
S e s s i o n 22 Genera l Prob lem S o l v i n g

THE ARCHITECTURE OF COHERENT INFORMATION SYSTEM:

A GENERAL PROBLEM SOLVING SYSTEM*

C. V, S r i n i v a s a n
Department o f Computer Sc ience

Rutgers U n i v e r s i t y -
New B runsw ick , New Je rsey 08903

A b s t r a c t

T h i s paper d i s c u s s e s t h e a r c h i t e c t u r e o f a meta-
sys tem, wh ich can be used to genera te i n t e l l i g e n t
i n f o r m a t i o n systems f o r d i f f e r e n t domains o f d i s c o u r s e .
I t p o i n t s ou t t h e k i n d s o f knowledge accep ted b y t h e
sys tem, and t h e way the knowledge is used to do non-
t r i v i a l p rob lem s o l v i n g . The o r g a n i z a t i o n o f t h e
system makes i t p o s s i b l e f o r i t t o f u n c t i o n i n t h e
c o n t e x t o f a l a r g e and expand ing d a t a base . The
meta -sys tem p r o v i d e s a b a s i s f o r t he d e f i n i t i o n o f
t h e concept o f machine u n d e r s t a n d i n g i n te rms o f t h e
models t h a t t h e machine can b u i l d in a domain , and
t h e way i t can use t h e mode ls .

1 . I n t r o d u c t i o n

Our o b j e c t i v e i s t o c r e a t e a meta -sys tem wh ich
can be used t o genera te i n t e l l i g e n t i n f o r m a t i o n s y s
tems i n d i f f e r e n t domains o f d i s c o u r s e . The' meta
system is c a l l e d t h e META DESCRIPTION SYSTEM CMOS).
I t has f a c i l i t i e s t o accep t d e f i n i t i o n s o f d e s c r i p
t i o n schemas and d e s c r i p t i o n s t hemse l ves , of" "KNOWLEDGE
- - about f a c t s , o b j e c t s , p rocesses , and p rob lem
s o l v i n g -- in a domain. A domain might be a d i sease
sys tem, a p i e c e o f m a t h e m a t i c s , o r comput ing systems
t h e m s e l v e s . The d e s c r i p t i o n schemas and d e s c r i p t i o n s
o f knowledge in a domain s p e c i a l i z e t h e MDS to a c t
a s a n i n t e l l i g e n t i n f o r m a t i o n system f o r t h e domain.
For a domain M, t h e i n f o r m a t i o n system a s s o c i a t e d
w i t h i t i s c a l l e d t h e COHERENT INFORMATION SYSTEM of
M.

In our r e s e a r c h we have two p r i n c i p a l c o n c e r n s :
(i) How may one d e s c r i b e knowledge in a domain to a
compute r ; what k i n d s of knowledge shou ld a system
have t o e x h i b i t i n t e l l i g e n t b e h a v i o u r ; what o p e r a t i o n
a l f a c i l i t i e s are needed to accept and use such
knowledge? (i i) How may t h e computer be made to use
g i v e n knowledge a u t o m a t i c a l l y t o so l ve p rob lems i n
t he domain and answer q u e s t i o n s ?

The MDS accep ts and uses t h r e e k i n d s of know
l e d g e : a) S t r u c t u r a l knowledge p e r t a i n i n g t o t h e fo rm
and syn tax o f d e s c r i p t i o n s . D e s c r i p t i o n s may, o f
c o u r s e , be s t r i n g s o f words in some language . The
MDS w i l l t r a n s l a t e such d e s c r i p t i o n s t o s t r u c t u r e s
w i t h i n a r e l a t i o n a l sys tem. The r e l a t i o n a l system
i t s e l f may c o n s i s t o f c o n s t a n t s , v a r i a b l e s , p r e d i c a t e
symbo ls , f u n c t i o n symbo ls , l o g i c a l o p e r a t o r s and
q u a n t i f i e r s . The s t r u c t u r a l knowledge s p e c i f i e s t h e
s t r u c t u r e o f t h e r e l a t i o n a l system used i n a domain.
b) Sense knowledge: L o g i c a l a s s e r t i o n s p e r t a i n i n g t o
t h e sense i n wh ich s t r u c t u r e s a re i n t e r p r e t e d , and
c o n s t r a i n t s on admissab le s t r u c t u r e s beyond those
s p e c i f i e d i n t he s y n t a x . And, c) T r a n s f o r m a t i o n a l
knowledge : T h i s p e r t a i n s t o t h e knowledge necessary
t o t r a n s f o r m g i v e n d e s c r i p t i o n s o f s p e c i f i c o b j e c t s t o
new ones , a c c o r d i n g t o s p e c i f i e d c r i t e r i a .

