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Abstract: This paper considers some fundamental questions concerning marginally
trapped surfaces, or apparent horizons, in Cauchy data sets for the Einstein equation.
An area estimate for outermost marginally trapped surfaces is proved. The proof makes
use of an existence result for marginal surfaces, in the presence of barriers, curvature
estimates, together with a novel surgery construction for marginal surfaces. These results
are applied to characterize the boundary of the trapped region.

1. Introduction

Trapped and marginally trapped surfaces play a central role in the analysis of spacetime
geometry. By the singularity theorems of Hawking and Penrose [HE73], a spacetime
which satisfies suitable energy and causality conditions, and which in addition contains
a trapped surface, must contain a black hole. Marginally trapped surfaces, or apparent
horizons, serve as the quasi-local version of black hole boundary. In numerical general
relativity, they are used as excision surfaces for the evolution of black hole initial data,
and approximations to physical characteristics of a black hole such as linear and angular
momentum [KLZ07,CLZ+07] can be calculated in terms of data induced on the apparent
horizon.

We briefly recall some basic facts. A two dimensional spacelike surface � in a
4-dimensional Lorentzian spacetime has, up to normalization, two future pointing null
normals. We designate one of these, �+, the outward pointing, and the other �−, the inward
pointing null normal. Corresponding to �± we have the null mean curvatures or null
expansions θ±. Let (M, g, K ) be a Cauchy data set containing �. Then θ± is given by

θ± = P ± H,
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where H is the mean curvature of � in M with respect to the outward pointing normal,
and P = tr� K , the trace of the projection of K to�. The surface� is said to be (future)
trapped if θ± < 0, and (future) marginally trapped if θ− < 0, while θ+ = 0. If θ+ < 0
or θ+ > 0, with no condition imposed on θ−, then � is called outer trapped or outer
untrapped, respectively. Finally, if the condition θ+ = 0 holds, with no further condition
on θ−, then� is called a marginally outer trapped surface, or MOTS. We will explicitly
review notation and further conditions needed on (M, g, K ) in Sect. 2.

From a mathematical point of view, MOTS are the natural generalization of min-
imal surfaces to a Lorentzian setting, see the discussion in [AM05]. In particular, in
the case of time-symmetric Cauchy data, where K ≡ 0, a MOTS is a minimal sur-
face. However, a fundamental difference between minimal surfaces and MOTS, is that
MOTS are not stationary with respect to an elliptic functional. In spite of this, there is a
notion of stability for MOTS analogous to the notion of stability for minimal surfaces,
cf. [AMS05,AMS07]. Although the stability operator in the case of MOTS fails to be
self-adjoint, many of the results and ideas generalize from the case of stable minimal
surfaces to the case of stable MOTS. In particular, a curvature estimate, generalizing the
classical result of [SSY75] was proved in [AM05] for the case of stable MOTS.

The so-called Jang’s equation [Jan78] is closely related to the equation θ+ = 0. Both
are prescribed mean curvature equations, where the right hand side depend on the nor-
mal. A careful study of Jang’s equation is a crucial ingredient in the positive mass proof
of Schoen and Yau [SY81]. Among other things, their argument makes use of the fact
that the boundary of the blowup set for Jang’s equation consists of marginal surfaces.
This means that the question of existence of MOTS may be approached by studying
the existence of blowup solutions to Jang’s equation. This observation was used by Yau
[Yau01] to give a criterion for a Cauchy data set to contain a marginal surface.

A consequence of the fact that MOTS are not critical points for a variational principle
is that the familiar barrier arguments for the existence of minimal surfaces do not gen-
eralize to MOTS. However, as was pointed out by Schoen in a talk given at the Miami
Waves conference in 2004 [Sch04], the fact that blowup surfaces for Jang’s equation are
marginal surfaces actually provides a result which replaces the above mentioned barrier
arguments.

Theorem 1.1. Let (M, g, K ) be a Cauchy data set. Assume that M is compact with
two boundary components, an inner and an outer boundary and assume that the inner
boundary is outer trapped and the outer boundary is outer untrapped. Then M contains
a stable MOTS.

This theorem follows from Schoen’s original result, stated as Theorem 3.1 and a closer
analysis of the blow-up surface, cf. Theorem 4.1. Unfortunately, a proof of Theorem 3.1
has not been published. In Sect. 3 we therefore prove this result in detail, since it is
crucial for the results in this paper.

We wish to remark here that if the ambient manifold is asymptotically flat with appro-
priate fall-off conditions, then spheres near infinity will be untrapped and can serve as
outer barriers in Theorem 1.1.

Starting from the curvature estimates for MOTS mentioned above, it is easy to show
that the set of all stable marginally trapped surfaces in a compact region is compact,
given a uniform estimate for the area. However, such an estimate cannot be expected to
hold in general. Examples due to Colding-Minicozzi and others [CM99,Dea03] show
that for each genus g ≥ 1 there is an example of a compact three dimensional mani-
fold containing a sequence of stable minimal surfaces of genus g with unbounded area.
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Recalling that minimal surfaces are MOTS in the special case K = 0, this shows that
an a priori area estimate for MOTS requires further conditions.

If we consider surfaces minimizing area in a given homology class, on the other hand,
there is no need to prove an area bound to obtain compactness, as one can assume that
the area is bounded by the area of any comparison surface. For the case of MOTS, the
appropriate analogue of a minimizing surface is an outermost MOTS. We say that a
MOTS � is outermost in M if there is no other MOTS in the complement of the region
which � bounds with a, possibly empty, inner boundary. In this respect, the main result
of this paper, cf. Theorem 6.5 is an area estimate for the outermost MOTS.

Theorem 1.2. There exists a constant C which is an increasing function of‖M Rm‖C0(M),
‖K‖C1(M), injρ(M, g, K ; ∂M)−1, and Vol M such that the area of an outermost MOTS
� satisfies the estimate

|�| ≤ C.

The quantity injρ(M, g, K ; ∂M) is explained in Definition 2.8.

This result does not require the MOTS to be connected. Thus, in combination with the
curvature estimate for stable MOTS we infer an estimate for the number of components
of the outermost MOTS.

Note, even for outward minimizing surfaces the above bound does not actually follow
from the variational principle, as it does not refer to the area of a comparison surface. In
this respect our area estimate is related to the area estimate in [NR06] for minimizing
minimal surfaces in terms of volume and the homologial filling functions of the ambient
manifold, which must have simple enough homology.

To put Theorem 1.2 into perspective, recall that the Penrose inequality is a conjec-
tured relation between the ADM mass and the area of the horizon. For a general Cauchy
data set, the exact statement of the Penrose inequality is a subtle issue. Although, the
area estimate stated in Theorem 1.2 holds for outermost MOTS, a counterexample due
to Ben-Dov [BD04] shows that an inequality between the area of the outermost MOTS
and the ADM mass does not hold in general.

One of the main steps in the proof of Theorem 1.2 is a surgery argument, which is
given in Sect. 6. This argument constructs, given a stable MOTS � with sufficiently
large area and an outer barrier surface, another stable MOTS outside �. The two main
steps in the argument is to show, using the curvature estimate, that given a stable MOTS
with sufficiently large area, it is possible to glue in a neck with negative θ+, thereby
constructing a �′ outside � with θ+ ≤ 0. Together with Theorem 1.1 this yields a
contradiction to the assumption that � is outermost.

The surgery argument may also be used to give a replacement for the strong max-
imum principle for outermost MOTS. It should be noted that for general MOTS, the
strong maximum principle does not apply in general, in particular it can not be used to
rule out that a surface touches itself in points where the normals of the two touching
pieces point into opposite directions. This is exactly the situation which we can address
with the surgery argument.

Combining the above area estimate for outermost MOTS and the curvature estimate
of [AM05] yields, as already mentioned, a compactness result for the class of outermost
MOTS in a compact region. Using this fact in combination with the surgery technique
discussed above enables us to give a characterization of the boundary of the trapped
region.
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The outer trapped region is the union of all domains bounded by a weakly outer
trapped surface and the, possibly empty, interior boundary of the initial data set. It
has been proposed by several authors that the boundary of the outer trapped region
is a smooth MOTS. However, the arguments put forth to prove this, see for example
[HE73,KH97], relied on strong extra assumptions such as a piecewise smoothness of
the boundary. Using the techniques developed in this paper we are able to settle this
problem completely.

