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Abstract

Mutualistic networks have been shown to involve complex patterns of interactions among animal 

and plant species, including a widespread presence of nestedness. The nested structure of these 

webs seems to be positively correlated with higher diversity and resilience. Moreover, these webs 

exhibit marked measurable structural patterns, including broad distributions of connectivity, 

strongly asymmetrical interactions and hierarchical organization. Hierarchical organization is an 

especially interesting property, since it is positively correlated with biodiversity and network 
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resilience, thus suggesting potential selection processes favouring the observed web organization. 

However, here we show that all these structural quantitative patterns—and nestedness in particular

—can be properly explained by means of a very simple dynamical model of speciation and 

divergence with no selection-driven coevolution of traits. The agreement between observed and 

modelled networks suggests that the patterns displayed by real mutualistic webs might actually 

represent evolutionary spandrels.

Ecological networks are known to exhibit a number of structural features associated with 

their interaction patterns1–3. In particular, these include: (1) small-world structure4, where 

two given species are separated by a small number of links from any other species in the 

web5–7; (2) heterogeneous distributions of connections1,8, where the number of links 

between a given species and other species in the web can vary widely; (3) modular 

organization7,9 implying that subsets of species exhibit more connections among them than 

with the rest of the network and (4) nestedness10, where specialists interact with a subset of 

the whole set of species that generalists interact with.

The presence of some of these traits has important implications. As an example, the 

architecture of ecological webs displays the 'robust-but-fragile' feature of many complex 

networks: random removal (extinction) has little effect, whereas the loss of certain species 

can lead to a cascade of extinctions1,11. In this context, mutualistic networks have received 

special attention over the past decade7–12. They are defined as a bipartite graph (Fig. 1a) 

involving interactions across two adjacent trophic levels, such as plants and the species that 

feed on and pollinate them (Fig. 1b). These graphs are often significantly nested13. 

Following an adaptationist view of naturally evolved systems, it has been argued that the 

presence of these properties—and nestedness in particular—is a consequence of some 

underlying selection that reduces competition relative to the benefits of facilitation and 

hence increases biodiversity and food web persistence or feasibility3,14,15. The main 

arguments provided to support this view are grounded in the use of generalized Lotka–

Volterra equations with different functional responses. Recent papers have challenged this 

view questioning the conclusion that nestedness has resulted from selection pressures 

favouring higher biodiversity16,17. Instead, it has been suggested that nestedness is likely to 

be a consequence (rather than a causative property) of biodiversity, in particular of the 

heterogeneous distributions of connections18.

In this context, previous work concerning the evolution of complex biological and artificial 

networks suggests that many architectural patterns displayed by these graphs are an 

inevitable byproduct of the way they are constructed18. This is, in fact, the consequence of 

processes involving network growth through duplication and rewiring19–23. Specifically, 

evolution often proceeds by tinkering from available components24,25, and a network 

resulting from a process of copy and further modification is likely to display complex 

features (as is the case of the proteome, metabolic networks and even technological graphs). 

Simple models involving no functionality or population dynamics can develop small-world 

or scale-free webs, which can be modular26 despite the apparently well-established idea that 

modularity is an evolved, functionally relevant trait. If this were the case for mutualistic 

webs, their invariant features27 would be a consequence of universal properties of the 
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graphs and their growth rules, more akin to the idea of universality28. When this occurs, 

very simple toy models are capable of accounting for the global features exhibited by the 

system.

The key lesson of the studies mentioned above is that when dealing with complex biological 

networks, some ubiquitous patterns might be a byproduct of given generative rules. The 

emergent patterns can thus be evolutionary spandrels; that is, phenotypic characteristics that 

evolved as a side effect of a true adaptation29,30. Despite some criticisms related to the 

appropriateness of the architectural analogy31, the key concept of a non-adaptive structural 

pattern stands. An example of a spandrel is provided by the distribution of network motifs in 

cellular networks32, where it has been shown that most network properties can be explained 

by means of non-functional models. We define evolutionary spandrels as structures that: (1) 

are the byproduct of building rules; (2) have intrinsic, well-defined, non-random features; 

and (3) reveal some of the underlying rules of construction32.