?
T h i s work was suppo r ted by a r e s e a r c h g r a n t f r om
N I H , g r a n t number RR-643,

Co r respond ing t o t h e s e t h r e e l e v e l s o f knowledge
t h e r e i s a h i e r a r c h y o f p r o b l e m s o l v e r s , (CHECKER,
INSTANTIATOR), THEOREM PROVER (TP) and DESIGNER, in
o r d e r o f i n c r e a s i n g c o m p l e x i t y . The (CHECKER, INSTAN-
TIATOR) system a c t s as a s o p h i s t i c a t e d da ta management
system t h a t e s t a b l i s h e s , m a i n t a i n s and updates t h e
da ta base o f models o f s p e c i f i c o b j e c t s i n a domain i n
a manner c o n s i s t e n t w i t h t h e s t r u c t u r a l and sense
knowledge. CHECKER can answer q u e s t i o n s p e r t a i n i n g
t o any o f t h e s p e c i f i c models f o r wh ich t h e i n f o r m a
t i o n i s e i t h e r d i r e c t l y s t o r e d i n t h e d a t a base , o r
i s d i r e c t l y d e r i v a b l e b y e v a l u a t i n g a g i v e n l o g i c a l
a s s e r t i o n in a g i v e n c o n t e x t . The THEOREM PROVER
adds power t o t h e CHECKER in t h r e e ways: I n c e r t a i n
cases i t h e l p s reduce t h e search e f f o r t o f CHECKER
b y g i v i n g i t a d v i c e based o n deduced consequences o f
sense knowledge; where f e a s i b l e i t can warn t h e
CHECKER o f i m p o s s i b l e s i t u a t i o n s i n t he g e n e r a t i o n
and u p d a t i n g o f mode ls ; i t can a l s o de te rm ine g e n e r a l
t r u t h v a l u e s o f a s s e r t i o n s based o n the s t r u c t u r e and
sense knowledge. The DESIGNER adds f u r t h e r power to
t h e sys tem b y e n a b l i n g t he system t o p l a n courses o f
a c t i o n s u s i n g g i v e n a c t i o n p r i m i t i v e s (T r a n s f o r m a t i o n
Rules} in a manner c o n s i s t e n t with t h e f a c t s of a
p r o b l e m . T h i s h i e r a r c h y imposes a v e r y u s e f u l c l a s s i
f i c a t i o n o f system f a c i l i t i e s , and g i v e s t h e system
a c o n s i d e r a b l e f l e x i b i l i t y .

The d e s c r i p t i v e language o f a domain i s i t s e l f
s p e c i f i e d i n terms o f t he model d e f i n i t i o n s i n t h e
domain. Language a n a l y s i s is t h u s looked at as a
model b u i l d i n g p r o c e s s . Most i m p o r t a n t l y , t h e model
d e f i n i t i o n s i n a domain may i n c l u d e d e f i n i t i o n s o f
Problem S o l v i n g S t a t e s (PSS), r e l e v e n t t o t h e domain .
The PSS may p r o v i d e f a c i l i t i e s to summarize t h e
p rob lem s o l v i n g expe r i ence o f t he system. T h i s sum
mary may be used to i n t e l l i g e n t l y gu ide the p rob lem
s o l v e r .