Theorem 1.3. The boundary of the outer trapped region is a smooth outermost MOTS.
Furthermore, it is the unique outermost MOTS.

The boundary of the outer trapped region is defined and examined in Sect. 7, where
Theorem 7.3 is proved, a more precise version of Theorem 1.3. The main idea here is
that barrier constructions using a smoothing result from Kriele-Hayward [KH97], cf.
Lemma 2.14, and Theorem 5.1 can be used to prove a replacement for the maximum
principle for outermost MOTS. Together with the compactness properties for stable
MOTS, and the area estimate for outermost MOTS, this gives the result.

Although the presentation here is restricted to the n = 3 dimensional case, most of
the techniques proposed generalize to higher dimensions. The points which need to be
addressed in the higher dimensional case are regularity issues for Jang’s equation, cf.
Remark 3.2, and the a priori curvature estimates for stable MOTS used in the surgery
procedure of Sect. 6. See [Eic07] for a treatment of these issues in the higher dimensional
case.

2. Preliminaries

An initial data set for the Einstein equations is a 3-dimensional Riemannian manifold
(M, g) together with a symmetric two-tensor K representing the second fundamental
form of M viewed as a Cauchy hypersurface in a four dimensional spacetime. In this
paper we will not make further use of the spacetime geometry and in particular, energy
conditions or constraint equations on (g, K ) are not needed for this paper.

A surface in M is called two-sided if its normal bundle is orientable, i.e. if it is possi-
ble to choose a globally defined normal. As there are two such choices we will assume
that there is one distinguished direction which we call the outer normal. We will denote
this outer normal vector field by ν.

Given a two-sided surface � in M , we denote its second fundamental form, defined
with respect to its outer normal ν, by A. Further, we denote by H, P the mean curvature,
H = �div ν, and the trace of K� = K |T� along �, P = � trK� , respectively. The
outward null expansion of � is the quantity θ+ = P + H and the inward null expansion
is θ− = P − H . The null expansions θ± are the traces of the null second fundamental
forms χ± = K� ± A.

Definition 2.1. A smooth, embedded, compact, two-sided surface � is a marginally
outer trapped surface (MOTS) if θ+ = 0 on �.

Unless otherwise stated, we shall consider data sets (M, g, K ) with the following prop-
erties. We assume M is a compact manifold with boundary ∂M such that ∂M = ∂−M ∪
∂+ M is the disjoint union of a possibly empty inner boundary ∂−M , which we endow
with the normal vector field pointing into M and the non-empty outer boundary ∂+ M
which we endow with the normal vector field pointing out of M . We assume the outer
boundary is a barrier, i.e. θ+[∂+ M] > 0. All fields are assumed to be smooth up to
boundary.



The Area of Horizons and the Trapped Region 945

Definition 2.2. We say that � bounds a region 	 ⊂ M with respect to ∂+ M, if the
boundary ∂	 is the disjoint union ∂	 = � ∪ ∂+ M.

In this case, the normal pointing into 	 will be used as the outer normal for �.

Note that if � bounds with respect to ∂+ M , then � is homologous to ∂+ M .
For the existence results, Theorems 3.1 and 5.1, we need a non-empty ∂−M with

θ+[∂−M] < 0 as inner barrier surface. On the other hand, for the area bound, Theo-
rem 6.5, and Theorem 7.3, which shows regularity of the trapped region, we allow ∂−M
to be empty, and assume that ∂−M is a weak barrier, θ+[∂−M] ≤ 0, if nonempty.

Definition 2.3. If (M, g, K ) is as before, with ∂−M possibly empty, then an outermost
MOTS is a MOTS� which bounds a region	 with respect to ∂+ M as in Definition 2.2
with the following properties. If �′ is a MOTS bounding a set 	′ with respect to ∂+ M
with 	′ ⊂ 	, then 	′ = 	.

We recall the strong maximum principle for MOTS. Note that it is only valid if two
surfaces touch with the normals pointing in the same direction, as the surfaces have to be
oriented the same way to use the maximum principle for quasilinear elliptic equations
of second order [AG05,GT98].

Proposition 2.4. Let (M, g, K ) be an initial data set and let �i ⊂ M, i = 1, 2 be two
connected C2-surfaces touching at one point p, such that the outer normals of�i agree
at p. Assume furthermore that �2 lies to the outside of �1, that is in the direction of its
outer normal near p, and that

sup
�1

θ+[�1] ≤ inf
�2
θ+[�2].

Then �1 = �2.

If θ+[∂−M] < 0 and θ+[∂+ M] > 0 then by continuity the parallel surfaces to ∂±M , i.e.
the level sets of the distance dist(·, ∂±M), will satisfy the same inequality if the distance
is sufficiently small. For later use we formalize this in the following definition.

Definition 2.5. Assume θ+[∂−M] < 0 and θ+[∂+ M] > 0. Denote by �±
s the parallel

surface to ∂±M at distance s. Let

ρ+(M, g, K ; ∂+ M) := sup
{
s : �+

s is smooth, embedded and θ+[�+
s ] > 0

}

and

ρ−(M, g, K ; ∂−M) := sup
{
s : �−

s is smooth, embedded and θ+[�−
s ] < 0

}
,

where we set ρ−(M, g, K ; ∂−M) = ∞ if ∂−M = ∅. Let

ρ(M, g, K ; ∂M) := min
{
ρ+(M, g, K ; ∂+ M), ρ−(M, g, K ; ∂−M)

}
.

Note that ρ(M, g, K ; ∂M) only depends on the geometry of (M, g, K ). In fact we have

Lemma 2.6. Assume θ+[∂−M] < 0 and θ+[∂+ M] > 0. Let ‖A‖C0(∂M) be the norm of
the second fundamental form of the boundary. There is a constant C depending only on
inf∂M |θ+[∂M]|, ‖K‖C1(M), ‖M Rm‖C0(M), and ‖A‖C0(∂M) such that

ρ(M, g, K ; ∂M)−1 ≤ C.



946 L. Andersson, J. Metzger

The significance of Definition 2.5 lies in the following lemma, which is an immediate
consequence of the strong maximum principle.

Lemma 2.7. If (M, g, K ) is as before, with ∂−M possibly empty, and � ⊂ M is a
smooth MOTS homologous to ∂+ M, then

dist(�, ∂M) ≥ ρ(M, g, K ; ∂M).

Later, we will need the injectivity radius of (M, g), restricted to MOTS. By the pre-
vious lemma these surfaces cannot enter a collar neighborhood of ∂M if ∂M is a bar-
rier, and thus we only need to consider the injectivity radius of points at least distance
ρ(M, g, K ; ∂M) away from ∂M .

Definition 2.8. For p ∈ M let inj(M, g; p) be the injectivity radius of (M, g) at p. Then
denote

injρ(M, g, K ; ∂M) := inf {inj(M, g; p) : dist(p, ∂M) ≥ ρ(M, g, K ; ∂M)}.
Let � be a MOTS and let F : � × (ε, ε) → M be a normal variation of �, that is

F(·, 0) = id� and ∂F
∂s

∣
∣
s=0 = f ν for a function f ∈ C∞(�). Then the variation of θ+

at � is given by the operator

∂θ+[F(�, s)]
∂s

∣
∣
∣
∣
s=0

= L M f

= −�
� f +2S(�∇ f )+ f

(
�divS− 1

2 |χ+|2−|S|2+ 1
2
�Sc−µ−J (ν)

)
.

