time, into which indi-

vidual events and parts of events can be placed. The analysis of these categories

can then reveal patterns of normal network behavior, which can in turn be used

to detect abnormal behavior.

Proper choice of meaningful categories, however, is a difficult task. The dif-

ficulty lies in the fact that patterns of normal network behavior will not be

apparent unless good classification of event categories are chosen. A good cate-

gory, however, is by definition one which reveals patterns of normal behavior.

For instance, suppose the number of packet transmissions between a source-

destination pair over a ten minute period is chosen as a category to be monitored.

Whether this is indeed a meaningful category will depend on whether a statis-

tical characterization of the source-destination transmissions over ten minutes
can be found such that normal network behavior fails within the characteriza-

tion and intrusive or questionable behavior falls outside of it. This is a question

that can only be answered by experience. We are left with a circular definition,

which suggests an iterative approach to defining categories.

The design we plan to implement is based on the classifier system and genetic

algorithm model described by Booker, Goldberg, and Holland 151. The model

consists of three main components:

1. A classifier system, which is a parallel, message-passing, rule-based system.

The system uses rules that are sensitive to input messages, as well as rules

that integrate messages from other rules, to eventually develop an output

message.

2. A credit assignment algorithm, which evaluates the usefulness and pre-

dictive power of individual rules. Each rule has a strength factor which is

increased or decreased each time a rule is part of a chain that effects the

output message, depending on whether the rule contributed to a correct

or incorrect prediction.

3. A genetic algorithm that periodically modifies the set of rules in the clas-

sifier system. Rules whose low strength factors indicate they are poor

11

Figure 3: The classifier system learning and decision process, with feedback from

the credit assignment and genetic algorithms.

predictors are removed. They are replaced by new rules formed by com-

bining parts of rules whose high strength factors indicate they are good

predictors.

The components of the model, illustrated in Figure 3 are now described in
more detail.

5.1 The Classifier System

As stated above, the classifier system is a parallel, message-passing, rule-based

system. All rules are of the condition/action form; the condition is the receipt

of messages containing information that activates the rule, and the action is

the sending of messages when the rule is satisfied. All messages contain a tag

specifying their origin and an information field. For concreteness, all messages

can be thought of as being a bit string of fixed length. The first n bits could

represent the tag field. Each of the remaining bits could encode the presence or

absence of some simple condition, depending on whether they contained a 0 or

a 1.

A classifier system, then, consists of four parts:

Networi

Packets

1

1

1

Classifier

System

Rule Credit

Assignment

\ J l
Genetic Algorithm

(Rule Addition and Deletion)

12

input

1

Figure 4: Classifier rules to determine the normal transmission threshold of

packets of size 100 over a one second period.

1. An input interface. In our case this will be a message that contains the

information from a 4-tuple describing an individual packet transmission.

2. The classifiers. These are rules which define the ways in which the system

consumes and creates messages.

3. The message list. A list of all messages yet to be considered by the classifier

rules. The messages may be from the input interface or from satisfied rules.

4. An output interface. In our case this will consist of a message indicating

whether current network behavior is believed to be normal or abnormal.

In the event of abnormal behavior, the message may also contain a list of

rules that fired to flag the abnormality and a confidence factor for each

rule.

As a simple example of how the classifier system works, suppose that trans-

missions of packets of size 100 were being considered as an indicator of normal

network behavior. Suppose also that we were interested in the number of packets

of size 100 over a one second period and that we wished to evaluate 5 , 50, and

150 as possible thresholds of abnormality. Then we would have the following

four classifier rules, illustrated in Figure 4.

0 Rule 1 would read all messages from the input interface. I t would use the

size and time values in those messages to maintain a count of packets of

13

size 100 over a sliding time window of one second. After processing an

input message it will put a message of its own on the message list with

the updated count for the last second.

e Rule 2 reads all messages put on the message list by Rule 1. If the current

count of packets of size 100 over the last second exceeds 5 then Rule 2
in turn puts a message on the message list saying its threshold has been

crossed.

e Rules 3 and 4 also read all messages from Rule 1, and if the current count

exceeds their respective thresholds of 50 and 150 they also put messages

on the list.

The output interface attends to all messages from Rules 2, 3, and 4. When

any of those rules has fired and put a message on the list indicating its threshold

has been exceeded the output interface will notify the environment that the rule

is predicting the occurrence of abnormal behavior. Over time the thresholds

embedded in each of the rules can be evaluated by how well their predictions

correlate with the actual occurrence of normal and abnormal network activity.
This brings us to the need for a credit assignment algorithm.