T h i s work on MDS and C l - sys tems may be t h o u g h t of
e s s e n t i a l l y a s a f u r t h e r e x t e n s i o n o f t h e t r e n d s t a r t
ed by R E F - A R F [l , 2] , QA4 [3] , POPS [4 1 , STRIPS [5 , 6 1 ,
and PLANNER [7] , I t s p rob lem s o l v i n g a c t i v i t y uses
"means-end" a n a l y s i s , a concept o r i g i n a l l y i n t r o d u c e d
in GPS [8] , and f u n c t i o n i n v o c a t i o n schemes based on
g o a l s , i n t r o d u c e d by PLANNER. Ct -Systems have bo th
t h e f l e x i b i l i t y o f PLANNER-like sys tems, and model
based r e a s o n i n g a b i l i t i e s o f a GPS l i k e sys tem. The
e n t i r e system depends on t h e way d e s c r i p t i v e d a t a
s t r u c t u r e s a re o r g a n i z e d i n a g i v e n domain. However,
t h e a v a i l a b i l i t y o f d a t a s t r u c t u r e and model d e f i n i
t i o n f a c i l i t i e s , and a sepa ra te d a t a management sys
tem makes i t p o s s i b l e t o c o m p l e t e l y i s o l a t e t h e da ta
s t r u c t u r e and d a t a base d e t a i l s f r om t h e p rob lem
s o l v i n g programs. T h i s makes i t p o s s i b l e t o conce ive
o f t h e meta sys tem, t h e MDS, to c r e a t e Cl -Systems
f o r d i f f e r e n t domains. I t seems reasonab le t h a t , i f
t h e c l a s s e s o f p o s s i b l e models o f o b j e c t s i n a domain
c o u l d h e d e s c r i b e d t o a computer t h e n , i n p r i n c i p l e ,
t h e computer shou ld be a b l e to make use o f t he des
c r i p t i o n s f o r p rob lem s o l v i n g and language u n d e r s t a n d
i n g in t h e domain. In C l -Sys tems we show how (a)
c l a s s e s o f models can be d e f i n e d and (b) how t h e
d e f i n i t i o n s c o u l d b e used f o r language a n a l y s i s and
p rob lem s o l v i n g i n t h e domain .

618

The p r i n c i p a l cont r ibut ions of the proposed
arch i tec ture are:

i) A f a c i l i t y to use large data bases;
i i) A s t r a t i f i c a t i o n of knowledge in a domain and

the f a c i l i t y to use a h igh ly f l e x i b l e descr ip t ive
mechanism to describe objects and problems in a domain;
the p o s s i b i l i t y of describing knowledge in a domain
in a systematic way to a computer;

i i i) The d e f i n i t i o n of the descr ip t ive language
i t s e l f in terms of the models the system can bu i ld
in a domain; and

i v) The p o s s i b i l i t y of spec ia l iz ing the MDS to
operate e f f i c i e n t l y as a problem solving system in
a domain of discourse.

The MDS is now being implemented in LISP 1.6.
Some parts of it (see Section 3) are now ready. This
paper i s , the re fo re , a report on work cur ren t ly in
progress. I t introduces the p r i nc ipa l a rch i tec tura l
concepts of MDS and Cl-Systems in the context of an
example, the Missionaries and Cannibals* (M&C) prob
lem [9] . The s t ruc ture of CHECKER and DESIGNER is
explained. The operation of the THEOREM PROVEN is
discussed in [10]- In a subsequent paper the language
processor w i l l be discussed.

