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Abstract

While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in
multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human
tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously
from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in
each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects
of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design
(Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of
the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between
tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given
their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and
direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a
biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among
the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a
substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes
across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess
consequences of such variants for complex traits.
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Introduction

Gene expression is an essential cellular function whose regulation

determines a significant proportion of the phenotypic variance.

Using microarrays and recently second generation sequencing

(RNA-seq) [1,2], major progress has been made in understanding

the genetics of human gene expression and identifying loci that drive

differential expression across individuals [3,4], populations [5–7]

and tissues [7–11]. This development is especially valuable for the

biological analysis of genome-wide association (GWAS) signals [12],

which often map to non-genic regions and are thus hard to interpret

in the absence of additional information [13].

Transcript abundance is a very proximal endophenotype

affected by genetic variation and has already facilitated the

identification of candidate susceptibility genes for metabolic

disease traits [14], asthma [15] or Crohn’s disease [16]. This has

been mostly possible when the tissue of expression was relevant to

the interrogated complex trait, as disease phenotypes manifest

themselves only in certain tissues. eQTLs discovered in LCLs have

primarily helped explain GWAS associations with immunity-

related disorders [17,18] while associations with obesity-related

traits were mostly observed when gene expression was quantified

in adipose tissue [9]. Nevertheless, our guess of tissue relevance is

yet far from satisfactory [19], reinforcing thus the incontestable
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value of measuring expression in multiple cell-types (including

primary tissues reflecting in vivo patterns).

Transcriptional regulatory networks are expected to dictate

tissue-specificity of regulatory effects [20], but the extent of this is

still under debate. Depending on the cell-types compared and the

eQTL discovery methods used, current estimates for tissue-

specificity of eQTLs range from ,30% (liver, adipose tissue)

[21] to 70–80% (LCL, fibroblasts, T cells) [7].

In this study we investigated various aspects of tissue-specificity and

we emphasize the importance of accounting not only for statistical

significance but also for continuous biological properties of regulatory

variants, such as fold change in expression. We explored the

complexity of the human cis-regulatory variation landscape in three

tissues (LCL, skin and fat) derived from a subset of female Caucasian

twins aged between 40 and 87 years old (mean 62 years) from the UK

Adult Twin registry [22]. The present study represents the pilot phase

of the MuTHER project (Multiple Tissue Human Expression

Resource—http://www.muther.ac.uk/), a major resource initiated

to enhance our knowledge about common trait susceptibility by

providing genome-wide expression, methylation and eventually

transcriptome sequencing information for 855 extensively pheno-

typed twins (clinical, anthropometric, life-style information as well as

a wide range of biological measurements are available).

Results

Gene expression was quantified in LCL, skin and fat using

Illumina’s whole genome expression array (HumanHT-12 version 3)

containing 48,803 probes in three technical replicates [E-MTAB-

522]. Log2 - transformed expression signals were normalized

separately per tissue by quantile normalization across replicates

followed by quantile normalization across individuals. 27,499 probes

mapping uniquely to 18,170 Ensembl genes were retained for further

analysis. The same individuals had also been genotyped with

Illumina’s 1M-Duo and 1.2M-Duo chips; 865,544 SNPs with

MAF.1% passed quality check (QC). The overlapping set of

successfully genotyped samples with available expression data

amounted to 156 individuals for LCL (30 MZ pairs, 37 DZ pairs,

22 singletons), 160 for skin (31 MZ pairs, 37 DZ pairs, 24 singletons)

and 166 for fat (31 MZ pairs, 40 DZ pairs, 24 singletons). This final

dataset was used for eQTL analysis.

We tested for SNP-gene expression associations (eQTLs)

separately in each tissue. We considered only unrelated individuals

at a time by separating twins from the same pair and thus

performing two independent eQTL analyses per tissue. This study

design, hereafter named Matched Co-Twin Analysis (MCTA),

permits immediate replication and validation of eQTL discoveries.