Here, we aim to show that nestedness and other system-level network features in mutualistic 

webs are a byproduct of the generative rules associated with speciation-divergence 

mechanisms with no consideration of the underlying population dynamics. This approach 

ignores the ecological time scale (and thus all factors associated with standard stability 

criteria) by considering instead a scenario in which speciation and diversification events take 

place over very long (evolutionary) time scales. This approach has been used to model 

macroevolutionary dynamics, including climbing fitness landscapes as well as processes of 

network growth and extinction33–37. In particular, these methods have revealed deep 

insights into the large-scale evolution of ecological networks (refs 30,36,38,39 and the 

references therein).

Speciation-diversification model

Our model assumes a bipartite graph involving two subsets of vertices that correspond with 

animals and plants, respectively. These species are linked (Fig. 1) provided that a mutualistic 

relationship exists. This approach makes some strong assumptions. One is that species are 

either present or absent, with no role to be played by population size or other species-

specific traits. Second, interactions are introduced as weighted links. The values of these 

links will evolve in time following very simple rules (see Methods). Alternatively, we could 

limit ourselves to a topological, undirected graph (see Supplementary Information).

The large-scale dynamics is obtained by a combination of two processes that occur over 

evolutionary time scales: new species are generated from old ones through speciation and 

coevolution, and external (either environmental or stochastic) factors modify the presence 

and strength of the interactions. Below, we summarize the observed patterns of network 

architecture generated by our model to be compared with a public database containing n = 

25 weighted mutualistic webs (see Supplementary Information).

Network connectivity distributions. As a result of the previous evolutionary rules, complex 

bipartite graphs are generated in silico. In Fig. 2a, we show an example of the time evolution 

of a simulated bipartite network, starting from an initial condition (t = 1) with two species at 
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each level, connected to each other with a small weight, ωkl = 10−3. A first statistical 

measure to consider is the relation between the total number of links, L, displayed by the in 

silico webs against the total number of species, S, at the end of the simulation (Fig. 2b). Real 

webs are scattered within the two limits given by the linear L ~ S and square scaling L ~ S2 

bounds, as for our modelled networks (grey circles). As shown in the Supplementary 

Information, the topological version of this speciation-divergence scheme allows for an 

analytical prediction of the scaling bounds L ~ Sσ, with the constraint 1 < σ < 2.

The previous scaling only represents a first level of analysis that ignores the underlying 

network. Peering deeper into its internal structure, let us study the distribution of 

connections. Allow the frequency of (any) species with a given number of links k to be 

denoted by P(k). Available data show that mutualistic webs display degree distributions that 

can be properly described by a truncated power law27: P(k) ~ k−γexp(−k/kc), where γ is the 

exponent that indicates how rapidly the distribution falls at small k and kc—a cut-off that 

effectively limits the spread of the distribution36. The larger kc is, the flatter the distribution 

and the higher the presence of highly connected species. In Fig. 2c, we represent the data 

collapse for every generated graph under the ansatz of a truncated power law distribution, 

following ref. 27. Also, we show (inset) the cumulative degree distribution P>(k) for each 

system. Different colours indicate different networks. This method allows for a size-

independent check on the structural features of the emerging bipartite networks, illustrating 

the robustness of our scaling ansatz.

These results are indicative of heterogeneity as a consequence of speciation-divergence 

phenomena, as suggested by previous studies19, but in this case applied to a bipartite 

system. Additionally, it is well known that the distribution of weights also decays in a 

broadscale shape, with a characteristic scaling exponent close to one. Our results are fully 

consistent with this prediction, as shown in Fig. 2d, where we plot the histogram of weights 

for all our sets. The logarithmic plot (inset) shows the cumulative probability distribution of 

weights.

Correlations and asymmetries

The previous results indicate that our model is capable of reproducing the distributions of 

connections, but there are several non-trivial ways in which the weighted network can be 

organized and, in particular, how different features are correlated. The use of a weighted 

network provides relevant information about its local and global organization40–42 and was 

early identified as an essential feature of mutualistic interactions43. In general, a scaling law 

relates strength and degree,

s k ∼ k
η, (1)

where the exponent η establishes the nature of the correlation. For a randomly distributed set 

of weights, it can be shown that a linear relation (η = 1) exists. If the importance of a given 

node in the network is lower than predicted by its degree, we would observe η < 1. In 

mutualistic webs, a superlinear behaviour is found (that is, η > 1), indicating that species 
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with many connections tend to display stronger interactions than average8. Specifically, an 

exponent ηmut ≈ 1.45 has been reported for mutualistic nets42. In Fig. 3b, we display the 

distribution of exponent values η for a the subsample of generated networks with S > 100. 

