
The Architecture Of An Active Data Base Management System*

Dennis R. McCarthy
Xerox Advanced Information Technology

4 Cambridge Center
Cambridge, MA 02142

ARPANET mccarthy@ait.xerox.com

Umeshwar Dayal
Digital Equipment Corporation Cambridge Research Laboratory

One Kendall Square
Cambridge, MA 02139

ARPANET dayal@crl.dec.com

Abstract

The HiPAC project is investigating active, time-constrained
database managment. An active DBMS is one which
automatically executes specified actions when speciifed
conditions arise. HiPAC has proposed Event-Condition-
Action (ECA) rules as a formalism for active database
capabilities. We have also developed an execution model
that speicifes how these rules are processed in the context of
database transactions. The additional functionality provided
by ECA rules makes new demands on the design of an
active DBMS. In this paper we propose an architecture for
an active DBMS that supports ECA rules. This
architecture provides new forms of interaction, in support of
ECA rules, between application programs and
thDBMS.This leads to a new paradigm for constructing
database applications.

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy othewise, or to republish, requires a fee and/or specific pemksion.

0 1989 ACMO-89791-317-5/89/0005/0215 $1.50

1. INTRODUCTION

Conventional database management systems are passive, in
the sense that they only manipulate data in response to
explicit requests from applications. The HiPAC project is
investigating active, time-constrained database management
[DAY88a]. An active DBMS is a DBMS that allows users
to specify actions to be taken automatically, without user
intervention, when certain conditions arise. Active DBMS
capabilities can be traced back to the ON conditions of
CODASYL [COD73]. Triggers and assertions were
proposed for System R as a mechanism for enforcing
integrity constraints [ESW75,ESW76]. Declarative rules
for expressing relationships between data items
[MOR83,ST086] are another form of active DBMS
capability. Simple triggers are now appearing in
commercial DBMS products [SYB87], and automatic
enforcement of referential integrity constraints is included in
the ANSI SQL2 standard.

*This work was supported by the Defense Advanced Research
Projects Agency and by the Rome Air Development Center
under Contract No. F30602-87-C-0029. The views and
conclusions contained in this report are those of the authors
and do not necessarily represent the official policies of the
Defense Advanced Research projects Agency, the Rome Air
Development Center, or the U.S. Government.

215

The HiPAC project has proposed Event-Condition-Action
(ECA) rules as a general formalism that subsumes most of
these active DBMS functions, which previously were
implemented by special purpose mechanisms. We have
developed a knowledge model lDAY88b] that describes the
semantics of ECA rules, and an execution model [HSU88]
that specifies how these rules are processed in database
transactions. We have also begun work on timeconstrained
scheduling of database transactions [SUCSS].

ECA rules provide active database capabilities beyond what
is found in a conventional, passive DBMS. The design of
an active DBMS must provide support for implementing
this additional functionality. This paper proposes an
architecture for an active, object-oriented DBMS that
implements our knowledge model and execution model.

The next two sections contain overviews of the HiPAC
knowledge model and execution model, respectively.
Section 4 then describes how applications interact with
HiPAC in using ECA rules. Section 5 describes the
internal structure of HiPAC to support rule processing, and
Section 6 shows how the components of the HiPAC
architecture interact to process a rule. Finally, Secticq 7
describes the implementation status of HiPAC, and our
plans for future work.

2. KNOWLEDGE MODEL: RULES AS OBJECTS

Central to the HiPAC knowledge model is the concept of
Event-Condition-Action (ECA) rules. The semantics of
ECA rules are straightforward when the event occurs (is
signalled), evaluate the condition; and, if the condition is
satisfied, execute the action. Integrity constraints, access
constraints, derived data, alerters, and other active DBMS
features can all be expressed as ECA rules. HiPAC uses an
object-oriented data model (the details of which are
unimportant for this paper), and rules are first-class database
objects, subject to the same operations as user-defined
objects (plus some special operations).

In this section, we describe the attributes of rule objects,
the operations defined on rule objects, and the architectural
implications of supporting ECA rules.