2. An Overview of the System Archi tecture

2 . 1 . Templates and Their Ins tan t ia t ions

2 . 1 . 1 . The Templates

The concept of TEMPLATES, the devices used to
specify s t r uc tu ra l knowledge is central to the ent i re
system arch i tec tu re . Templates c lass i fy objects in a
domain in to objects of d i f f e ren t kinds and types.
Each template speci f ies a cer ta in descr ipt ion s t ruc
tu re . Thus, in the M&C problem (see Table 1) PLACE,
PEOPLE, VEHICLE, etc. are d i f f e ren t kinds of objects.
The template f o r PLACE, for example introduces two
r e l a t i o n symbols: occupants and pos i t ion of. The
pa i r of r e l a t i o n symbols (occupants, occupants of)
fo r example, are inverses of each other in the sense
that in instances of PLACE and PEOPLE the re la t ions
(PLACE occupants PEOPLE) and (PEOPLE occupants of
PLACE) w i l l always appear together in the data base
of models. PEOPLE is jus t a l i s t of PERSONS. An
instance of type c l a s s i f i c a t i o n occurs in the PERSON
template. A PERSON can be a MISSIONARY or CANNIBAL.
In MDS type c l a s s i f i c a t i o n always re f l ec t s d i s t i n c
t ions in the way objects are used. The templates
thus speci fy the s t ruc ture of the re la t i ona l system
fo r a domain: the r e l a t i on symbols to be used in the
descr ip t ion of various kinds of objects in the domain,
and the kinds of objects that a re la t i on symbol may
re l a t e .

Given such templates, one may use the INSTANTIA-
TOR to create descr ip t ions, which are instances of
the templates. Such instances might be speci f ied to
the system in some external language, which is t rans
lated to the i n te rna l representat ion in the re la t i ona l
system. Or, the system i t s e l f might generate an
instance of a template when ca l led upon to do so, In
e i the r case, to complete the i ns tan t i a t i on of 2 tem
p l a t e , a l l the r e l a t i on symbols defined fo r the tem
p la te should be assigned values. These values w i l l

There are three missionaries and three cannibals on

one bank of a r i v e r . They want to go to the other
bank. There is only one boat ava i lab le . It can carry
only two people at a t ime. The cannibals at a shore
should not outnumber the missionaries at the same
shore. Find a way of t ranspor t ing them.

TABLE I: TEMPLATES FOR THE M&C PROBLEM
1. PLACE: (occupants PEOPLE occupants o f) , CC1

(posi t ion of VEHIL p o s i t i o n) , CC2
2. PEOPLE: (elements PERSON elements of)
3. VEHIL: (elements VEHICLE elements of)
4. PERSON: (type PTYP type of)

(occupant of PLACELI occupant), CC3
5. PTYP: MISSIONARY, CANNIBAL
6. PLACEL1: (elements (PLACE, VEHICLE) elements of)
7. PLACEL: (elements PLACE elements o f)
8. VEHICLE: (p i l o t s PEOPLE p i l o t s of)

(posi t ion PLACE pos i t ion of)
(cango to PLACEL dest inat ion of)
(capacity INTEGER capacity of)
(occupants PEOPLE occupants o f) , CC4

[CC1] (*! occupants ((PEOPLE X)(* ! occupants X)
(((NUMBEROF MISSIONARY X)2

(NUMBEROF CANNIBAL X))v
((NIJMBEROF MISSIONARY X) is 01)))

[CC2] (*! pos i t ion of ((VEHICLE X)(M pos i t ion of X)
(X cango *])))

[CC?>] (*! occupants o f . # . i s 1)
[CC41 (*! occupants. ".-■. capacity of * !)

be speci f ic instances of objects w i t h i n the data base.

Thus for the MftC problem one may create instances
of PLACli's cal led RBANKl and RBANK2, a VEHICLE cal led
BOAT, and as many MISSIONARIES and CANNIBALS as nec
essary. Each PERSON w i l l be the occupant of some
PLACE and the VEHICLE i t s e l f w i l l be at one of the
PLACES. We have not , however, introduced any of the
condit ions of the problem. Not a l l i ns tan t ia t ions of
the templates of the M&C problem would represent legal
s i tua t ions . The necessary addi t ional constra ints are
introduced by the sense knowledge. Every re la t i on
symbol in a template may have a Consistency Condit ion
(CC) associated wi th i t . CC1 in Table I is associated
with the symbol "occupants". It says that the
CANNIBALS at a PLACE cannot outnumber the missionar ies.
The symbol " * ' " in CCI re fers to the current instance
of PLACE at which the CC might be evaluated. It is
ca l led the anchor; (PEOPLE X) stands fo r " (VX)(X is
PEOPLE)". A l l CC's have the form: " (* ! r P(X)}" where
*! is the anchor, r is a re la t i on symbol occurr ing in
the template associated wi th * ! , and P(X) is some
log ica l predicate. The predicate P(X) is said to be
anchored at the (template, re la t i on symbol) pa i r .
Thus, the predicate in [CO] is anchored at (PLACE,
occupants).