We used Spearman Rank Correlation (SRC) to detect associations

and restricted our search to cis effects located within 1Mb on either

side of a gene’s transcription start site (TSS). Statistical significance

was assessed at different thresholds using permutations (10,000 per

gene) [5]. We detected an abundance of cis eQTLs (Table S1A)

per tissue at a comparable rate to other studies of similar sample

size [5,7]. The reported eQTLs appear robust as they replicate

well between individuals of the two co-twin groups per tissue. We

measured the eQTL overlap in a continuous fashion by taking the

significant SNP-gene associations from one co-twin set and

estimating the proportion of true associations (p1 statistic [23],

see Materials and Methods) on the distribution of corresponding p-

values in the reciprocal co-twin validation set. High levels of eQTL

replication were observed across co-twins, with a mean p1 of 0.93

in skin and 0.98 in LCL and fat (Table 1). We also measured the

estimated proportion of true positives among the subset of genes

that did not replicate in the co-twin at the same threshold. This too

is high (p1=0.84 for skin and 0.94 for LCL and fat), suggesting

that exact overlap of genes at a given permutation threshold (PT) is

an underestimate of eQTL replication due to winner’s curse. In

other words, we detected eQTLs in the co-twin that clearly

replicated the initial findings, but at p-values that marginally

missed the initial discovery threshold. To further confirm the

robustness of our discoveries, we overlapped the MuTHER LCL

results with available eQTL data from two recent independent

studies. 40% of the genes for which we detect LCL eQTLs overlap

Author Summary

Regulation of gene expression is a fundamental cellular
process determining a large proportion of the phenotypic
variance. Previous studies have identified genetic loci
influencing gene expression levels (eQTLs), but the
complexity of their tissue-specific properties has not yet
been well-characterized. In this study, we perform cis-eQTL
analysis in a unique matched co-twin design for three
human tissues derived simultaneously from the same set
of individuals. The study design allows validation of the
substantial discoveries we make in each tissue. We explore
in depth the tissue-dependent features of regulatory
variants and estimate the proportions of shared and
specific effects. We use continuous measures of eQTL
sharing to circumvent the statistical power limitations of
comparing direct overlap of eQTLs in multiple tissues. In
this framework, we demonstrate that 30% of eQTLs are
shared among tissues, while 29% are exclusively tissue-
specific. Furthermore, we show that the fold change in
expression between eQTL genotypic classes differs be-
tween tissues. Even among shared eQTLs, we report a
substantial proportion (10%–20%) of significant tissue
differences in magnitude of these effects. The complexities
we highlight here are essential for understanding the
impact of regulatory variants on complex traits.

Table 1. Cis eQTL discoveries (number of genes) per tissue at 1023 PT.

Number of significant genes at 1023 PT

SRC analysis SRC-FA analysis

Twin 1 Twin 2 Shared Replication (Mean p1) Twin 1 Twin 2 Shared Replication (Mean p1)

LCL 509 556 363 0.98 1064 1220 781 0.97

SKIN 238 231 132 0.93 532 542 338 0.95

FAT 462 488 304 0.98 1052 1070 735 0.97

Results from both the Spearman Rank Correlation (SRC) and Factor Analysis (SRC-FA) presented. Proportion of replicating signals calculated as the mean co-twin p1

estimates from the p-value distribution of same SNP-gene associations in the reciprocal twin set.
doi:10.1371/journal.pgen.1002003.t001

Regulatory Variation across Multiple Human Tissues
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with eQTLs detected in HapMap 3 samples of European ancestry

(CEU) (Stranger et al. submitted). Likewise, 36% of the cis

associations detected by Gibson et. al. in leukocytes derived from

194 southern Moroccan individuals [24] overlap with genes

reported in our study. Given the differences in gender distribution,

sample preparation or even cell-type tested (LCL versus leukocytes)

across these studies, the gene overlap observed is reassuring.