Here �
�, �∇ and �div are the Laplace-Beltrami operator, the tangential gradient and

the divergence along �. Furthermore S(·) = K (ν, ·)T , where (·)T denotes orthogonal
projection to T�. �Sc is the scalar curvature of�, µ = 1

2

(M Sc − |K |2 + (tr K )2
)
, and

J = div K − d(tr K ). This operator is not self-adjoint. However, the general theory
for elliptic operators of second order implies that L M has a unique eigenvalue λ with
minimal real part. This eigenvalue is real, and the corresponding eigenfunction does
not change sign. It is called the principal eigenvalue of L M . In [AMS05,AMS07] the
following notion was introduced:

Definition 2.9. A MOTS is called stable if the principal eigenvalue of L M is non-nega-
tive.

A strictly stable MOTS, that is with λ > 0, can be deformed in the direction of
the outer normal such that θ+ > 0 on the deformed surfaces. To see this simply use
the principal eigenfunction with the positive sign as the lapse of a normal deformation.
Analogously, unstable surfaces can be deformed in the direction of the outer normal
such that θ+ < 0 on the deformed surface.

For a further discussion on stability see [AMS05,AMS07,AM05]. We shall need
Theorem 1.2 from [AM05].

Theorem 2.10. Suppose � is a stable MOTS in (M, g, K ) homologous to ∂+ M. Then
the second fundamental form A satisfies the inequality

‖A‖∞ ≤ C
(
‖K‖C1(M), ‖M Rm‖C0(M), injρ(M, g, K ; ∂M)−1

)
.
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Note that in the reference [AM05] this theorem is proven for M without boundary.
The same method gives the estimate where the dependency inj(M, g) in the original
statement is replaced by injρ(M, g, K ; ∂M), as this is the quantity which needs to be
controlled to apply the Hoffman-Spruck Sobolev inequality.

Subsequently we denote by B M
r (O) the open ball in M with radius r around O , and

by B�r (p) the intrinsic open ball in �.
Let M be as above and let � ⊂ M , be a compact smooth embedded two-sided

surface, and let G� be the normal exponential map of �:

G� : � × (−dist(�, ∂M), dist(�, ∂M)) → M : (p, r) → expM
p (rν), (2.1)

where expM
p : Tp M → M is the exponential map of M at p. Locally G� is injective and

well behaved, this is the content of the following well-known lemma. We shall focus
on the local outer injectivity in the following sense. We denote by inj(M, g;�) the
injectivity radius on (M, g) restricted to �.

Lemma 2.11. If � ⊂ M is as above with bounded curvature, there exists 0 < i+
0 (�) <

inj(M, g;�), depending only on inj(M, g;�), ‖M Rm‖C0 , and sup� |A|, such that for
all x ∈ � the map

G� |B�
i+
0 (�)

(x)×[0,i+
0 (�))

: B�i+
0 (�)

(x)× [0, i+
0 (�)) → M

is a diffeomorphism on its image, and such that the sheets

�s
x,i+

0 (�)
:= G�

(
B�i+

0 (�)
(x), s

)

are discs with bounded curvature sup�s |A| ≤ 2 sup� |A|, for s ∈ [0, i+
0 (�)).

This lemma reflects the local well-behavedness of the distance surfaces to �, in par-
ticular including the curvature bound. In contrast the next definition aims at the global
behavior. Again, we only focus on the outward injectivity.

Definition 2.12. The outer injectivity radius of � is

i+(�) := sup
{
δ : G� |�×[0,δ) → M is injective

}
.

It is intuitively clear that if i+(�) is smaller than i+
0 (�), then the surface nearly meets

itself on the outside. A precise formulation is given by the following lemma.

Lemma 2.13. Let � be a compact, embedded and two-sided surface with i+(�) <
1
2 i+

0 (�). Then there exist two points p, q ∈�with M dist(p, q)=2i+(�)but�dist(p, q)≥
i+
0 (�) > 2i+(�).

The points p and q can be joined by a geodesic segment γ in M, which is orthogonal
to � at p and q and as a set

γ = G� |B�
i+
0 (�)

(p)×[0,i+
0 (�))

(p, [0, 2i+]) = G� |B�
i+
0 (�)

(q)×[0,i+
0 (�))

(q, [0, 2i+]).

Proof. From the definition of i+ we know that

G�(·, i+(�)) : � → M

is not injective. Thus there exist two points p, q ∈ � which map to the same point
O ∈ M . By Lemma 2.11 �dist(p, q) ≥ i+

0 (�). Furthermore O has distance i+(�) to
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Fig. 1. A surface that nearly meets itself

� and to p, q so dist(O, �) = dist(O, p) and hence the geodesic segment γp joining
O to p is perpendicular to �. Similarly the geodesic segment γq joining O and q is
perpendicular to�. Thus dist(p, q) ≤ 2i+(�). If dist(p, q) < 2i+(�) then there would
be a parallel surface to � at distance d < i+(�) which intersects itself, which is not
possible as G�(·, d) is injective. Thus dist(p, q) = 2d and γp and γq must form a
smooth geodesic, as otherwise the angle at O could be smoothed out to yield a shorter
geodesic. ��

Figure 1 shows the situation in the lemma. It follows from the definition of i+(�)

that the points p, q minimize the distance between the sheets B�i+
0 (�)

(p) and B�i+
0 (�)

(q),

and hence γ is orthogonal to � at p and q. In addition γ does not intersect � in any
other points except p and q. If we parameterize γ by arc length as a curve joining p
to q, the tangent to γ at p coincides with the normal ν to�. Similarly, with γ arc length
parameterized as a curve joining q to p, the tangent to γ at q coincides with the normal
ν to � at q. This means that γ lies completely on the outside of �.

For later reference, we need the following smoothing result from [KH97, Lemma 6].

Lemma 2.14. Let �1, �2 ⊂ M be smooth two-sided surfaces which intersect trans-
versely in a smooth curve γ . Let νi be the outer normals of �i , i = 1, 2. Choose one
connected component �± of each set �i\γ such that in a neighborhood of γ the piece
�− lies in the outside of �1 and the piece �+ in the outside of �2. Then for any neigh-
borhood U of γ there exists a smooth surface� and a continuous and piecewise smooth
bijection � : �+ ∪�− ∪ γ → � such that

(1) �(x) = x for all x ∈ (�+ ∪�−)\U,
(2) (�+ ∪�−)\U = �\U, and
(3) θ+[�](x) ≤ θ+[�+](x) for x ∈ �+ and θ+[�](x) ≤ θ+[�−](x) for x ∈ �−.

Moreover� lies in the connected component of U\(�+ ∪�− ∪ γ ) into which the outer
normals ν± of �± point.

Briefly stated, this procedure works by replacing the inward corner near γ by a smooth
patch with θ+ very negative. The reason why this procedure works is that the corner is
a concentration of negative mean curvature, that is negative θ+.
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3. Existence of MOTS

This section is devoted to a proof of Schoen’s existence theorem for MOTS [Sch04] in
the presence of barrier surfaces.

Theorem 3.1. Let (M, g, K ) be a smooth, compact initial data set with ∂M the disjoint
union ∂M = ∂−M ∪ ∂+ M such that ∂±M are non-empty, smooth, compact surfaces
without boundary and θ+[∂−M] < 0 with respect to the normal pointing into M and
θ+[∂+ M] > 0 with respect to the normal pointing out of M. Then there exists a non-
empty, smooth, embedded MOTS � homologous to ∂+ M.

Remark 3.2. The proof presented here readily carries over to n dimensional M with
3 ≤ n ≤ 5. The dimensional restriction is due to the method used for the curvature
estimates in Proposition 3.3 in [SY81]. Higher dimensional replacements for this prop-
osition are accessible via methods from geometric measure theory, cf. [Eic07].

3.1. Setup and outline. Consider M̄ := M×R equipped with the metric ḡ = g+dz2, and
define K̄ on M̄ as the pull-back of K under the projectionπ : M×R → M : (p, z) → p.
For a function f on M we consider N = graph f := {(p, f (p)) : p ∈ M}, with induced
metric ḡ, which is of the form

ḡi j = gi j + ∇i f ∇ j f, ḡi j = gi j − ∇ i f ∇ j f

1 + |∇ f |2 .