In [CCI] not ice that " (* ! occupants X)" is i t s e l f
a term in i t s predicate. This has the fo l lowing s ig
n i f i cance : For a PLACE l i k e , say RBANKl, if the system
is t o l d to set (RBANKl occupants y) f o r soma y, it
would f i r s t construct the combined l i s t of ex is t ing
occupants of RBANKl and y, and then v e r i f y the p red i
cate. CC's of t h i s k ind are ca l led dec larat ive CC's,
as opposed to the other k ind , ca l led imperative CC's,
l i k e , say (for a hypothet ical template PERSQN1)
[CS1] (*I s i b l i ng ((PERSON) X)(NOT (X is * !))

(X ch i ld o f . f a the r of * !)))
[CS1] may be used to f i n d the s ib l ings of a PERS0N1 in
terms of the ch i ld of and father of r e l a t i o n symbols.
The CHECKER is used to evaluate CC's. We sha l l d i s
cuss the evaluator in Section 2.2,

The s ign i f i can t po ints to be noted about CC's are
the fo l l ow ing :

(i) the knowledge represented by the CC's is
of a d i f f e ren t k ind from the s t ruc tu ra l knowledge,
speci f ied by the templates.

619

620

621

The CHECKER makes sure tha t data entered i n to the
data base is cons is tent , and also keeps track of
what add i t iona l data is needed to complete the des
c r i p t i ons of objects wi th respect to the templates.
The templates for a domain describe the s t ruc ture
of the data base for the domain. The CHECKER uses
t h i s s t ruc ture to guide the INSTANTIATOR to create
and r e t r i e v e items in the data base se lec t i ve l y .

The l im i t a t i ons of the CHECKER arises in the auto
matic guidance i t can provide in the updating pro
cess. The CHECKER has f a c i l i t i e s to i n te rp re t
i nd i v idua l CC's and to recognize the r e l a t i o n symbols
whose value in the data base might be af fected as a
resu l t of a change made at one place in the data
base. CHECKER keeps t rack of the r e l a t i o n symbol,
by cataloging the r e l a t i o n symbols in terras of t h e i r
appearances in the various CC's. In general , a
change in the value of one r e l a t i on symbol might
propogate through the data base to a series of other
r e l a t i o n symbol values. As long as any given i n
stance of the value of a r e l a t i o n symbol does not
repeat i t s e l f in t h i s ser ies , CHECKER w i l l have no
problems. It can execute the series of necessary
changes without ever having to go back to a value
that it had previously changed w i th in the sequence,

CHECKER simply performs search in the data base,
and l og i ca l combinations of search. It has only sim
ple f a c i l i t i e s to keep t rack of a l ternate choices in
search paths, and choices in possible valuat ions of
r e l a t i o n symbols. Also, CHECKER can handle only
constants as possible valuat ions for r e l a t i o n symbols.
When the number of a l te rna t i ves is large or when
loops occur in an updating chain, the CHECKER, if
l e f t to run w i l l keep assigning new values to the
r e l a t i o n symbols involved u n t i l a consistent set of
valuat ions is obtained, or u n t i l a l l known p o s s i b i l
i t i e s are exhausted. The only choices it can generate
are those that are already avai lab le in the data base,
or those that may be obtained by evaluat ing spec i f i c
consistency condit ions in spec i f i c loca l contexts.
It does not have the capab i l i t y to deduce l og i ca l
consequences and make use of them to f ind contradic
t ions where possib le. To do t h i s general theorem
proving capab i l i t y is necessary. The essent ia l
d i f ference between the CHECKER and a THEOREM PROVER
(TP) is the fo l l ow ing : Whereas the CHECKER can assign
as values to r e l a t i on symbols only spec i f i c constants
in the data base, the TP can assign as values,
var iab les wi th spec i f ied l og i ca l p roper t ies . The
TP can carry wi th it the l og i ca l proper t ies assigned
to var iab les and use them in making new assignments
as it goes along. Resolution based theorem proving
systems have t h i s capab i l i t y b u i l t i n t o the u n i f i c a
t i o n a lgor i thm [see N i lsson, 1971].