5.2 The Credit Assignment Algorithm

As mentioned earlier, each classifier rule will have a strength factor associated

with it. When it is created a rule’s strength factor will be initialized to some

standard value. Each time a rule fires and puts a message on the message list its

strength factor will be decremented. If feedback through the output interface

shows that the rule was correct in its prediction of the type of activity that

was occurring then it will be rewarded by having its strength factor increased.

In the example just described, if it was in fact perfectly normal to see 120
transmissions of packets of size 100 over a one second period then the rules with

thresholds of 5 and 50 would fire frequently. Each time they posted a message

they would pay for the privilege with part of their strength factor. If they were

never rewarded for having correctly predicted abnormal activity, their strength

would gradually dissipate and they would become candidates for removal by the

genetic algorithm. The rule with threshold of 150, however, might only fire when

abnormal activity was in fact occurring. In that case its strength factor would

increase. That increase would ensure its continued existence and also make it a

candidate for combination with other strong rules under the genetic algorithm

to make new conjunctive rules.

Unfortunately, the assignment of credit to rules is not quite so straightfor-

ward as the discussion so far might indicate. For instance, consider the classifier

rules represented in Figure 5. Rules 1 and 2 both read the input message and

fire when they detect the presence of some condition. Rule 3 reads messages

from both 1 and 2 and fires only when both of them have fired. Messages from

14

input

1
+

out 1

output: J
Figure 5: An example illustrating the need for a “bucket brigade” credit assign-

ment algorithm.

all three rules are read by the output interface. It may be that Rules 1 and 2
predict abnormality too often individually, but that in conjunction, as Rule 3,

they are very accurate predictors. If reenforcement for correct prediction only

came directly from the output interface, then 1 and 2 would grow weaker over

time even though they had considerable value when used together in 3.

The solution to the problem is in what is known as a “bucket brigade”

algorithm. The algorithm is based on the recognition that many rules which

send messages to the output interface are actually the result of longer, more

complex reasoning chains. When a rule is given credit by the output interface

for a correct prediction, therefore, it in turn passes some of that credit back

up to all of the rules that had to fire in order for it to fire. These contribut,ing

rules, in their turn, pass back some portion of the credit they receive to the rules

that enabled them to fire. The result is that all rules in the chain that leads

to the rule that ultimately makes a prediction receive some of the reward when

that prediction is correct. Returning to the simple example of the preceding

paragraph, when Rule 3 is correct it takes some fraction of the increase to its

own strength factor, divides it evenly, and passes the resulting strength increases

back to Rules 1 and 2.
In addition to evaluating rules to guide their manipulation by the genetic

algorithm, strength factors can also be used to manage the size of the computa-

tion performed by the classifier system after each input message. The classifier

system is essentially a system to generate and test hypotheses. Especially in its

early stages it may consist of a very large number of rules. If the number of

messages generated by each event becomes larger than desired, then the rules

15

governing the firing of a given classifier rule can be changed. Rather than firing

every time it receives all the messages that-enable it to fire, a rule only fires

probabilistically, based on its strength factor. That is, the higher its strength

factor, the higher the chance it will fire when its conditions are met. The lower

its strength factor, the lower the chance it will fire. The size of each computation

is thereby constrained, and the attention of the system is focused on the rules

that have proven to be most successful in the past. At the same time, even weak

rules are periodically tested and given a chance to either increase or decrease

their strength.

45.3 The Genetic Algorithm

If the classifier system is viewed as a mechanism to evaluate hypotheses, then the

genetic algorithm can be viewed as a means of eliminating hypotheses that have

proven to be incorrect and generating new ones to be evaluated. Periodically the

genetic algorithm removes the rules with the lowest strength factors from the

list of rules. It then generates new rules to replace the rules it has removed. The

new rules are generated by using various genetic operators to join together parts

of existing rules. For instance, if, as mentioned earlier, messages are viewed as

bit strings where 1 represents the presence of a condition and 0 represents the

absence of a condition, then new rules can be created by switching the conditions

required over some substring of the messages between two rules.

Rather than simply using the rules with the highest strength factors to gen-

erate the new rules, strength factors are used to generate a probability that a

given rule will be used in new rule generation. Just using the strongest rules

would run the danger of biasing the search of the possible rule space too heav-

ily based on the order in which events in the event space were encountered.