The mean curvature of N with respect to the downward normal is

H[ f ] = div

(
∇ f

√
1 + |∇ f |2

)

.

Furthermore let

P[ f ] = trN K̄

be the trace of K̄ taken along N . Now we can write Jang’s equation as

J [ f ] = H[ f ] − P[ f ] = 0. (3.1)

We shall consider the Dirichlet problem for this equation with boundary values f
∣
∣
∂± M =

∓Z , for constants Z > 0.
Equation (3.1) is a quasilinear elliptic equation of divergence form. In particular, it

is a prescribed mean curvature equation with gradient dependent lower order term. For
such equations the strong maximum principle does not apply directly to give upper and
lower bounds for the solution, without assuming extra conditions for example on the size
of the domain. Further, the boundary gradient estimates needed for the proof of exis-
tence of classical solutions typically require restrictions on the geometry of the boundary.
Therefore we cannot prove existence of solutions to the Dirichlet problem directly for
Eq. (3.1). In general it is to be expected that solutions to the Dirichlet problem blow up
in the interior.

We follow the approach of [SY81] and regularize Jang’s equation by adding a capil-
larity term. Thus we consider instead of (3.1), the equation

Jτ [ f ] = J [ f ] − τ f = 0 (3.2)
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for τ > 0. After suitably modifying the data, we are able to apply Leray-Schauder
theory [GT98] to prove existence of solutions to the Dirichlet problem. Letting τ → 0
gives a sequence of solutions which by uniform curvature estimates for graph fτ has a
subsequence which converges to a solution of Jang’s equation (which in general may
have blowups).

The goal is in fact to prove existence of MOTS by constructing a blowup solution to
Jang’s equation. For this purpose, we set Z = δ/τ for a suitable δ and let τ → 0.

A key observation of [SY81] is that solutions to (3.2) satisfy interior estimates for
the second fundamental form, uniformly in τ . These estimates allow us to pick out a
subsequence of solutions which converges to a blowup solution of Jang’s equation. After
applying a sequence of renormalizations using the fact that Jang’s equation is translation
invariant, we get a vertical solution, which projects to a MOTS on M .

The last part of the argument proceeds exactly as in [SY81], and therefore the only
thing which needs to be discussed here is the Dirichlet problem.

3.2. Preparing the data. We will assume that (M, g, K ) is embedded into a four-dimen-
sional Lorentz manifold (L , h) such that g and K are the first and second fundamental
forms of M induced by h. As we do not require the dominant energy condition to hold,
it is rather simple to produce an extension (L , h) of (M, g, K ). To this end extend g to
M × R by setting gt = g + t K on the slice M × t . As K is symmetric, so is gt and
there exists t0 > 0 such that gt is positive definite for t ∈ (−t0, t0). Then define h on
L := M × (−t0, t0) to be

h = −dt2 + gt .

This is a Lorentz metric and obviously induces g as the first fundamental form on the
slice M0 = M × {0}. That K is the second fundamental form follows from the second
variation formula, which implies that the second fundamental form of M0 is given by

∂

∂t

∣
∣
∣
∣
t=0

gt = K .

Let t be a time function on L with M = {t = 0} and s+(x) := dist(x, ∂+ M) the dis-
tance function to ∂+ M . For small s, t , let �+

s,t be the surface given by the intersection
of the level sets of s+ and t . Let n be the timelike normal of the t-level sets and let ν
be the spacelike normal of the s+-level sets, inside the t-levels, extending the outward
pointing normal on ∂+ M . This defines normal fields n, ν at the surfaces �+

s,t as well as
the corresponding null normals l± = n ± ν. For small s, t , we have θ+[�+

s,t ] > 0.
Now perform a Lorentz rotation of the normals n, ν to get

ν̃ = cosh αν + sinh αn, ñ = sinh αν + cosh αn.

Let IIµab be the second fundamental form of the surfaces �+
s,t so that H = hab〈IIab, ν〉

and P = hab〈IIab, n〉, where hab is the metric on �+
s,t . Then with respect to the normals

ν̃, ñ we have

H̃ = cosh αH + sinh αP, P̃ = sinh αH + cosh αP

and the corresponding null expansions

θ̃± = P̃ ± H̃
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are given by

θ̃± = e±αθ±.

Further we note

H̃ = 1
2 eαθ+ − 1

2 e−αθ−,
P̃ = 1

2 eαθ+ + 1
2 e−αθ−.

Deform M to M̃ by bending up along the outgoing future light cone at ∂+ M . By doing so,
we get the spacelike and timelike normals to agree with ν̃, ñ for any α. As the deformed
M̃ approaches the light cone, we have α → ∞. Therefore there is an α such that H̃ , P̃
are arbitrarily close to 1

2 eαθ+. In particular, if θ+ > 0, we can achieve that both H̃ and
P̃ are positive near the outer boundary of M̃ .

We can proceed similarly at the inner boundary ∂−M , where θ+ < 0 with respect to
the inward pointing normal. This means that θ− < 0 with respect to the outward point-
ing normal. Then we can proceed as above, bending along the past inward lightcone.
This will result in H̃ > 0, P̃ < 0 (where now H̃ is defined with respect to the outward
normal of M as usual).

This constructs a deformed Cauchy data set (M̃, g̃, K̃ ). Let ∂ M̃ be the bound-
ary of M̃ constructed by bending as above. Clearly the boundary ∂ M̃ is the union
∂ M̃ = ∂−M̃ ∪ ∂+ M̃ , with H̃ > 0 on ∂ M̃ and P̃ > 0 on ∂+ M̃ , P̃ < 0 on ∂−M̃ . Let

�±
s :=

{
x ∈ M̃ : dist(x, ∂±M̃) = s

}

be the parallel surfaces to ∂±M̃ and

U±
s :=

{
x ∈ M̃ : dist(x, ∂±M̃) < s

}

be the respective tubular neighborhoods. Given ε > 0, there exists δ > 0 such that we
can ensure the following properties:

θ+[�−
s ] < 0

H [�−
s ] > δ

P[�−
s ] ≤ 0

and

and

and

θ+[�+
s ] > 0

H [�+
s ] > δ

P[�+
s ] ≥ 0

for s ∈ [0, 4ε],
for s ∈ [0, 2ε],
for s ∈ [0, 2ε],

the data is unchanged in M3ε.

(3.3)

We abuse notation here by computing H with respect to the outward pointing normal
for ∂ M̃ , but compute θ+ still with respect to the inward pointing normal near ∂−M̃ ,
which makes θ+ = P − H near ∂−M̃ .

Fix such an ε > 0 and let ζ(s) be a non-negative cutoff function on s ≥ 0, such that
ζ(s) = 0 for s ∈ [0, ε], ζ(s) > 0 for s > ε, and ζ(s) = 1 for s ≥ 2ε. Now define
ζ(x) = ζ(d(x, ∂ M̃)), and consider the data set (g̃, ζ K̃ ). From now on we denote this
data set by (M, g, K ). The important point to note here is that this final cut-off does not
affect the first property of (3.3), so that we still retain the barrier effect of the boundary.
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We find that with respect to the cut-off data we have the following properties near the
boundary:

θ+[�−
s ] < 0

H [�−
s ] > δ

and

and

θ+[�+
s ] > 0

H [�+
s ] > δ

for s ∈ [0, 4ε],
for s ∈ [0, 2ε],

K ≡ 0 in Uε, and

the data is unchanged in M3ε.

(3.4)

3.3. Existence proof. In order to construct solutions to the Dirichlet problem for (3.2),
we consider, following [SY81], the family of equations

H[ f ] − σP[ f ] = τ f, f
∣
∣
∂M = σφ (3.5)

for σ ∈ [0, 1] and τ ∈ [0, 1]. We need the following estimates.

Proposition 3.3. Let N be the graph of a function f satisfying the equation

H[ f ] − σP[ f ] = F in M

with F ∈ C1(M̄), then the second fundamental form A of N satisfies the estimate

|A|(p, f (p)) ≤ C
(
‖M Rm‖C0 , ‖K‖C1 , dist(p, ∂M)−1, inj(M, g, p)−1, ‖F‖C1

)
.