Its corresponding mean value is ηmodel = 〈η〉 = 1.50, a result compatible with the measured 

exponent. Figure 3a shows an example of a single system adjust between strength and 

degree.

Along the lines of correlation between strength and degree, it has also been reported that 

weights are strongly asymmetrical8. The distribution N(ϕ) of asymmetry is strongly biased 

towards higher values of ϕ. The results of our model are shown in Fig. 3c,d. Additionally, 

Fig. 3c shows how the frequency rapidly grows for ϕ > 0.5, thus revealing a skewed increase 

for higher levels of asymmetry, as reported from real webs. These two measures match the 

observed low frequency of string dependences along with their marked asymmetry and 

heterogeneity. Although the ecological consequences can be interpreted under a 

coevolution–selection picture8, our model challenges the generality of this approach.

Nestedness

A final, ubiquitous pattern to be considered here is nestedness, which can be described as the 

tendency of low-degree species to interact with a subset of highly connected species. Once 

again, the standard interpretation of nestedness is tied to the likelihood of the underlying 

interactions. The traditional analysis of nested graphs uses topological matrices, which only 

account for the presence or absence of links. These matrices are typically nested, but, as 

pointed out by Staniczenko et al. 16, a better characterization of these webs using link 

weights reveals that only a small fraction of them exhibit nestedness16, thus suggesting that 

a truly meaningful measure requires considering a weighted interaction matrix.

Edges in a nested network are organized in such a way that specialists interact with a subset 

of the species whom generalists interact with. This nested pattern can be detected in the 

specific arrangement of present and absent interactions in bipartite networks. This definition 

was extended to quantitative networks using spectral graph theory16. In Fig. 4b, the spectral 

radius is displayed against the number of species for our large set of m = 4, 000 generated 

mutualistic webs. The cloud of points (coloured dots) scatters around the predicted scaling 

exhibited by a random graph (see Supplementary Information), where the spectral radius 

follows ρrand(ω) ~ S−1/2. The plot also shows the position of the real webs (open circles), 

which are shown to fit well within the bounds exhibited by our in silico data set.

For the in silico webs, the Z-score associated with the nestedness estimation has also been 

displayed by means of a colour scale to provide an assessment of its statistical significance. 

In general, statistical significance increases with degree, as expected from the impact of 

heterogeneity, which grows with network size. Webs with low S values are instead closer to 

the low-Z (blue) area. These graphs typically fail to display high connectivity and often 

exhibit tree-like features. The mutualistic network benchmark falls within the bounds 

defined by the in silico data set. In both cases, the graphs display higher ρ values as the 

number of species increases.
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Discussion

This paper introduces a model of the large-scale evolution of mutualistic webs. This model 

involves only the minimal components related to the formation of new species through 

speciation and divergence (under constraints) of weights over evolutionary time. Despite its 

simplicity, the model is capable of consistently reproducing several well-known structural 

patterns of organization, suggesting that the generative rules responsible for network growth 

largely determine the presence of universal traits in empirical systems.

The model presented here does not stand alone in trying to explain the emergence of 

complex mutualistic networks. In ref. 44, the authors show that nestedness and 

heterogeneous degree distributions emerge from an optimization principle that maximizes 

species abundances. Their model, however, works over ecological time scales, whereas the 

question we pose here is to what extent simple evolutionary models can account for 

observed structural patterns. In this respect, Nuismer et al.45 developed a quantitative 

genetic model that allows inference of network structure over evolutionary time. Their 

model was far more complex that the one presented here, yet emerging networks were only 

more nested than their random counterparts under very restrictive conditions: species 

interactions should be mediated by phenotype differences and coevolutionary selection 

should be weak. In the remaining cases, resulting networks were either not nested or anti-

nested.

Our speciation-divergence rules belong to the broad class of duplication-rewiring models 

known to indirectly incorporate a preferential attachment rule, since duplication events are 

likely to increase the number of connections of those nodes that already have higher degrees. 

This rule is known to generate heterogeneous graphs46. Once heterogeneous distributions 

arise, other features emerge 'for free'. Nestedness in particular seems to be a consequence of 

broad connectivities47,48.