2.1 Rule Attributes

The attributes of rules are:

Event The event that triggers the rule (i.e.,
causes HiPAC to evaluate the rule’s
condition). Typed formal arguments may
be defined for the event; these are bound
to actual arguments when the event is
detected. Event occurrences and the
argument bindings are reported in an
event signal.

Condition A collection of queries that are evaluated
when the rule is triggered by its event.

Action The action that is executed when the rule
is triggered and its condition is satisfied.

E-C Coupling A coupling mode that specifies when the
condition is evaluated relative to the
transaction in which the triggering event
is signalled.

C-A Coupling A coupling mode that specifies when the
action is executed relative to the
transaction in which the condition is
evaluated.

(Rules can have other attributes; the ones listed here are
those which determine the processing.)

The event for a rule can be a primitive event, or a
combination of primitive events. The primitive events are:

1. Database Operations: data definition, data manipulation,
transaction control. The description of a database event
specifies the operation type and its parameters. The
signal includes the operation and its actual arguments
(e.g., the object instances being modified, and the old
and new values of the modified objects’ attributes).

2. Temporal Events: absolute, relative, periodic. The
description of a temporal event specifies an absolute
time; some other event (the baseline) and a relative time
offset from the baseline; or a baseline and a period;
optional descriptive information may also be specified.
The signal includes the absolute time at which teh event
occurred and the optional information.

3. External Notification: application defined events. The
description of an external event specifies arbitrary formal
parameters from the application program. The signal
includes the binding of these formal parameters to actual
arguments in the execution of the application program
in which the event occurs.

Primitive events can be combined using disjunction and
sequence operators to specify composite events. The event
specification can also be omitted from a rule definition. In
this case, HiPAC derives the event specification from the
condition.

The condition is a collection of queries expressed in an
object-oriented DML. The queries may refer to arguments
in the event signal. The condition is satisfied if all of these
queries produce non-empty results. The results of these
queries are passed on to the action, together with the
argument bindings obtained from the event signal.

The action is a sequence of operations. These can be
database operations or external requests to application
p*grams*

The E-C coupling is the relationship, relative to transaction
boundaries, between the triggering event and the condition
evaluation. There are three possible coupling modes:

216

1. immediate: when the triggering event occurs, evaluate
the condition immediately (i.e., preempt the processing
of the remaining steps of the transaction) in the same
transaction.

2. separate: when the triggering event occurs, evaluate the
condition in a separate transaction.

Rule conditions can be complex, and rules with complex
conditions can fire frequently. HiPAC must provide
efficient condition evaluation, using techniques such as
multiple query optimization, incremental evaluation, and
materialization of derived data (A range of techniques is
described in lDAY88al.)

3. EXECUTION MODEL: RULE FIRINGS AND
3. deferred: evaluate the condition in the same transaction TRANSACTIONS

as the triggering event, but when that transaction
terminates.

The same modes are available for the C-A coupling, which
specifies the relationship, relative to transaction boundaries,
between the evaluation of the condition and the execution of
the action.

2.2 Rule Operations

Since rules are database objects, they are subject to the
operations common to all database objects: creation,
modification, deletion. In addition, there are operations
specific to rules that affect rule processing:

When a rule fires, database operations are performed as part
of condition evaluation and action execution. These
database operations are executed concurrently with
application transactions and other rule firings. The HiPAC
execution model [HSUSS] describes how rules fire in
database transactions, and the relationships among these
transactions. The execution model consists of a nested
transaction model, and an assignment of condition
evaluation and action execution to transactions based on
coupling.

3.1 Nested Transactions

Fire Evaluate the rule’s condition and, if it is
satisfied, execute the rule’s action (subject to the
coupling mode specifications).

Disable Disable automatic rule firing for its event (or
some subset of the events that cause the rule to
fire).

Enable Enable rule firing for its event.

HiPAC normally fires a rule automatically when its event
occurs. A rule can also be manually fired using the “fire”
operation. Automatic firing can be disabled using the
“disable” operation, and re-enabled using the “enable”
operation.

In a nested transaction model lMOS851 there are two types
of transactions: top level transactions and nested
transactions (also called subtransactions). A nested
transaction is wholly contained within another transaction,
called its parent. The parent of a nested transaction can be a
top level transaction or another nested transaction. A
transaction can have more than one subtransaction, and
sibling subtransactions can execute concurrently. Our
model assumes that a parent transaction is suspended while
its subtransactions execute.