The observed variation in gene expression is not entirely due to

genetic effects. Experimental noise and environmental conditions

also affect transcript levels in a global manner. Therefore, it is

desirable to remove the effects of such random variables and thus

increase the power to detect eQTLs. For this purpose, we

employed factor analysis (FA) on each tissue separately and

corrected for global latent effects on all individuals in each tissue

[25]. We fitted various parameters such as number of learned

factors and proportion of variance explained, in order to maximize

for replication of eQTLs per tissue between twin sets. After

performing standard SRC eQTL analysis on the factor-corrected

expression data (SRC-FA), we obtained a substantial improvement

in eQTL discovery at each of the standard permutation thresholds

used (Table S1B). The improvement (twice as many eQTLs at

1023 PT) is consistent in all tissues. The high eQTL replication

between twin sets persists after FA, with an additional improve-

ment of true positives detection in skin: p1=0.95 (Table 1). As

expected, FA correction recovers the majority of the eQTLs

discovered with the initial analysis (90% of LCL and fat and 80%

of skin) ensuring that proximal genetic effects have not been

corrected out. The FA correction enabled the discovery of

additional signals (Table S2) likely representing real effects that

could not be detected initially due to low power. This is supported

by the significant overrepresentation of low association p-values

(p1=0.99, Figure 1) estimated in the uncorrected data for eQTLs

detected only after FA correction.

Direct tissue overlap of significant eQTLs supports an extensive

level of tissue-specificity for the three tissues, with very similar

proportions in both the SRC and SRC-FA analyses (Figure 2). In

the first co-twin set we discovered 858 eQTL genes (non-

redundant union) at 1023 PT in all three tissues (Table 2). Of

these, 106 genes (12.35%) are shared across all tissues, 139 (16.2%)

are shared in at least two tissues and 613 genes (71.44%) are

detected in only one tissue. In skin we detect proportionally fewer

tissue-specific effects (10.02% of skin eQTLs are specific to skin at

1023 PT), an observation likely due to tissue heterogeneity and

larger variety of present cell-types. SRC-FA results confirm the

estimated ,30% of eQTLs to be shared in at least two tissues

based on threshold eQTL discovery (Table S3).

Tissue-specific effects are largely not due to tissue-specific expression of

the underlying transcripts. We detected regulatory variants active only in

one tissue for genes that are expressed at high levels in the other two

tissues (Figure S1). The strength of tissue-specificity was investigated

further by performing a joint repeated-measures ANOVA analysis with

the tissue modelled as a categorical predictor variable (i.e. tissue type

comprised the repeated measure). We assessed the relationship to the

genotype by inspecting the SNP6tissue interaction p-value term. As

expected, we detected a large enrichment of significant SNP6tissue

interaction p-values for all associations (p1=0.56) with tissue-specific

effects having higher enrichment (p1=0.6) than shared ones (p1=0.41)

(Figure S2). The enrichment in the shared category suggests additional

attributes of tissue-specificity beyond statistical significance, as presented

in the succeeding fold change analysis.

The direction of allelic effects for shared eQTLs (1023 and 1022

PT) is consistent across the three given tissues (Figure S3). As

expected, for eQTLs significant in one tissue only the SRC

correlation coefficient rho (reflecting direction and magnitude of

effects) explains a substantially higher fraction of gene expression

variation in the tissue of discovery compared to the other two

tissues (identical SNP-gene associations - Figure S4). On the other

hand, the amount of expression variance explained by shared

eQTLs (1023 PT) is comparable across tissues.

To refine regulatory signals and describe independently acting

variants, we mapped eQTLs to recombination hotspot intervals

and filtered markers in high LD (Materials and Methods). We

found that ,7% of the genes tested are regulated by more than

one independent cis eQTL, with similar estimates obtained from

the standard and factor eQTL analysis (Figure S5). For finer

comparison of eQTL effects, we conducted an analysis where

sharing was required for both the gene and the genomic interval

harboring the eQTL. This analysis yielded similar counts of tissue-

shared and specific effects (Tables S4, S5), suggesting that the vast

majority of shared genes also share regulatory variants across

tissues. Furthermore, as shown previously [7], we observed that

eQTLs cluster symmetrically around the TSS, with shared effects

being distributed tightly around the TSS and tissue-specific effects

spanning a greater range of distances (Figures S6, S7).