Additionally, our model incorporates evolutionary rules of speciation and drift that naturally 

provide a mechanism to explain the properties found in mutualistic webs. As it does not 

include the population size associated with each species nor the nonlinear dynamics of 

ecological interactions, our results suggest that the ecological scale plays a minor role in 

shaping the architecture of mutualistic webs. Instead, the universal constraints associated 

with the evolutionary unfolding of these webs would lead to the observed invariant 

properties. However, the advantages provided by these networks, such as robustness and 

evolvability, can be of great relevance at other scales. Tinkering can work as a bootstrapping 

process leading to population-level advantages that might, in turn, be the target of selection. 

Future work should further explore these mechanisms and their applicability to other types 

of webs; for example, networks involving both mutualistic and antagonistic interactions7,9. 

An interesting candidate in this respect is the microbiome, which also exhibits complex 

ecological networks49 and marked similarities with standard ecosystems, suggesting again 

the presence of universal rules50. Given their potential for tracing evolutionary histories and 

their shorter evolutionary time scales, these systems will prove to be a useful test to some of 

the ideas described here.
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Methods

Evolutionary rules

A bipartite graph G = (A, P, {ωij}) involving the two subsets of nodes A(t) and P(t) 

represents the animals and plants at a given evolutionary time step t. We define the 

quantitative effect of animals on plants through a matrix ωij = ω(Ai → Pj), which indicates 

the strength of the interaction between both partners and vice versa. The evolutionary 

dynamics of the graph is defined by speciation and divergence.

Speciation—We choose a given species Ai or Pj and create a speciation event. The new 

species inherits exactly the same list of links from its parent species. If Ak indicates the 

newly created species, we have ωkj = ωij for all j = 1, ..., |P|.

Divergence—We redistribute the weights between parent and daughter species. A random 

number 0 < μ < 1 is generated and each pair of links {ωkj, ωij} is updated to a new pair 

{μωkj, (1−μ)ωij}. Additionally, for each link, we introduce, with a given probability p, a 

weight change; that is, we have a new value ωij → ωij + ξ being −β < ξ < β a small random 

number. Here, the parameter β weights how fast evolutionary changes occur at the level of 

single ecological links. If ωij falls below a threshold θ, it is removed. Finally, a maximum 

input weight is allowed for all plants. Specifically, if the sum ϕ(Pj)= ∑i ωij over all animals 

acting on the plant Pj is larger than one, the change is not accepted. A symmetrical rule is 

used to constrain the links in the P → A direction. As a consequence of the threshold rule, 

species become extinct when no mutual support is present (that is, when ∑j ωji = 0).

Numerical simulations

Our aim was to sample the parameter space defined by the space (P, β) with no other 

adjustment of our parameters. A set of m = 4, 000 simulated random bipartite grown graphs 

was generated from randomly chosen pairs (P, β) with P ∈ (0, 1) and β ∈ (10−4, 10−1, 

respectively, using a uniform distribution. Lower values of β can be used, but their single 

effect is to slow down the rate of network evolution, not the final outcome. The same applies 

for the θ parameter, which leads to very similar results for a wide range, only leading to 

significant changes for very high (and probably unrealistic) values. Given the wide 

variations in the parameters, a broad range of network sizes was generated, from very small 

to a maximum size of S ~ 200 species.

Weighted network properties

We compared different properties measured in empirical and synthetic networks. The 

aggregated strength of the nodes is defined as the sum of all the dependencies in both link 

directions; that is, s
i

= ∑ j = 1

N
i

ω
i j

+ ω
ji

, where Ni indicates the number of interactions with 

other species. Asymmetry is calculated following ref. 8. If ωij and ωji are the links 

connecting the two elements Ai and Pj in the two possible directions, we define the 

asymmetry ϕ(i, j) of the pair as:
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ϕ i, j =
ω

i j
− ω

ji

max ω
i j

, ω
ji

,

which takes values within the range 0 ≤ ϕ(i, j) ≤ 1.