As database objects, rules are subject to transaction
semantics. A transaction must obtain the appropriate lock
on a rule before performing an operation on that rule.
Firing requires a read lock. All operations that update rules
(create, modify, delete, enable, disable) require write locks.
(Note that we think of “enable” and “disable” as modifying
a rule, insofar as they modify the ability of an event signal
to fire the rule.)

Top level transactions, like the usual database transactions,
are atomic,serializable, and permanent. Nested transactions
are atomic. Concurrently executing sibling subtransactions
are serializable. The effects of a subtransaction do not
become permanent until it, and all of its ancestors through
a top transaction, commit. When a transaction aborts, its
effects and the effects of all of its descendants are discarded.

3.2 Coupling Modes and Transactions

2.3 Architectural Implications

To support ECA rules, HiPAC must first have the ability
to determine when events have occurred. HiPAC must
detect primitivedatabase events, receive signals for external
and temporal events from application or system processes,
infer complex events from the primitive events, and match
the event signals against rule event specifications to
determine which rules are triggered.

When a rule fires, a transaction is created and the rule’s
condition is evaluated in that transaction. If the rule’s E-C
coupling mode is immediate or deferred, then the transaction
is a subtransaction of the transaction containing the
triggering event. The parent transaction is suspended while
this subtransaction executes. For immediate coupling, the
condition evaluation subtransaction is created and executed
at the point where the triggering event occurs. For deferred
coupling, the condition evaluation subtransaction is created
and executed just prior to its parent transaction committing.
If the rule’s E-C coupling mode is separate, then condition
evaluation takes place in a top level transaction that
executes concurrently with the triggering transaction.

After determining that a rule has been triggered by an event,
HiPAC must schedule condition evalution and action
execution according to the rule’s coupling modes.

If the rule’s condition is satisfied, then another transaction
is created and the rule’s action is executed in that
transaction. The particulars of this transaction are

217

determined by the rule’s C-A coupling mode, in a manner
analogous to that described above for condition evaluation.

If an event triggers more than one rule, then a condition
evaluation transaction is created for each rule. For rules
with the same event and E-C coupling mode, the condition
evaluation transaction will execute concurrently. Similarly,
for rules with the same event and C-A coupling, the action
execution transactions will execute concurrently. Thus
there is no conflict resolution policy that chooses a single
rule to fire, or a serial order in which to fire all of the rules.
Instead, all of the rules fire concurrently as sibling
transactions. The correcmess criteria is serializability, and
this is enforced by the HiEAC transaction manager.

When a rule fires, its action can include an operation that
triggers another rule. If both rules have immediate
coupling for their conditions, then the original triggering
transaction will have a subtransaction for the first rule’s
condition evaluation, and this subtransaction will in turn
have a subtransaction for evaluating the second rule’s
condition. Thus, cascading rule firings produce a tree of
nested transactions.

3.3 Architectural implications

An active DBMS supporting ECA rules must have
concurrency control and recovery mechanisms for the nested
transaction model. (Algorithms are given in [HSUSS].) It
must create transactions for rule firings and schedule those
transactions, as described above.

4. A PARADIGM FOR ACTIVE DBMS
APPLICATIONS

Even in those DBMS’s that provide some form of active
database facilities, both the events that trigger actions and
the actions that they trigger are limited to database
operations. Consider triggers in System R and Sybase.
The event for a trigger is an insert, update, or delete
operation on a table; the action is expressed in SQL. In
contrast, HiPAC allows rule events to be defined by the
application, and allows rule actions to contain requests to
applications. The result is a whole new paradigm for
building database applications.

database
operation

Application

A

event application transaction
signal operation operation

* t
I

HiPAC

Figure 4.1 Interface Between an Application Program and HiPAC

4.1 The interface Between Applications and
HIPAC

Figure 4.1 depicts the interface between an application
program and HiPAC. This interface is divided into four
modules. Two of these provide the ususal DBMS
functionality, and the other two are unique to HiPAC. The
former are the modules that support operations on data and
transactions. The latter are the modules that contain
operations on events, and application-specific operations.