In MDS the CHECKER w i l l invoke the TP whenever
it does not f i nd enough informat ion in the data base
to evaluate a CC at a p a r t i c u l a r anchor, or whenever
the v a l i d i t y of an asser t ion is to be proven un iver
s a l l y ; not merely wi th respect to the fac ts known
about the spec i f i c objects in the data base. The
CHECKER w i l l c a l l the TP also when it recognizes a
loop in an updating chain.

The deduction process and the cont ro l s t ruc ture
of the TP in MDS is d i f f e r e n t from that of a reso lu
t i o n based system, (see [10]) .

2 . 3 . 1 . The Pr imi t ives

There are about twenty p r im i t i ves that enable
one to do programming in a backtracking environment.
The p r im i t i ves are c l a s s i f i e d as shown in Figure 1A.
The ECP's (Environmental Control Pr imi t ives) in
Figure 1A are used to es tab l i sh a cont ro l environment
(cenviron) w i t h in a scope. The execution of func-
t ions w i t h i n the scope are a f fec ted by i t . See
Table I I I f o r a descr ip t ion of the ECP's. The SCP's
are the sequential cont ro l p r im i t i ves l i k e GO, COND,
e tc . There are seven act ive p r i m i t i v e s , GOAL,
ASSERT, DELETE, CANDO, IFDON, TRY and BIND. The
execution sequences fo r the GOAL and other ac t ive
commands are shown in Figures 1B and 1C. GOAL i n
vokes appropriate d e f i n i t i o n s from data base, and
does "means-end" analysis when necessary. ASSERT
and DELETE issue I and D commands to the INSTANTIATOR,
when successful . A l l p r i m i t i v e s , other than the con
t r o l p r i m i t i v e s , may have CANDO, IFDON and TRY func
t ions associated wi th them. A p r im i t i ve can be
executed only i f i t s associated CANDO's are s a t i s f i e d .
I f a p r i m i t i v e f a i l s then one may t r y i t s associated
TRY func t ions . If a p r i m i t i v e is successful then
i t s associated IFDON's should be executed. Only if
the IFDON's are also successfu l ly completed may the
p r i m i t i v e re turn success to i t s parent. Let us fo l low
the operat ion wi th an example.

622

623

of ac t ion . In both these cases the problem solver
needs to be guided i n t e l l i g e n t l y in making i t s choices.
The DESIGNER has some b u i l t - i n f a c i l i t i e s fo r i n t e l
l i gen t se lec t ion of choices from a set of a l t e rna t i ves .
The Problem Solving State (PSS) provides t h i s guidance.
This is discussed in the next sect ion.

2 .3 .3 . The Problem Solving State

The PSS i t s e l f is defined by templates. The PSS
template is shown in Table V I , This tab le is se l f -
explanatory. Every time the DESIGNER invokes a func
t i o n or executes a < fn -ca l l> i t w i l l create an i n
stance of PSS corresponding to the f unc t i on . The net
work of a l l such PSS instances is the problem solv ing
p ro toco l . The CC's associated wi th the PSS template
provide the necessary guidance to DESIGNER. Of
p a r t i c u l a r i n te res t are the CC's associated wi th the
bindings and a l ternates (see Tables VI) r e l a t i o n s .
Let us c a l l these [CCB] and [CCF], respect ive ly .
These CC's w i l l speci fy the choices of current
bindings and current func t ion . Two important notions
tha t make t h i s possible are the notions of s i m i l a r i t y
of two PSS instances, and cc summary of a PSS instance.