In fact, if we extend the normal ν̄ of N to M × R, then

|∇̄ν̄|(p, t) ≤ C
(
‖M Rm‖C0 , ‖K‖C1 , distM (p, ∂M)−1, inj(M, g, p)−1, ‖F‖C1

)
.

Proof. This is analogous to [SY81, Prop. 1 and Prop. 2]. ��
Proposition 3.4. Let fσ,τ be a solution to (3.5) with parameters � and τ . Then fσ,τ
satisfies the estimates

sup
M

| fσ,τ | ≤ max

{
3‖K‖C0/τ, sup

∂M
|φ|

}
,

and

sup
M

|∇ fσ,τ | ≤ max

{
c(‖M Rm‖C0 + ‖∇K‖C0)/τ, sup

∂M
|∇ fσ,τ |

}
.

Proof. This follows from the maximum principle, as in [SY81, Sect. 4]. ��
Hence we can estimate the gradient once we have a boundary gradient estimate.

Proposition 3.5. Let (M, g, K ) be a data set such that there are ε > 0, δ > 0, such that
for s ∈ [0, ε] the surfaces

�s := {p ∈ M : dist(p, ∂M) = s}
satisfy H > δ. Further, assume that K ≡ 0 in {p : dist(p, ∂M) < ε}. Let fτ,σ be a
solution of

Jτ,σ [ fτ,σ ] = H[ fτ,σ ] − σP[ fτ,σ ] − τ fτ,σ = 0,
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such that fτ,σ is constant on each component of ∂M. Suppose that

sup
M

| fτ,σ | = m < ∞ and sup
∂M

| fτ,σ | ≤ δ
2τ .

Then

sup
∂M

|∇ fτ,σ | ≤ max{ 1√
3
, 2ε−1m}.

Proof. We proceed by constructing a barrier near ∂−M . Consider functions w of the
form

w = ψ(s), s = dist(·, ∂−M),

where ψ : [0, ε] → R is a scalar function. For functions of this form we have

Jτ,σ [w] = − ψ ′

(1 + (ψ ′)2)1/2
H [�s] +

ψ ′′

(1 + (ψ ′)2)1/2
− τψ (3.6)

in the neighborhood where K ≡ 0. To construct an upper barrier near one component
� of ∂−M , set w+ := ψ+(s) with ψ+(s) = a + bs, where a is the value of fτ,σ on �.
We can then pick b so large that b

(1+b2)1/2
≥ 1

2 , that is b ≥ 1√
3

. Then (3.6) yields that

Jτ,σ [w+] ≤ − δ
2 + τ |a| − τbs

≤ − δ
2 + τ sup

∂M
| f | − τbs ≤ −τbs ≤ 0.

We can then choose b so large that a + bε ≥ m, that is b ≥ 2ε−1m. Thus we have
constructed an upper barrier, the construction of the lower barrier is analogous.

The barrier near ∂+ M can be constructed analogously, using the expression

Jτ,σ [w] = ψ ′

(1 + (ψ ′)2)1/2
H [�s] +

ψ ′′

(1 + (ψ ′)2)1/2
− τψ (3.7)

for Jτ,σ near ∂+ M . ��
As a corollary, we find that given suitable boundary data, Eq. (3.5) is uniformly

elliptic, where the ellipticity constant does not depend on σ ∈ [0, 1]. Thus we conclude
that there exists a solution to (3.5) with σ = 1 and τ > 0 for such data by applying
Leray-Schauder theory.

Corollary 3.6. Let (M, g, K ) and φ ∈ C∞(∂M) be as in Proposition 3.5. Then the
equation

{
H[ fτ ] − P[ fτ ] = τ fτ
fτ |∂M = φ

(3.8)

has a solution fτ in C2,α(M̄) with

‖ fτ‖C2,α(M̄) ≤ C/τ,

where the constant C = C
(‖M Rm‖C0,α , ‖K‖C1,α , ε−1

)
.
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Proof. This is analogous to [SY81, Lemma 3]. ��
We now specify the precise data on ∂M . Set

φ =
{

δ
2τ on ∂−M

− δ
2τ on ∂+ M

,

where δ is as in Proposition 3.5. We then solve (3.8) with this data to obtain a family
of functions fτ . Note that the gradient estimate forces fτ to be uniformly large near the
boundary. Denote Mε = {p ∈ M : dist(p, ∂M) > ε}.
Lemma 3.7. There exists an ε′ > 0 such that the functions fτ satisfy

| fτ | ≥ δ
4τ in M\Mε′ .

As in [SY81, Sect. 4] we can now use the curvature estimate from Proposition 3.3 to
obtain a limit for graph fτ as τ → 0. By the previous lemma we can restrict ourselves to
Mε′ away from the boundary, as fτ → ∞ uniformly on M\Mε′ . This gives the following
result.

Proposition 3.8. There exists a sequence τi → 0 such that graph fτi in Mε′ converges
to a smooth manifold N0 satisfying H + P = 0. N0 consists of a disjoint collection of
components, which are either graphs or cylinders over compact surfaces �.
Let 	± := {p : fτi (p) → ±∞} and 	0 := {p : supi≥1 | fτi (p)| < ∞}. Then M is a
disjoint union M = 	0 ∪ 	+ ∪ 	−. The set � := ∂	−\∂+ M consists of marginally
trapped surfaces with θ+ = 0 with respect to the normal pointing into 	−.

The fact that � satisfies θ+ = 0, can be seen as follows. Since the fτi converge to
−∞ in	− and are bounded below outside of	−, there are just two possibilities for the
convergence of Nτi = graph fτi to N0 near each component�′ of�. The first possibility
is that �′ is the interface between 	+ and 	−. Then N0 has a cylindrical component
�′ × R, and the convergence is such that the downward normal ν̄τ of Nτi converges to
the normal of�′ pointing out of	−. As N0 satisfies H[N0]−P[N0] = 0 with respect to
the limit of ν̄τi , this implies that H − P = 0 on �′ with respect to the outward pointing
normal, and hence θ+ = P + H = 0 with respect to the inward pointing normal as
claimed. The second possibility is that�′ is an interface between	0 and	−. Then near
�′, N0 is a graph over 	0 which asymptotes to �′ × R, and since fτi → −∞ in 	−,
this graph goes to −∞ near�′ as well. Again we can conclude that ν̄τi converges to the
normal of N0 pointing out of 	−. Furthermore, H − P = 0 on �′ × R with respect to
this normal, as it is the limit of N0, which satisfies H−P = 0. Hence we again conclude
that θ+[�′] = 0.

From Lemma 3.7 we know that 	+ contains a neighborhood of ∂−M and 	− con-
tains a neighborhood of ∂+ M , so neither one of them is trivial. In particular ∂	− is the
disjoint union ∂	− = � ∪ ∂+ M , where � ⊂ M is contained in the interior of M .

Recall that we had to modify the data for the existence proof. We now show that �
can not enter the region where we modified the data. To see this, note that a neighborhood
of ∂−M is foliated by surfaces �−

s with θ+[�−
s ] < 0. If � enters this region there is

a minimal s, with �−
s ∩ � �= ∅. This surface touches � with their outward normals

pointing in the same direction. Thus, by the strong maximum principle, � = �−
s , a

contradiction. Furthermore, there is a neighborhood of ∂+ M foliated by surfaces �+
s

with θ+[�+
s ] > 0. We can then proceed analogously to get a contradiction to� entering
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this neighborhood. As data set is modified only in the neighborhoods discussed above,
we find that � lies entirely in the region where the data is unchanged.

We thus conclude the proof of Theorem 3.1 by finding our solution � in the unmod-
ified region of (M, g, K ).

It is an interesting possibility that the existence theory developed here for the Dirichlet
problem for Jang’s equation can be used to generalize Yau’s result in [Yau01, Theorem
5.2] to more general boundary geometries. This possibility will be investigated by the
authors in future work.