(types) and operations on instances of those classes.
Applications manipulate data by invoking those operations
through this interface. Note that the execution of such an
operation on a database object is an event that can be used
in defining a rule.

The operations on transactions are create, commit, and
abort Recall that HiPAC uses a nested transaction model.
Applications can create and terminate subtransactions as
well as top level transactions.

The operations on data encompass data definition as well as
data manipulation. Since HiPAC uses an object-oriented

The event operations module provides two operations on

data model, data definition consists of defining classes
events: define and signal. This interface allows applications
to define and signal their own events. After an application-

218

specific event has been defined, it can be used in creating
one or more rules. Then, when the application signals the
event, HiPAC will fire the rule. The definition of an event
specifies the data to be included in the event signal. This
data can be accessed by the rule’s condition and action.

The last module, application operations, allows a reversal
of roles in which HiPAC becomes the client and the
application becomes the server. HiPAC allows requests to
application programs to be included in the action for a rule.
When the rule fires and the action is executed, HiPAC will
“call” the application program the execute the operation.
This provides a new medium for interaction among
application programs. One program can can send a request
to another program either directly (e.g., IPC message), or
indirectly through a rule firing.

A mechanism must be provided for communicating requests
from the Rule Manager to applications. In most systems,
the DBMS and application run in different address spaces
(processes), sometimes on different machines. The
communication mechanism is already present for sending
requests from the applications to the DBMS, and replies
back to the applications. In most cases, the same
underlying operating system facility can be used to reverse
the direction in which requests and replies are transmitted.

4.2 An Example Application

The first application implemented over HiPAC was a
Securities Analyst’s Assistant (SAA). The purpose of this
application is to deliver information to an analyst’s display,
and to automatically execute trades according to the analyt’s
instructions. This application is shown in Figure 4.2. It
consists of programs and rules.

database event
operation signal

SAA Application

application

11111111-- operation

HiPAC

&..I

transaction
operation

Figure 4.2 An Example of an Active Database Application

The SAA consists of three application programs:

Ticker Updates the current prices of securities in the
database based on price quotes read from a wire
service.

Display Displays prices, trades, portfolios and other
information on an analyst’s workstation.

Trader Executes trades by transmitting requests to a
trading service and updating the client’s portfolio
when the reply is received.

219

There would be several copies of each program running: one
ticker for each source of price quotes (e.g., NYSE), one
display for each analyst using the application, and one trader
for each trading service.

The rules for the SAA application are divided into two
groups, display and trading, according to the application
operations invoked in their actions. Display rules contain
requests to a display program in their action. For example,
each analyt’s display includes a window that scrolls price
quotes from right to left, like the stock ticker seen at a
brokerage. This ticker window is driven by the following
rule:

Event: update stock price
Condition: true
Action: send “display price quote” request to

display program
Coupling: condition and action together in a

separate transaction

There is a rule of this form for each display program
running. The actions for trading rules contain request to
trading programs. For example, an analyst might instruct
the application to buy 500 shares of Xerox for a client
when the price reaches 50. This is expressed as a rule:

Event: update Xerox price
Condition: where new price = 50
Action: send request to buy 500 shares for

client A
Coupling: condition and action together in a

separate transaction

The execution of a trade is an event defined by SAA and
signalled by a trading program. There is a display rule that
causes the trade to be displayed and the portfolio updated on
the analyst’s screen and trading rules.

After implementing the SAA using HiRAC rules, we noted
the following:

There are no direct interactions between the application
programs. All interactions take place through rules
firing.

The application programs tended to be quite simple
servers. The control logic was encoded in the rules.

Most of our rules contained requests to application
programs in their actions, rather than database operations.

To modify the behavior of the application, we would
change the rules rather than the software.

In traditional database applications, data flows from one
application program to another through the DBMS. With
ECA rules, application defined events, and calls to
application programs in rule actions, HiF’AC provides a
medium for flow of control as well as data. The high level
logic for the application can be encoded in rules rather than

software, making the application more modular and easier
to modify.