The results described so far are based on thresholds, which are

driven by statistical significance. Overlaps at these levels are heavily

dependent on power and affected by winner’s curse. In addition,

eQTLs sharing statistical significance may still have notable effect

differences on gene expression levels across tissues, with potentially

different biological consequences. Given these caveats, we exam-

ined tissue-specificity in a continuous manner by quantifying the

proportion of true positives estimated from the enrichment of low p-

values (p1). Specifically, the p-value distribution of significant SNP-

probe pairs (1023 PT) from a reference tissue was investigated in the

other two tissues. The p-value distribution in the other tissues

indicates a high degree of tissue sharing (53 to 80%) both with the

SRC and SRC-FA, varying slightly depending on the reference

tissue in the comparison (Table S6). This suggests that there are

effect size differences (both fold change and amount of variance

explained) among tissues for the same regulatory variants, which is

the basis for the previously described higher eQTL tissue-specificity

estimates [7]. Overall, 29% of eQTLs (1-mean p1) are estimated

with the continuous approach to be tissue-specific, when comparing

the three tissues studied.

As described above, tissue overlap of eQTLs should encompass

not only sharing of a statistically significant regulatory effect, but

also a similar effect size (fold change in expression) of that variant

across tissues. In this respect, we report the fold change as the

difference between the gene expression means of the heterozygous

and major homozygous genotypic classes. Within the same tissue,

the two co-twin sets are only slightly different in their fold change

estimates. These minor differences reflect most probably the

winner’s curse effect (0.96 Pearson’s correlation of fold change

between Twin 1 and Twin 2 in LCL, 0.93 in skin and 0.93 in fat -

Figure 3, Figures S8, S9). The difference in estimated effect size is

much more apparent however across tissues (e.g. LCL eQTLs

have a 0.69 and 0.77 fold change correlation with skin and fat

eQTLs respectively, skin eQTLs have a 0.69 fold change

correlation with fat eQTLs). This is largely a consequence of

eQTL tissue-specificity, but a small effect of winner’s curse is also

expected (as observed in the comparison of co-twin sets).

Furthermore, additional possible hidden tissue-specific effects are

implied by the fact that shared eQTLs (at the same threshold of

significance) don’t always share the same effect size across tissues

(LCL fold change correlation of 0.78 in skin and 0.84 in fat for

shared eQTLs i.e. up to 20% difference in fold change magnitude

between tissues compared to within-tissue difference). This

suggests that even statistically tissue-shared eQTLs have additional

Regulatory Variation across Multiple Human Tissues
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dimensions of tissue-specificity and their mere discovery in multiple

tissues does not guarantee similar magnitude of consequences.

Discussion

We have performed eQTL analysis in one cell-line (LCL) and two

primary tissues of clinical importance (skin – previously unchar-

acterized and fat). For each tissue we report robust eQTLs

replicating in independent samples with identical (MZ) or on

average 50% similar (DZ) genetic background using a matched co-

twin design (MCTA). To further increase our power to detect

eQTLs and uncover smaller genetic effects, we applied factor

analysis accounting for global variance components in the data. We

refined our signals to detect independently acting cis eQTLs and for

Figure 1. P-value distribution of cis eQTLs (1023 PT) gained with FA correction in the uncorrected data. The significant
overrepresentation of low p-values for the new eQTLs (p1= 0.99) shows that the signal existed in the uncorrected data but wasn’t called significant
due to low power. In each tissue, the exact SNP-gene combinations (eQTLs) tested are presented for both co-twin sets (Twin 1—first column, Twin
2—second column).
doi:10.1371/journal.pgen.1002003.g001