Occasionally generating new rules using some of the weaker existing rules al-

lows exploration of parts of the rule space that might otherwise be completely

ignored.

5.4 The Feedback Loop Problem in a Network Security
System

The classifier system requires feedback from the environment in order to assign

credit to its individual rules. In the context of computer network security that

means that a decision must be made whether the current state of data flow in

the network is normal or abnormal. Without knowledge about the current state

the predictions of normality or abnormality made by individual rules cannot be

determined to be either correct or incorrect.

Initially the classifier system can be considered to be in a learning phase,

and all encountered network behavior can be considered normal. At some point,

however, it will be necessary to present the system with examples of actual

abnormal conditions in order to make sure that these are not simply regarded

16

as normal as well. The problem, of course, is that very little information is

available about the appearance of a security 'attack at the network level.

We currently plan to investigate the following approaches:

1. Obtain records of actual network attacks, simulate them, and test whether

the security system detects them.

2. Generate arbitrary situations of abnormal network data flow and test

whether the system detects them.

3. Generate our own scenarios of network intrusion or attack, implement and
execute them, and test whether the system detects them.

4. Monitor an operating network and wait for an actual intrusion to occur.

6 Summary

Considerable work has been done in the area of computer system protection. For

the most part, however, that work has concentrated on protection at the level of

individual machines and operating systems. The widespread existence of com-

puter networks, combined with events such as the Internet worm of November,

1988, demonstrate the need to address protection issues at the network level as

well. The focus of our research is to determine the feasibility of network level

monitoring to protect network resources from attack.

Our initial goal is to build an off-line prototype system capable of learning

normal patterns of network use and flagging departures from those patterns of

normality. Such a system will permit verification of the hypothesis that intrusive

attacks are in fact detectable as deviations from a rule-based profile of normal

behavior. In addition, the prototype will allow us to establish whether the be-

havior profile eventually reaches a state of statistical stability. Our belief is that

after an initial learning phase during which both rules and the confidence factors

attached to them vary rapidly a state of equilibrium will be reached. At that

point the system will need to be flexible enough to adjust to genuine incremental

changes in normal network behavior, but not so flexible as to allow an intruder

to gradually teach the system to accept new behavior which opens the network

to attack.

Our longer term research goals include moving from an off-line to an on-line

system in order to provide real-time network level protection. The move to an

on-line system will in turn raise the issue of developing appropriate reactions to

detected intrusions. Attempts to lessen the impact of detected intrusions may

include delaying or ignoring communications involving the suspected participat-

ing nodes.

17

References

[l] Sun Microsystem’s Operating System 4.0. Section nit (4P): Protocols.

[2] Sun Microsystem’s Operating System 4.0. Section n i t i f (4M): Devices and

[3] Sun Microsystem’s Operating System 4.0. Section nit-pf (4M): Devices and

[4] Sun Microsystem’s Operating System 4.0. Section nit-buf (4M): Devices

[SI L. B. Booker, D. E. Goldberg, and J . H. Holland. Classifier systems and

genetic algorithms. Artzficzal Intelligence, 40:235-282, September 1989.

[6] Dorothy E. Denning. An intrusion-detection model. In IEEE Symposium

Network Interfaces.

Network Interfaces.

and Network Interfaces.

on Security and Przvacy, pages 118-131. IEEE, 1986.

[7] L. Todd Heberline, Gihan V. Diu , Karl N. Levitt, Biswanath Mukher-

jee, Jeff Wood, and David Wolber. In IEEE Symposium on Secunty and

Privacy, pages 296-304. IEEE, 1990.

[8] Carl E. Landwehr. Formal models for computer security. ACM Computing
Surveys, 13(3):247-278, September 1981.

[9] T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection

expert system. In IEEE Symposium on Security and Privacy, pages 59-66.
IEEE, 1988.

[lo] T.F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P.G. Neu-

mann, H.S. Javitz, and A. Valses. Ides: The enhanced prototype. Technical

report, SRI International, October 1988.

[ll] Eugene F. Spafford. The internet worm: Crisis and aftermath. Communz-
cations of the ACM, 32(6):678-681, June 1989.

[12] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs,

N. J., second edition, 1988.

[13] H . S. Vaccaro and G. E. Liepins. Detection of anomalous copmuter session

activity. In IEEE Symposium on Security and Privacy, pages 280-289.
IEEE. 1989.

18