5. FUNCTIONAL COMPONENTS

To implement the HiPAC knowledge model and execution
model, a DBMS must provide object-oriented data
managment and nested transactions. It must support the
semantics of the rule object class. This includes detecting
events, determining which rules to fire when events are
reported, scheduling condition evaluation and action
execution according to rule coupling modes, and performing
these activities in nested transactions.

Figure 5.1 deuicts the functional components of the HiEAC
ar&itectme. These are:

Object Manager Provides object-oriented data
management.

Transaction Manager

Event Detectors

Rule Manager

Condition Evaluator

Pmvides nested transactions.

Detect primitive events and
signal them to the Rule
Manager.

Maps events to rule firings, and
rule firings to transactions.

Evaluates rule conditions.

The Object Manager and Transaction Manager together
provide the functionality of an object-oriented DBMS, plus
nested transactions. ECA rules are implemented by the
Event Detectors, Rule Manager, and Condition Evaluator.

The overall flow of control and data is as follows. First, an
event relevant to some rule (e.g., a database operation) is
detected by an Event Detector and reported to the Rule
Manager. The Rule Manager determines which rule to fire,
and schedules condition evalution for these rules based on
their condition coupling modes. The Rule Manager calls
on the Transaction Manager to create a transaction for
condition evalution, and calls on the Condtion Evaluator to
evaluate the rule’s condition. If the condition is satisfied,
the Rule Manager calls on the Transaction Manager to
create a transaction for executing the action.

5.1 Object Manager

The Object Manager provides object-oriented data
management. It supports the definition of object types and
operations on instances of those types, and is responsible
for executing those operations. In the course of executing
database operations, the Object Manager calls on the
Transaction Manager to obtain locks, and acts as an event
detector, reporting database operations to the Rule Manager.

The interface to the Object Manager consists of a single
operation:

220

Execute Operation Execute a database operation
(DDL or DML) on one or more database objects.
The parameters are the database objects and the
transaction in which to perform the operation.

This interface is used by applications, the Rule Manager,
and the Condition Evaluator.

Application

event
signal

t
I

application transaction
operation operation

database
operation

HiPAC

ondition 3 valuator

1 evaluate lock
condition object

i

Figure 5.1 the HiPAC Functional Components

5.2 Transaction Manager

The Transaction Manager implements the HiPAC nested
transaction model. It is responsible for creating and
terminating transactions, and for concurrency control. In
addition, it acts as an event detector, reporting transaction
termination to the Rule Manager.

The interface to the Transaction Manager consists of three
operations:

Create Transaction Create a (top level or nested)
transaction.

Commit Transaction Commit a (top level or nested)
transaction.

Abort Transaction Abort a (top level or nested)
transaction.

This interface is used by applications and the Rule
Manager.

5.3 Event Detectors

Event Detectors are responsible for reporting the occurrence
of primitiveevents to the Rule Manager. There are event
detectors for database events (in the Object Manager and
Transaction Manager), for temporal events, and for
application-defined events. Particular event detectors differ
in the type of events that they detect, how these events are
described when programming the event detector, and the
contents of the event signal that is passed to the Rule
Manager when an event is reported.

When a rule is created, the appropriate event detector(s) is
(are) programmed to detect and report the primitive events
that can trigger the rule. The event detector(s) is (are)
instructed to cease detecting the event when the rule is
deleted (if there is no other rule with the same event).
When a rule is disabled, event detection for the rule is

221

disabled. When the rule is enabled again, event detection is
enabled.

The interface to an Event Detector consists of the following
operations:

Define Event Program the event detector to report the
occurrence of a primitive event. The
parameter is a description of the event.

Delete Event

Enable Event

Disable Event

Cease detecting and signalling an event.

Suspend the detection and signalling of
an event, specified as a parameter.

Resume the detection and signalling of
an event, specified as a parameter.

This interface is used by the Rule Manager.

5.4 Rule Manager

The Rule Manager is responsible for firing the appropriate
rules when an event is detected. That is, it determines
which rules to fire, and schedules condition evaluation and
action execution for those rules according to their coupling
modes. The Rule Manager calls on the Transaction
Manager to create the transaction used for condition
evaluation and action execution, and it calls on the
Condition Evaluator at the appropriate points to determine
which conditions are satisfied. The Rule Manager is also
responsible for suspending triggering transactions until all
of their subtransactions (for immediate and defrred rule
firings) have terminated.