cc summary: [CCS]: A CCS is a record of evalua
t ions of CC's(branching cond i t ions , CANDO condit ions
and bidding condi t ions, made during the tenure of
a PSS instance. For each sequence of condit ions
evaluated, the CC-summary w i l l conta in : The TRUE
RESIDUES of the condit ions evaluated if the condi
t i o n evaluated to TRUE, the FALSE RESIDUE, NOT TRUE
PART and TRUE PART if the condi t ion evaluated to
FALSE, the RESIDUE if the condi t ion evaluated to NEI.
It w i l l also have the outcome (fn -s ta te) of the PSS
instance in which the condi t ion was evaluated,
and spec i f i c va r iab le bindings i f any in terms of the
kinds and types of objects used. A l l var iab le b ind
ings in the CC-summary of a PSS w i l l be speci f ied
in terms of the var iables that appear in the b ind
ings of the PSS. The concept w i l l become clear in
the example considered below. The Consistency Condi
t i o n [CCB] uses CC-summaries.

The general r u l e i s : Pick f o r bindings the same
kind and type of objects that prev ious ly succeeded in
"similar PSS instances; do not p ick the kind and type
of objects that prev ious ly f a i l e d . Use cc-summaries
to check whether a chosen binding is l i k e l y to
succeed. If no bindings could be picked by the above
r u l e s , then p ick a r b i t r a r i l y .

624

625

626

Thus, the DESIGNER provides the high level
contro l s t ruc ture necessary to pass on to the CHECKER
the r igh t CC's to be evaluated, and to the INSTANT1A-
TOR, the r i gh t model changes to be done. The DE
SIGNER programs themselves are independent of the
descr ip t ive data structures used. Again the templates
and INSTANTIATOR provide a desirable i s o l a t i o n . The
PSS i t s e l f may be changed fo r d i f f e ren t domains of
discourse, or d i f f e r e n t problem types. In t h i s sense,
the templates and the ru les of t ransformation, to
gether wi th the PSS specia l ize the MDS to a given
problem, or a given domain of discourse. The problem
solv ing contro l structures are driven by the domain
dependent data. The CHECKER, TP, DESIGNER, anri IN
STANTIATOR are a l t par t of the MDS.

Most impor tant ly there is a s ign i f i can t s t r a t
i f i c a t i o n of knowledge in a domain, as seen by the
system. Domain dependent knowledge is made avai lable
to the system as templates, as CC's or as TR's,
The PSS templates play a p a r t i c u l a r l y important ro le .
Depending upon how and where a given piece of domain
dependent knowledge is speci f ied the system uses it
d i f f e r e n t l y .

The r e l a t i v e i so la t i on of the problem solving
and model management programs from the descr ip t ive
data s t ructures themselves, make the concept of MDS
feas ib le . The f a c i l i t y to a r b i t r a r i l y specify des
c r i p t i v e data st ructures as wel l as non-determinist ic
programs makes the system highly f l e x i b l e and power
f u l . The CHECKER and INSTANTIATOR provide the basic
foundat ion. These two systems are small systems
(about 2K PDP-10 words fo r INSTANTIATOR and 3X fo r
CHECKER), and the programs here can be made very
e f f i c i e n t . These features give promise tha t the
proposed system archi tecture could operate in the
context of large data bases. By def in ing the tem
plates ca re fu l l y the MDS system can be special ized
to operate e f f i c i e n t l y in a given domain. The
s t ructure of MDS is described in the next sect ion.

3. The Meta Descr ipt ion System

The block diagram of MDS is shown in Figure 3.
In t h i s f igu re DL{D), T(D), and K(D) are, respect ive ly ,
the d e f i n i t i o n s of Descript ive Language, Templates
and Knowledge (CC's and TR's) in a domain D, The
LINGUIST, TEMPEST, and QUEST are, respect ive ly , the
subsystems that accept these de f i n i t i ons and create
representat ions fo r them. The TEMPEST is now a
working system (about Sk of PDP-10 words of compiled
LISP 1.6 programs). The CHECKER and INSTANTIATOR are

present ly under construct ion.

The data in D L p) , T(D), and K(D) specia l ize the
MDS for the domain. The rest of the block diagram is
se l f explanatory.