Nestedness based on the spectral radius

Nestedness is computed over the square S × S matrix ω (see Fig. 4a), where S = SA + SP is 

defined as:

ω =

0 ωSA × SP

ωSP × SA
0

, (2)

where mutualistic interactions ω = [ωij] describe a block off-diagonal form. The eigenvalues 

of this matrix, {λk}(k = 1, ..., S), can be systematically calculated. In particular, it has been 

shown16 that the perfectly nested graph is associated with the so-called spectral radius ρ(ω), 

which is defined as:

ρ ω = max λ1 , …, λS , (3)

that is, the largest eigenvalue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mutualistic webs and how to model their evolution.

a, Mutualistic networks are bipartite graphs involving two types of interacting species, such 

as plants (P) and animals (A). Each link in the graph indicates the existence of an ecological 

link, such as a frugivore–plant interaction. b, For each pairwise interaction between species i 

and j, we can obtain two values of mutual dependency: d
ji
A for the dependence of the animal 

species j on plant species i (orange arrow), and d
i j
P  for the dependence of plant species i on 

animal species j (blue arrow). The arrows point to the intrinsic direction of the 

corresponding dependence. If the strength of this interaction is known, the resulting web is 

weighted. In this case, directional connections need to be considered. The strength might be 

estimated, for example, by the number of encounters among the members of the pair over a 

given time window. c, The structure of the interaction matrix resulting from this bipartite 

graph can be arranged in such a way that node labels are assigned in descending order of 

degree. d, A simple evolutionary model can be defined by means of a set of duplication-

divergence rules. Here, the graph starts with SA = 3 (upper) and SP = 2 (lower) species, 

respectively. Speciation can affect either the A or the P sets with probabilities πA and πP, 

respectively. e, Each time a new species is added, the daughter species inherits all its 

interactions. f, Afterwards, the network experiences a divergence (D) affecting the weights 

and links.
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Fig. 2. Connectivity patterns in evolved in silico mutualistic webs.

a, A typical sequence of growing in silico networks with size S = 20, 40, 80 showing a 

nested pattern that becomes more manifest with time. Here the parameters are β = 10−5, P = 

0.1 and θ = 10−6 (pace of evolutionary change, probability of weight change and link 

removal threshold, respectively). b, Pattern of links–species relationships. The grey dots 

indicate the (S, L) pairs for each of the m = 4, 000 simulated networks, evolved over T = 500 

steps, generated using randomly chosen pairs (p, β). Here, P ∈ (0, 1) and β ∈ (10−4, 10−1). 

The black dots correspond to our benchmark data and the straight lines provide the limits 

associated with a purely linear L ~ S and the square L ~ S2 limits, consistent with the 

mathematical model provided in the Supplementary Information. c, Series of simulated 

sequences, each of which is collapsed under the truncated power law scaling, P(k) ~ k
−γexp(−k/kc). The inset shows the cumulative (undirected) degree distribution P>(k) of these 

graphs (for all simulated networks with S > 100) in a log–log plot (to be compared with real 

webs; see Supplementary Fig. 2). d, Corresponding distribution of link weights aggregated 

over all our systems, shown in both linear and double logarithmic (inset) plots. The fat tail is 
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difficult to see from the N(ω) frequency histogram, but is clearly observed in the cumulative 

form in the log scale. Here too, a truncated power law is found.
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Fig. 3. Higher-order correlations and network asymmetries.

a, Scaling behaviour displayed by the strength–degree distribution for a single system. The 

adjusted exponent for this particular system gives η = 1.49. b, Distribution of exponents, 

P(η), for a subsample of 426 connected graphs with sizes S > 100. The average value for this 

distribution gives 〈η〉 = 1.50, which is consistent with the available data42. c, Frequency 

distribution of asymmetry values ϕ(i,j) between the two possible directed weights connecting 

a pair (i,j) of species. If we indicate these two values as ωij and ωji, the asymmetry of this 

pair is defined as ϕ(i, j) = ω
i j

− ω
ji

/max ω
i j

, ω
ji

. The frequency of pairs gives an 
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asymmetric distribution that is strongly skewed towards higher ϕ values. d, This asymmetry 

is also displayed in a log–log scale, markedly growing for ϕ > 0.5 values, as found in real 

webs8.
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Fig. 4. Nested evolved networks.

The networks generated by the rules described in the main text display nested structures. 

Nestedness in these weighted graphs is estimated by means of the spectral radius of the 

squared weighted matrices, ω, generated by the model16. a, An example of the matrices 

obtained from our digital mutualistic webs. b, The spectral radius ρ(ω) value has been 

calculated using the full sample of m = 4, 000 networks and plotted against their 

corresponding number of species S. The open circles correspond to a total of 25 real 

network data points (see Supplementary Information for sources). The line corresponds to 

the prediction for the random model, which follows from Wigner’s semi-cirle law (see 

Supplementary Information). The colour scale gives the corresponding Z-score (see 

Supplementary Information for details of the calculation).
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