Regulatory Variation across Multiple Human Tissues
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most genes we found single associated regulatory variants. When

these variants are shared across tissues, they also share the same

direction of allelic effects and map to the same recombination

hotspot interval. Using threshold-based criteria, tissue overlap of

eQTLs supports a large degree of tissue-specificity for the three

tissues studied. However, this estimate is dependent on power and

we therefore put forth a continuous measure of tissue-specificity that

provides a refined view of the decay of statistical significance as well

as fold change effect on gene expression. Using this approach we

observed a significant overrepresentation of low p-values in all

Figure 2. Proportion of tissue shared and tissue-specific eQTLs (1023 PT) from the SRC analysis and SRC-FA respectively. Both
methods reveal similarly high extents of tissue-specificity. Skin specific eQTLs of smaller effects are harder to detect due to low power.
doi:10.1371/journal.pgen.1002003.g002

Table 2. Tissue-shared and tissue-specific gene associations (1023 PT), SRC analysis.

Twin 1 Twin 2

1023 PT % total Overlap 1023 PT % total

3 tissues LCL-SKIN-FAT 106 12.35 78 102 11.02

2 tissues only LCL-SKIN 19 2.21 4 12 1.29

LCL-FAT 93 10.84 52 107 11.56

SKIN-FAT 27 3.15 11 26 2.81

1 tissue only LCL 291 33.92 150 335 36.18

SKIN 86 10.02 17 91 9.82

FAT 236 27.50 103 253 27.32

Total significant LCL 509 363 556

SKIN 238 132 231

FAT 462 304 488

Union of total significant 858 100 563 926 100

doi:10.1371/journal.pgen.1002003.t002

Regulatory Variation across Multiple Human Tissues
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pairwise tissue comparisons, indicating larger proportions of shared

statistically significant regulatory effects, some yet to be discovered

with bigger sample sizes. However, we also observed significant

eQTLs at the same threshold exhibiting differential fold changes in

expression between genotypes across tissues. These cases represent

tissue-specific effects as well, since differential fold change in

expression is likely to have different biological consequences.

Overall biological interpretation of regulatory effects - much like

in the case of complex traits – is tissue-dependent, highlighting the

value of multiple tissue expression datasets. Understanding such

complexities and context-dependent effects in the genetic architec-

ture of gene expression and other cellular phenotypes is essential for

the interpretation of the biological properties of disease causing

variants.

Figure 3. Fold change within twins and across tissues for LCL eQTLs (1023 PT, SRC) discovered in Twin 1. The plotted fold change on
the X-and Y-axes was calculated as the difference in mean expression of the heterozygous and major homozygous genotypic classes. For each
pairwise tissue comparison, the Pearson’s correlation coefficient between fold changes is shown.
doi:10.1371/journal.pgen.1002003.g003
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Materials and Methods

All samples and information were collected with written and

signed informed consent. The project has been approved by the

local ethics committees of all institutions involved.

Sample collection
All individuals recruited in this study were Caucasian female

twins aged between 40 and 87 years old (mean age 62). Skin punch

biopsies (N=196) were taken from a relatively photo-protected

area adjacent and inferior to the umbilicus. The fat sample was

then carefully dissected from the same skin biopsy incision. A

peripheral blood sample to generate lymphoblastoid cell lines

(LCL) was taken contemporaneously. For a full description of the

biopsy technique see Text S1.

Gene expression measurements and genotyping
RNA levels were measured in LCL, skin and fat using Illumina’s

whole-genome expression array HumanHT-12 version 3 as

previously described [5]. Each sample had three technical

replicates. Illumina’s v3 probes were mapped to unique Ensembl

gene IDs by combining and cross-checking two methods. The first

approach used Illumina’s probe annotation to RefSeq IDs. These

were further queried with BioMart (Ensembl 54) for corresponding

Ensembl genes. RefSeq IDs mapping to multiple EnsGenes were

excluded. The second approach used BLAT to map the 50-mer

probe sequences to Ensembl transcripts and to extract genomic

locations matching for all 50 bases of the probe sequence. Probes

with unique perfect match to the genome and corresponding

transcripts matching to the same genes were kept. The union of

the two mappings after excluding 196 conflictingly matching

probes resulted in 27,499 probes corresponding to 18,170

autosomal genes available for association analysis.