The interface to the rule manager consists of a single
operation:

Signal Event Report the occurrence of an event. The
parameters are the event, its signal, and
the transaction in which the event
oc4med.

This interface is used by the Event Detectors and the
Transaction Manager.

5.5 Condition Evaluator

After an event has been detected, the Condition Evaluator is
responsible for efficiently determining which rule
conditions are satisfied (among the rules triggered by the
particular event). The Condition Evaluator uses techniques
such as multiple query optimization and view
materialization to do this. The data structure used for this
purpose is called a condirion graph. The Condition
Evaluator can be thought of as having two functions
relative to these condition graphs. One is to maintain the
condition graphs as rules are created, deleted, enabled, and
disabled. The other is to use the condition graphs to
determine which rule conditions are satisfied when an event
OCCUTS.

The interface to the Condition Evaluator consists of the
following operations:

Add Rule Add a rule to the condition graph. The
message includes the event, the condition, and the
coupling mode for condition evaluation. The
output includes the events that must be signaled.

Delete Rule Remove a rule from the condition graph.

Evaluate Conditions Determine which rules have been
satisfied. The input is the event signal, coupling
mode, and previous database state (deferred and
separate condition evaluation only).

This interface is used only by the Rule Manager.

6. RULE PROCESSING

In this section we describe how the HiPAC components
described above interact in carrying out operations on rules.
The operations described here are creating a rule, signalling
an event, and committing a transaction.

6.1 Rule Creation

Rule creation is initiated when an application issues a
request for the rule creation operation. The request is
handled by the Object Manager. The Object Manager
creates the rule object, obtains a write lock on it, and
signals the “create rule” event to the Rule Manager. The
Object Manager then waits for a reply from the Rule
Manager.

First, the Rule Manager issues an “add rule” request to the
Condition Manager. Then it issues “define event” requests
to the appropriate Event Detectors. Finally, it adds the rule
and events to its mapping from events to rules. At this
point, the Rule Manager replies to the event signal, and the
Object Manager resumes processing the original request.

6.2 Event Signal Processing

When the event for a rule occurs, an Event Detector issues
an event signal to the Rule Manager (because the Rule
Manager programmed the Event Detector to do so when the
rule was created). The operation that triggered the event
signal is suspended. The Rule Manager then determines
which rules to fire by consulting the mapping that it
maintains between events and rules. The Rule Manager
divides these rules into three groups according to their
coupling mode for condition evaluation.

For each rule firing with separate condition evaluation, the
Rule Manager obtains a new top level transaction (from the
Transaction Manager) and calls on the Condition Evaluator
to evaluate the rule’s condition in that transaction. All of
these transactions execute concurrently, each in its own
thread of execution. If a rule’s condition is satisfied, the
thread of execution will process the rule’s action.
Meanwhile, the Rule Manager continues with the
processing of the original event signal.

222

For each rule firing with deferred condition evaluation, the
Rule Manager saves adds the rule and event signal to a set
of deferred rule firings that is associated with the transaction
in which the triggering event occurred. This set of rule
firings is processed later, when the transaction commits (as
described in the next section).

For each rule firing with immediate condition evaluation,
the Rule Manager obtains a subtransaction (of the
triggering transaction (from the Transaction Manager) and
calls on the Condtion Evaluator to evaluate the rule’s
condition in that subtransaction. When all conditions have
been evaluated, actions are executed for those rules whose
conditions were satisfied.

When all immediate condition evaluation and action
execution is completed, the Rule Manager replies to the
Event Detector. At this point the operation that originally
caused the event signal resumes.

6.3 Transaction Commit Processing

Transaction commit is initiated by a “commit transaction”
request to the Transaction Manager. As part of commit
processing, the Transaction Manager issues an event signal
to the Rule Manager. This event signal identifies the
transaction that is terminating.

The Rule Manager maintains a set of deferred rule firings
for each transaction. When the Rule Manager receives the
commit event signal, it first gets the corresponding set of
deferred rule firings. This set is divided into two subsets
according to whether it was the condition or action that was
deferred. For each of the former, the Rule Manager calls on
the Condition Evaluator to evaluate the rule’s condition.
For the latter, the Rule Manager simply executes the
action.