4. Concluding Remarks

We have introduced the basic concepts of C1-
Systems and the MI'S. The Cl-Systems provide a basis
fo r the d e f i n i t i o n of the concept of machine under
standing in terms of models that a machine is capable
of bui ld ing in a domain, and the way the models are
used. The understanding exhib i ted at the problem
solving, leve l of CHECKER is r e l a t i v e l y simple under
standing. A deeper level of understanding is exhib i ted
in the kinds of problems that the Theorem Prover can
solve (see [i n]) . At the level of DESIGNER the level
of understanding is very sophist icated. The system
is able to plan and bu i l d procedures to solve problems.

In t h i s paper we have discussed only a part of the
problem solv ing aspects of the system; the workings of
the CHECKER and DESIGNER. The operation of the langu
age processor w i l l be discussed in a subsequent paper.

We are proposing the use of DL(D), T(D), and
K(D) to t rans fer domain dependent descr ip t ive knowledge
to a computer. We have b r i e f l y indicated how such des
c r i p t i v e knowledge could be used to solve problems in
a domain automat ical ly.

The spec i f i ca t ion of DL(D1, T(D) and K(D) in a
domain w i l l , of course, require a very good under
standing of the concepts and problems in a domain.
There are several domains where, at present, such
understanding is avai lab le. The MDS provides a way
of t rans fer ing t h i s understanding to a computer. The
study of a CIS for the MDS i t s e l f might throw l i g h t
on the problem of making a computer bu i ld i t s own
tenjplates to su i tab ly model and reorganize a known
corpus of knowledge in a domain.

There is much work to be done to make the MDS a
v iable system. It is necessary to develop a working
system f i r s t . We are present ly involved in t h i s task.

627

References:

1.) Fikes, Richard E a r l , "REF-ARF: A System f o r
Solving Problems Stated as Procedures,"
J . A r t . I n t e l . 1(1) 1970.

2.) Fikes, Richard E a r l , "A Heur is t i c Program fo r
Solving Problems Stated as Nondeterminist ic
Procedures," Doctoral Thesis, Carnegie-Mellon
Un ivers i t y , 1968.

3.) Derksen, J . , Ru l i fson, J .F . and fValdinger, R.J . ,
"The QA4 Language Appl ied to Robot Planning,"
AFIPS Conference Proceedings, Vo l . 4 1 , Part I I
FJCC 1972, pp. 1181-1187.

4.) Gibbons, Gregory Dean, "Beyond REF-ARF: Toward
an I n t e l l i g e n t Processor fo r a Nondeterminist ic
Programming Language," Doctoral Thesis, Carnegie-
Mellon Un ive rs i t y , 1973.

5.) F ikes, Richard E a r l , N i lsson, N i l s J . , "STRIPS:
A New Approach to the Appl ica t ion of Theorem
Proving to Problem So lv ing , " J . A r t . I n t e l .
3(1) pp. 27-68, 1972.

6.) Fikes, R.E. , Har t , N i lsson, N.J. : "Learning
and executing generalized Robot Plans", J. Ar t .
I n t e l . 3(1972), 251-288.

7.) Hewit t , C, "Descr ipt ion and Theoret ical
Analysis (using schemata} of PLANNER: A Language
fo r Proving Theorems and Manipulating Models in
a Robot," Ph.D. Thesis, Dept. of Mathematics,
M. I .T . , Cambridge, Mass. 1972.

8.) Newell , A . , Shaw, J . D . , and Simon, H.A., "Report
on a General Problem-Solving Program f o r a
Computer," Information Processing: Proc. I n t e r n l .
Conf. Information Processing, p. 256-264,
UNESCO, Par is . (Reprinted in Computers and
Automation, Ju ly 1959)

9.) Amarel, S . , "On Representations of Problems of
Reasoning About Ac t ions , " Machine In te l l i gence 3
D. Michie, ed . , Edinburgh Un ivers i ty Press,
pp. 131-170. 1968.

10.) Sr in ivasan, C.V., "On the Organization and use
of Knowledge in a Coherent Information System"
RUCBM-TR19. Dept. of Computer Science,
Rutgers Un ivers i t y , New Brunswick, N,J, 08903,

626