Genotyping has been performed in parallel using Illumina’s

1M-Duo and 1.2M-Duo custom chips on different subsets of

individuals. Before further filtering, there were 106 samples with

call rate (CR)$0.90 on the 1.2M and 88 samples with CR$0.90

on the 1M chip. Combined intensity files were created for

Illuminus [26] by retaining on a per-chromosome basis only SNPs

common to both chips. Additionally, any SNPs that moved

position between the two chips were removed. Following further

quality checks (Hardy-Weinberg p.1024, MAF.1%), 865,544

SNPs were kept for analysis.

The overlapping set of successfully genotyped samples with

available expression data amounted to 156 (LCL), 160 (skin) and

166 (fat) individuals.

Post-experimental normalization of gene expression data
Log2 - transformed expression signals were normalized

separately per tissue as follows: quantile normalization was

performed across the 3 replicates of each individual followed by

quantile normalization across all individuals.

Genotype-gene expression associations and multiple
testing correction
The eQTL analysis was done separately for each tissue. Within

each tissue, twins from the same pair were separated by id in two

samples analyzed independently. This separation resulted in the

following sample size for LCL, skin and fat respectively: Twin 1

(74, 76, 79) and Twin 2 (82, 84, 87). Associations between SNP

genotypes and normalized expression values were conducted using

Spearman Rank Correlation (SRC). We considered only SNPs in

cis, i.e. within a 1MB window from the TSS. We assess the

statistical significance of the nominal associations using permuta-

tions as previously described [5]. We call an eQTL significant at

1023 permutation threshold (PT) if the nominal association P-

value is greater than the 0.001 tail of the minimal P-value

distribution resulting from the SNP’s associations with 10,000

permuted sets of expression values for each gene.

Factor analysis
We applied a Bayesian factor analysis model [25] to the

expression data in each tissue. This approach uses an unsupervised

linear model to account for global variance components in the

data, and yields a residual expression dataset that can be used in

further analysis.

We tested a wide range of parameter settings for the model,

controlling the amount of variance explained by it. This was

achieved by setting the parameters of the prior distributions for gene

expression precision (inverse variance) and factor weight precision.

These random variables are modelled using Gamma distributions,

thus we varied their natural exponential family parameters - the

prior mean and number of prior observations. We varied the prior

mean from 1026 to 1022, and number of prior observations from

N*1023 to N, where N is the number of observations from data, and

learned 120 latent factors. In the subsequent analysis, we used for

each tissue the residual dataset that gave the best eQTL overlap

between the two twin samples. The prior values used for each

dataset are given in Table S7. The eQTL analysis on the corrected

expression data was performed identically to the standard analysis:

SRC followed by permutation testing.

Proportion of true positives from p-value distribution
For quantifying eQTL replication and tissue sharing in a

continuous way, we used Storey’s QVALUE software [23]

(implemented in the R package qvalue 1.20.0, default recom-

mended settings). The program takes a list of p-values and

computes their estimated p0 - the proportion of features that are

truly null - based on their distribution (the assumption used is that

p-values of truly alternative cases tend to be close to zero, while p-

values of null features will be uniformly distributed among [0,1]).

The quantity p1=12p0 estimates the lower bound of the

proportion of truly alternative features, i.e. the proportion of true

positives (TP). Replication and sharing between two samples is

reported as the proportion of TP (p1) estimated from the p-value

distribution of independent eQTLs discovered in sample 1 in the

second sample (exact SNP-probe combinations are tested).