4. Blowup Surfaces are Stable

While not actually necessary for the main result of the paper, we present an extension of
the results of Sect. 3. From the arguments in [SY81] it is clear that � has only compo-
nents which are symmetrized stable, where symmetrized stable refers to non-negativity
of the operator (cf. [GS06])

L̃ M f = −�
� f + f

(
1
2
�Sc − 1

2 |χ |2 − µ− J (ν)
)
.

Here we want to show that they are in fact stable in the sense of MOTS.

Theorem 4.1. The surface� constructed in the proof of Theorem 3.1 is a stable MOTS.

Remark 4.2. By the same argument we can prove that any blow-up surface obtained by
the capillarity term regularization of Jang’s equation is a stable surface, in particular
those in [SY81]. Note that all of these surfaces are MOTS provided one chooses the
right orientation of the normal.

Proof. The stability of � will follow from a barrier argument. Assume that � is an
unstable component of �. We will show that in this case the functions fτi are bounded
below +∞ in a neighborhood of �. Hence � lies in the interior of 	+ ∪	0 and can not
be part of ∂	−, which contradicts the assumption that � is a component of �.

If � is unstable, let φ > 0 be a suitably scaled eigenfunction to the principal eigen-
value. We can extend the vector field φν to a neighborhood of �, and flow � by this
vector field. This yields a map F : � × [−1, 1] → M and constant � > 0 with the
following properties. We will denote �s = F(�, s).

1. �0 = �.
2. �s ⊂ 	+ if s ∈ [−1, 0) and �s ∩	+ = ∅ if s ∈ (0, 1].
3. ∂F

∂s = βν, where ν is the normal to �s extending the outward pointing normal ν
on �, and β satisfies the estimates

�−1 ≤ β ≤ �, and

∣
∣
∣
∣
∂β

∂s

∣
∣
∣
∣ ≤ �.

4. Outside of 	+ we have θ+[�s] < 0 and inside θ+[�s] > 0 and

�−1s ≤ |θ+[�s]| ≤ �s for all s ∈ [−1, 1].
5. We can assume that ‖K‖C0(M) ≤ �.



956 L. Andersson, J. Metzger

For an interval (s1, s2) ⊂ [−1, 1] we denote by A(s1, s2) the annular region
F (� × (s1, s2)), which is foliated by the �s for s ∈ (s1, s2) and has boundary
∂A(s1, s2) = �s1 ∪ �s2 .

We will construct a subsolutionw of Jang’s equation, satisfying J [w] ≥ η > 0. The
function w will be constant on the �s , that is w = φ(s). We will later use the positivity
of η to infer that w + mτ are in fact subsolutions for Jτ , where mτ is a suitably chosen
constant.

Lemma 4.3. Forw = φ(s) we can compute Jang’s operator to be the following expres-
sion:

J [w] = φ′

βσ
θ+ −

(
1 +

φ′

βσ

)
P − σ−2 K (ν, ν) +

φ′′

β2σ 3 − φ′

β3σ 3

∂β

∂s
. (4.1)

Here σ 2 = 1 + β−2φ′2.

To construct w we will proceed in three steps, which amount to constructing w on the
annuli A1 := A(−δ, 0), A2 := A(0, ε), and A3 := A(ε, 2ε), where δ and ε will be fixed
during the construction.

We start with the construction of φ in A2 = A(0, ε), which will fix ε, but not quite φ.
In this region all we know is that θ+[�s] ≤ 0, so we make the assumption φ′ ≤ −µ < 0,
where we will fix µ in the course of the argument. This renders the first term in (4.1) to
be non-negative. We can thus estimate that

J [w] ≥ − c1

µ2 + c2
φ′′

|φ′|3, (4.2)

for constants c1, c2 > 0 depending only on �, provided we choose µ ≥ �. To see this,
note that σ is comparable to |φ′| provided the latter is bounded away from zero. The
fact that the term containing P in (4.1) is of the form c1/µ

2 follows from the Taylor
expansion of the square root. To get that the right hand side of (4.2) is positive we must
satisfy

φ′′
2

|φ′|3 ≥ c0

µ2 , (4.3)

where c0 = c1+1
c2

+1 is a positive constant depending only on�. We will later use c0 > 1
and c0c2 > 1.

We make the following ansatz for φ in [0, ε]:

φ2(s) = a2

(
1 +

s

ε

)2/3
+ b2 (4.4)

for constants a2, b2 to be determined. We compute that

φ′
2(s) = 2a2

3ε

(
1 +

s

ε

)−1/3
, (4.5)

φ′′
2 (s) = −2a2

9ε2

(
1 +

s

ε

)−4/3 = − 9ε2

8a3
2

φ′
2(s)

4. (4.6)

As we want to have φ′
2 < 0, we must choose a2 < 0 which renders φ′′

2 (s) > 0. So in
order to get φ′(s) ≤ −µ it is sufficient to take

−µ = φ′
2(ε) = a2

3ε
22/3,
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as |φ′| is increasing. This implies

a2
2 = 2−4/39ε2µ2. (4.7)

To satisfy (4.3), we require that

c0

µ2 ≤ φ′′(ε)
|φ′(ε)|3 = 9ε2

8a3
2

φ′(ε) = 3ε

a2
2

2−7/3.

This is equivalent to

a2
2 ≤ 3εµ2

c0
2−7/3. (4.8)

Combining with (4.7) we find the condition

9ε2µ22−4/3 ≤ 3εµ2

c0
2−7/3 (4.9)

or

ε ≤ 1

6c0
.

Thus we choose ε = 1
6c0

. Note that since c0 > 1, ε < 1
6 <

1
2 . Modulo fixing µ and the

vertical shift, we are done with φ on (0, ε). Note that ε does not depend on µ which is
important in view of the fact that we will later choose µ as a function of ε. Note further
that J [w] ≥ 1

µ2 on A2 by construction.
For A3 := A(ε, 2ε) we will make the ansatz w = φ3(s), with s ∈ [ε, 2ε). As we

are in the region s > ε, where ε has been fixed by the construction in A2, we have
θ+ ≤ −�−1ε and thus the first term in (4.1) is estimated by κ := ε√

2�
> 0 from below.

We can estimate the whole expression as follows:

J [w] ≥ κ − c1

µ2 − c2
|φ′′

3 (s)|
|φ′

3(s)|3
, (4.10)

where we again assumed |φ′(s)| ≥ µ ≥ �, and c1 and c2 are constants depending only
on �. We can ensure that the second term is small, that is

c1

µ2 ≤ κ

4
,

provided

µ2 ≥ 4c1

κ
. (4.11)

It remains to find a function, which allows us to choose µ large while keeping the term

c2
|φ′′

3 (s)|
|φ′

3(s)|3
<
κ

4
. (4.12)
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We make the ansatz

φ3(s) = a3 log

(
1 − s − ε

ε

)
+ b3 (4.13)

and compute

φ′
3(s) = −a3

ε

(
1 − s − ε

ε

)−1

,

φ′′
3 (s) = −a3

ε2

(
1 − s − ε

ε

)−2

.

As we need φ′
3(ε) = −µ, to be able to fit φ3 to φ2, we compute −µ = φ′

3(ε) = − a3
ε

or
a3 = εµ > 0. Hence φ′′

3 (s) < 0 and φ′
3(s) ≤ µ for s ∈ (ε, 2ε), as desired. We still have

to fix µ. The goal is to simultaneously satisfy (4.11) and (4.12). Compute

|φ′′
3 (s)|

|φ′
3(s)|3

= 1

µ2ε

(
1 − s − ε

ε

)
≤ 1

µ2ε
.