When all deferred rule firings have completed, the Rule
Manager replies to the commit event signal, and the
Transaction Manager resumes commit processing.

7. IMPLEMENTATION STATUS AND FUTURE
WORK

We have presented an architecture for HiPAC, an active
DBMS with ECA rules. This architecture supports the
knowledge model, execution model, and condition
monitoring algorithms described in the HiPAC research
papers. In doing so, it specifies two new forms of
interaction between an application and the DBMS.
Application programs signal events, and HiPAC makes
requests to application programs in executing rule actions.
This leads to a new paradigm for building applications over
an active DBMS. Control logic is encoded in rules rather
than software. HiPAC becomes a medium for the flow of
control, as well as data, between application programs.

We are currently implementing a HiPAC prototype and
applications using Smalltalk-80. Initially, we are
concentrating on the knowledge model and the execution
model. The Rule Manager and Transaction Manager are

implemented. The Object Manager and Condition
Evaluator are being designed. The Object Manager will
support the Probe data model and algebra [MANN86]. In
the interim, rule conditions and actions are expressed as
Smalltalk- blocks. Concurrent execution of transactions
is implemented using Smalltalk- processes, which are
“light weight”.

In our paradigm for active database applications, many
control functions are implemented in ECA rules rather than
software. While this tends to simplify the software, it also
produces large sets of rules. As the rule base for an
application grows, problems due to unexpected interactions
among rules become more likely. Tools and techniques
have evolved for dealing with large, complex programs
(e.g., modularity, data abstraction, debuggers). Future
research will produce the tools and techniques needed to
develop large, complex rule bases.

6. REFERENCES

[BUCSS] A. Buchmann et al. “A Framework For
Integrating Time-Critical Scheduling and
Database Transaction Scheduling.” To appear
in Proc. 5th International Conference on Data
Engineering, February 1989.

[COD733 CODASYL Data Description Lnaguage
Committee. CODASYL Data Description
Language Journal of Development June 1973.
NBS Handbook 113 (1973).

[DAYSSal U. Dayal et al. “HiPAC: a Research Project
in Active, Time-Constrained Database
Management, Interim Report.” Technical
Report XAIT-88-02, Xerox Advanced
Information Technology, June 1988.

[DAYSSb] U. Dayal, A. Buchmann, and D. McCarthy.
“Rules Are Objects Too: A Knowledge
Model For An Active, Object-Oriented
Database System.” Advances in Object-
Oriented Database Systems, September 1988,
pp. 129-143.

[ESW75] K. P. Eswaran and D. D. Chamgerlain.
“Functional Specifications of a Subsystem for
Data Base Integrity.” Proc. 1st Int? Conf. on
Very Large Data Bases (September 1975).

[ESW76] K. P. Eswaran. “Specifications,
Implementations, and Interactions of a Trigger
Subsystem in an Integrated Data Base
System.” IBM Research Report RJ1820
(August 1976).

[HSUSS] M. Hsu, R. Ladin, D. McCarthy. “An
Execution Model For Active Database
Management Systems.” Proc. 3rd
International Conference on Data and
Knowledge Bases, June 1988, pp. 171-179.

223

[MAN861 F. Manola and U. Dayal. “PDM: An Object-
Oriented Data Model.” Proc. Int’l Workshop
on Object-Oriented Database Systems, (1986).

[MOR83] M. Morgenstem. “Active Databases as a
Paradigm for Enhanced Computing
Environments.” Proc 9th Znt’l Co& on Very
Large Data Bases, Florence, pp. 34-42
(October 1983).

[MOSS51 E. Moss. Nested Transactions: An Approach
to Reliable Distributed Computing, MIT
Press (1985).

[ST0861 M. Stonebraker et al. “A Rule Manager For
Relational Database Systems.” The
POSTGRES Papers, Univ. of California,
Berkley, Ca. Electronics Research Lab,
Memo No. UCB/ERL M86/85 (1986).

[SYB871 Sybase, Inc. Transact-SQL User’s Guide
(1987).

224