Recombination hotspot interval mapping and LD
filtering
We refined the eQTL signals in order to characterize likely

independent effects per gene. For this purpose, we mapped all

common autosomal SNPs to recombination hotspot intervals as

defined by McVean et.al [27]. We map significant eQTLs to

recombination hotspot intervals and save the most significant SNP

per gene. For each gene, SNPs resulting from this mapping are in

addition filtered for LD in a pairwise manner (for each pair with

D9.0.5 the least significant SNP is ignored). This filtering ensures

that true shared effects (interval-gene combinations) are compared

and not just genes.

Supporting Information

Figure S1 Median expression values of tissue-specific genes in

the tissue of discovery and the other two tissues. Tissue-specific

effects are not restricted to genes expressed in a tissue-specific

manner.

10.1371/journal.pgen.1002003.s001(TIFF)
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Figure S2 SNP6tissue interaction p-value from repeated

measures ANOVA for all, shared and tissue-specific eQTLs

respectively. Greater enrichment of significant SNP6tissue p-

values is observed for tissue-restricted effects.

10.1371/journal.pgen.1002003.s002(TIFF)

Figure S3 eQTLs (1022 PT, SRC) shared in all three tissues

tested have the same direction of allelic effect (SRC rho) across

tissues.

10.1371/journal.pgen.1002003.s003(TIFF)

Figure S4 Cumulative SRC rho distribution across tissues for

tissue-specific and shared eQTLs (1023 PT, Twin1). eQTLs

discovered in one tissue only have distinctively higher variance in

the tissue of discovery compared to shared effects.

10.1371/journal.pgen.1002003.s004(TIFF)

Figure S5 Most regulatory signals come from single independent

eQTLs (SRC, 1022 PT).

10.1371/journal.pgen.1002003.s005(TIFF)

Figure S6 Distribution of independent cis eQTLs (1023 PT,

SRC) around TSS, Twin 1.

10.1371/journal.pgen.1002003.s006(TIFF)

Figure S7 Distribution of independent cis eQTLs gained with

FA correction (1023 PT) around TSS, Twin 1.

10.1371/journal.pgen.1002003.s007(TIFF)

Figure S8 Fold change within twins and across tissues for SKIN

eQTLs (1023 PT, SRC) discovered in Twin 1. Fold change was

calculated as the difference in mean expression of the heterozygous

and major homozygous genotypic classes. For each pairwise tissue

comparison, the Pearson’s correlation coefficient between fold

changes is shown.

10.1371/journal.pgen.1002003.s008(TIFF)

Figure S9 Fold change within twins and across tissues for FAT

eQTLs (1023 PT, SRC) discovered in Twin 1. Fold change was

calculated as the difference in mean expression of the heterozygous

and major homozygous genotypic classes. For each pairwise tissue

comparison, the Pearson’s correlation coefficient between fold

changes is shown.

10.1371/journal.pgen.1002003.s009(TIFF)

Table S1 Cis eQTL associations with SRC and SRC-FA.

10.1371/journal.pgen.1002003.s010(DOC)

Table S2 eQTL recovery with FA. FA correction recovers the

majority of eQTLs from the SRC analysis and adds twice as many

discoveries.

10.1371/journal.pgen.1002003.s011(DOC)

Table S3 Tissue-shared and tissue-specific gene associations

(1023 PT), SRC-FA.

10.1371/journal.pgen.1002003.s012(DOCX)

Table S4 Tissue-shared and tissue-specific interval-gene associ-

ations (1023 PT), SRC analysis.

10.1371/journal.pgen.1002003.s013(DOC)

Table S5 Tissue-shared and tissue-specific interval-gene associ-

ations (1023 PT), SRC-FA.

10.1371/journal.pgen.1002003.s014(DOC)

Table S6 Continuous estimates of tissue sharing by enrichment

of low p-values (p1) of reference eQTLs (SNP-probes 1023 PT) in

the other two secondary tissues.

10.1371/journal.pgen.1002003.s015(DOC)

Table S7 FA weight and noise prior values used for each tissue.

10.1371/journal.pgen.1002003.s016(DOC)

Text S1 Biopsy technique protocol.

10.1371/journal.pgen.1002003.s017(DOC)
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