Thus we can ensure (4.12) provided µ2 ≥ 4c2
εκ

. We choose

µ = max

{√
4c1

κ
,

√
4c2

εκ
,�

}

,

and are done constructing φ3 up to fixing b3 in such a way to ensure φ2(ε) = φ3(ε). Note
that we have that φ3(s) → −∞ as s → 2ε, which is the desired behavior. Furthermore
we have J [w] ≥ κ

2 > 0 in A3.
In the region A1 = A(−δ, 0), where 0 < δ < 1 will be chosen later, we set w(s) =

φ1(s). Then we estimate from (4.1) that

J [w] ≥ −c3 + c4
φ′′

1 (s)

|φ′
1(s)|3

, (4.14)

where c3, and c4 > 0 are again constants depending only on �. Here we assumed that
|φ′

1(s)| ≥ � as before. The only chance to get the right hand side of this expression
positive is to take φ1(s) to be a function with

φ′′
1 (s)

|φ′
1(s)|3

≥ c3 + 1

c4
:= c5.

We make the ansatz

φ1(s) = a1

(
1 +

s

2δ

)1/2
+ b1,

and compute

φ′
1(s) = a1

4δ

(
1 +

s

2δ

)−1/2
,

φ′′
1 (s) = − a1

16δ2

(
1 +

s

2δ

)−3/2
.
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We fix b1 such that φ1(−δ) = 0. This then fixes b2 and b3 by the requirement that w is
continuous on A(−δ, 2ε). From the requirement φ′

1(0) = φ′
2(0) =: −µ′, we infer that

a1 = −4µ′δ. (4.15)

Recall that −µ′ is fixed and can not be chosen freely. From φ′′
1 (s) > 0 we find that

|φ′
1(s)| ≥ |φ′

1(0)| = µ′ = 21/3µ ≥ µ = |φ2(ε)| ≥ �, so φ′
1 is automatically large

enough to justify (4.14). To get positivity of the right hand side of (4.14) we need that

c5 ≤ φ′′(s)
|φ′(s)|3 = 4δ

a2
1

.

Solving for a2
1 yields the condition

a2
1 ≤ 4δ

c5
. (4.16)

As we already fixed a1 in (4.15), we infer the condition

δ ≤ 1

4c5µ′2 .

So we fix δ = 1
4c5µ

′2 and are done. Note that J [w] ≥ 1 by construction.
To summarize, we have constructed a function w on A(−δ, 2ε) with the following

properties:

(i) w is C1,1 up to the boundary in every A(−δ, s) with s ∈ (−δ, 2ε). Hence
w ∈ W 2,∞ ∩ C1,1 away from �2ε,

(ii) there exists η > 0 such that J [w] ≥ η,
(iii) w ≡ 0 on �−δ , w ≤ 0 on A(−δ, 2ε),
(iv) there exists C1 < ∞ such that 0 ≥ w ≥ −C1 in A(−δ, ε), and
(v) w|�s → −∞ as s → 2ε.

Here η and C1 are constants that only depend on �, as do δ and ε.
With this subsolution w, we can get a lower bound of the functions fτ solving

J [ fτ ] = τ fτ near � as follows. Set

m := min

{
inf
�−δ

fτ ,
η

τ

}
,

and consider the function

wm := w + m. (4.17)

The goal is to apply the comparison principle for the quasilinear operator J to show
that wm ≤ fτ in A(−δ, 2ε). To this end let U be the region where fτ ≤ m. From the
equation we conclude that

J [ fτ ] = τ fτ ≤ τm ≤ η

in U , and moreover fτ = m on ∂U . As fτ ≥ −C
τ

is bounded below as in Proposition 3.4,
we can choose s̄ ∈ (ε, 2ε) such that wm |�s̄ ≤ inf M fτ .
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Set V := U ∩ A(−δ, s̄). Then, as ∂V ⊂ ∂U ∪ �−δ ∪ �s̄ , we find that wm ≤ fτ on
∂V . An application of the comparison principle [GT98, Chap. 10] allows us to conclude
that wm ≤ fτ in V and thus

wm ≤ fτ in A(−δ, 2ε).

By construction, there is a constant C1 such that w + C1 ≥ 0 in A(−δ, ε) and hence

m − C1 ≤ wm in A(−δ, ε).
Thus we infer the estimate

fτ ≥ min

{
inf
�−δ

fτ ,
η

τ

}
− C1 in A(−δ, ε). (4.18)

We can now conclude the argument. Take the sequence τi and the functions fτi from
Proposition 3.8. By construction fτi is uniformly bounded below on �−δ as �−δ is com-
pactly contained in 	+ ∪	0, hence as τi → 0 the term on the right hand side of (4.18)
is bounded below as τi → 0. Thus A(−δ, ε) ⊂ 	+ ∪	0, which is a contradiction, since
we assumed that � ⊂ A(−δ, ε) was a boundary component of ∂	−.

This concludes the proof of Theorem 4.1. ��

5. Weak Barriers

In this section we will slightly improve Theorem 3.1 to allow interior boundaries where
we just have the weak inequality θ+[∂−M] ≤ 0, instead of the strict inequality assumed
in Theorem 3.1.

Theorem 5.1. Let (M, g, K ) be a smooth, compact initial data set with ∂M the disjoint
union ∂M = ∂−M ∪ ∂+ M such that ∂±M are non-empty, smooth, compact surfaces
without boundary and θ+[∂−M] ≤ 0 with respect to the normal pointing into M and
θ+[∂+ M] > 0 with respect to the normal pointing out of M.

Then there exists a smooth, embedded, stable MOTS � ⊂ M homologous to ∂+ M.
� may have components which agree with components of ∂−M that satisfy θ+ = 0.

In this case we can not use the strong maximum principle to exclude that� touches ∂−M
as in Lemma 2.7. For the proof of Theorem 5.1 we shall need the following lemma.

Lemma 5.2. Let� be a connected, two-sided, compact, embedded surface with θ+ ≤ 0
and θ+ �≡ 0. Then for every ε > 0 there exists a smooth, embedded surface �′ in the
ε-neighborhood of �, which lies to the outside of � but does not touch �, is a graph
over �, and satisfies θ+ < 0.

Proof. Consider the following equation for a function F : � × [0, s̄) → M :

{
d F
ds = −θ+ν

F(·, 0) = id� .
(5.1)

Here, ν is the outer normal as usual. This is a weakly parabolic equation for F , in fact
it is a generalization of the mean curvature flow. To see this, recall that θ+ = H + P ,
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where H is the mean curvature, and P = M trK − K (ν, ν) is a term only depending on
first derivatives of F . Thus the flow in Eq. (5.1) is

d F

ds
= −Hν − lower order.

Hence it has the same symbol as the mean curvature flow and thus is a quasilinear
parabolic equation.

The theory of parabolic equations guarantees the existence of a solution for a small
time interval [0, s̄), see for example [HP99, Sect. 7]. Furthermore, any surface �s =
F(�, s) for s ∈ (0, s̄) is smooth. From a standard argument using the strong maximum
principle we conclude that θ+ < 0 instantly. To see this, recall that the evolution equation
for θ+ has the form

∂θ+

∂s
= −Lsθ

+ = �θ+ − 2S(∇θ+)− θ+ Q,

where Ls is the linearization of θ+ along �s , with

Q = �divS − 1
2 |χ+|2 − |S|2 + 1

2
�Sc − µ + J (ν)− 1

2 (θ
+)2 + θ+ tr K ,

where all geometric quantities are computed on �s . Note that Ls equals L M on MOTS.
By smoothness we have that Q is bounded for a short time, whence we can choose

a > max
s∈[0,s̄/2],x∈�s

|Q(x, s)|.

Let u = e−asθ+ and compute
(
∂
∂s −�

)
u = −2S(∇u)− (Q + a)u.

The coefficient of the zeroth order term is negative. Hence the strong maximum principle
from [Lie96] is applicable to u and implies that u instantly becomes negative, implying
that θ+ instantly becomes negative.

If s is small enough, �s will also be embedded. As θ+ ≤ 0, the flow (5.1) moves the
surface in the direction of ν everywhere, and hence outward, in particular �s ∩� = ∅.
As the initial speed is given by |θ+|, which is bounded, the surfaces�s will be arbitrarily
close to �, as long as s > 0 is small enough. Hence we can choose �′ to be one of
the �s . ��
Proof of Theorem 5.1. The main difficulty here is that ∂−M may have multiple con-
nected components ∂−M = �1 ∪ . . . ∪ �N where some of the �k satisfy θ+ = 0, to
which we can not apply Lemma 5.2 directly.

Lemma 5.2 allows us to flow the boundary components �k with θ+ ≤ 0 and θ+ �≡ 0
in the direction of their outer normal ν, that is into M , to replace M by a manifold
M1 which is such that ∂−M1 is still embedded and each component of ∂−M1 either
has θ+ < 0 or θ+ = 0. As the boundary components with θ+ = 0 do not allow the
application of Theorem 3.1, we have to tweak them a little.

Pick one such component � of ∂−M with θ+[�] = 0, then there are three cases.
Either, as a MOTS, � is not stable, � is stable, but not strictly stable, or � is strictly
stable.

When � is not stable, let φ > 0 be an eigenfunction for the principal eigenvalue
λ < 0 for the operator L M on �. Extend the vector field φν to a neighborhood of � and
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flow � for a short time interval along this vector field. This yields a foliation {�s}s∈[0,ε)
of a neighborhood of �, such that �0 = � and �s lies inside of M and has θ+ < 0 when
s > 0. Hence, we push � a little inward and obtain a strictly trapped surface.

In the other two cases we need to flow the components with respect to the vector
field −φν, where φ > 0 is again the principal eigenfunction of L M on �. So we have
to assume that there is an extension (M ′, g′, K ′) of (M, g, K ) with M ⊂ M ′, g = g′|M
and K = K ′|M such that ∂−M lies in the interior of M ′. Such an extension can be
constructed by simply gluing [0, 1]× ∂−M to M along ∂−M and smoothly extending g
and K to the added piece. Keeping this in mind, we can now move the other boundary
components � inwards in the following way.

If � is strictly stable, then by flowing in the direction −φν, we construct a foliation
{�s}s∈(−ε,0] of a neighborhood of �, such that �0 = � and �s lies in the direction −ν,
that is outside of M and has θ+ < 0 if s < 0. We choose one of the �s as a new inner
boundary. We will later use the fact that the region between the former boundary � and
the new boundary �s is foliated by surfaces with θ+ < 0 to ensure that the constructed
MOTS does not enter this region.

The last case is where � is stable but not strictly stable. In this case we also flow �

in the direction −φν and construct a foliation {�s}s∈(−ε,0] of a neighborhood of �, such
that �0 = � and �s lies outside of M and

∂

∂s

∣
∣
∣
∣
s=0

θ+[�s] = 0. (5.2)

We will change the data K ′ along the surfaces �s by replacing K ′ by

K̃ = K ′ − 1
2ψ(s)hs,

where hs is the metric on �s and ψ : R → R is a C1 function with ψ(s) = 0 for s > 0.
Note that θ̃+[�s], which means the quantity θ+ computed with respect to the new data
(M ′, g′, K̃ ), satisfies

θ̃+[�s] = θ+[�s] − ψ(s).

As θ+[�s] vanishes to first order in s at s = 0 by (5.2), we can extend ψ as a C1,1

function to M̃ such that θ+ < 0 on all �s , if s < 0 is close enough to zero. Hence, this
case is similar to the strictly stable case. It is clear that we can choose �s in such a way
that ‖K̃‖C1(M̃) ≤ 2‖K‖C1(M).

In summary, by this construction we have replaced (M, g, K )by a manifold (M̃, g̃, K̃ )
which are both embedded in a data set (M ′, g′, K ′). The outer boundaries of M and M̃
agree and have θ+ > 0, while the inner boundary of M̃ has θ+[∂−M̃] < 0. The data K̃
is C1,1 in M̃ .

The set U := M\M̃ ⊂ M ′, corresponding to the boundary components we moved
out of M , is foliated by surfaces �s with θ+[�s] < 0 with respect to the data (g̃, K̃ ).

We can now invoke Theorem 3.1 to find a smooth, embedded, stable MOTS� in M̃ ,
which bounds with respect to ∂−M̃ . Note that it is only necessary to assume K ∈ C1,α

for some 0 < α ≤ 1 for the theorem to apply. If one of the components�′ of� enters U ,
say the component U ′ of U , then let s̄ := min{s : �s ∩�k �= ∅}, where the�s constitute
the foliation of U ′ by strictly trapped surfaces, as above. At the point where the minimum
is assumed, the outward normals of �′ and �s̄ point into the same direction, and hence
the strong maximum principle implies that�k = �s̄ , a contradiction. Thus� ∩ U = ∅,
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Fig. 2. The δ-standard neck

and � ⊂ M is the desired solution. Note that some components of � might agree with
components of ∂−M which have θ+ = 0.

The assertion that � is stable then follows from Theorem 4.1. ��
As an immediate consequence of Theorem 5.1, we infer the following corollary.

Corollary 5.3. Let (M, g, K ) be such that ∂M is the disjoint union ∂M = ∂−M ∪∂+ M,
where ∂+ M is non-empty with θ+[∂+ M] > 0 and ∂−M is possibly empty. If � is an
outermost MOTS homologous to ∂+ M, then there do not exist outer trapped surfaces
enclosing �. In particular, � is a stable MOTS.

6. Surgery

In this section we describe a surgery procedure to construct an outer trapped surface
outside of a MOTS� with small i+(�) and bounded curvature. In view of the existence
part in Theorem 5.1, we infer a lower bound on i+(�) for outermost MOTS. This implies
an area estimate.

Moreover, the surgery procedure guarantees that a fixed amount of the volume outside
of � is consumed. By iterating the surgery procedure and application of Theorem 5.1,
we then infer that after a finite number of steps we arrive at a MOTS �′ outside of �
with a lower bound on i+(�′).

As usual, we assume that � is homologous to ∂+ M and denote the region bounded
by � and ∂+ M , that is the outside of �, by 	.

6.1. Neck geometry. The surgery procedure works by inserting necks with negative θ+.
We start by constructing a suitable neck in Euclidean space, and transfer it to the geom-
etry of M in normal coordinates. Let δ > 0 and consider the map

F : [0, 2π ] × [−π
2 ,

π
2 ] → R3 : (φ, θ) →

⎛

⎝
δ sin φ(3 − cos θ)
δ cosφ(3 − cos θ)

δ sin θ

⎞

⎠ .

The image of F is shown in Fig. 2; we will call it the δ-standard neck. Denote by the
interior Iδ of the neck the points (x1, x2, x3) with x3 ∈ (−δ, δ), x3 = δ sin θ and

(x1)2 + (x2)2 ≤ δ2(3 − cos θ2).
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Fig. 3. Selecting the points p and q where a ball Bδ(O) touches �

Clearly, the open ball BR3

δ (0) is contained in Iδ .
The Euclidean mean curvature of the standard neck with respect to the normal point-

ing out of Iδ is

He = −δ−1
(

1 − (3 − cos θ)−1 cos θ
)

≤ −(2δ)−1.

Thus the Euclidean mean curvature of the δ-standard neck can be arbitrarily negative if
δ is chosen small enough. Let r0 be such that at any point O ∈ M with dist(O, ∂M) ≥
ρ(M, g, K ; ∂M)/2 we have geodesic normal coordinates {xi } such that for r ≤ r0 we
have

r−2|gi j − δi j | + r−1|∂k gi j | + |∂k∂l gi j | ≤ C,

where r is the Euclidean distance in x-coordinates. Then, the image of the standard neck
in these coordinates will have H < −(4δ)−1 if δ < r0 is small enough. Thus, choosing
δ−1 large compared to ‖K‖C0(M), we can ensure that the δ-standard neck has θ+ < 0.

6.2. Point selection. The goal is to consume a fixed amount of volume by application
of the surgery. To this end, we have to insert a neck with δ bounded away from zero in
terms of the geometry of M . Hence, it is not sufficient to do surgery at the points p, q
which realize i+(�). Instead, we have to find points p, q such that there is a point O
with dist(O, ∂M) ≥ ρ(M, g, K ; ∂M)/2 such that B M

δ (O) touches � at p and q, and
the angle of the segments joining O to p and q at O is close to π .

These points p, q, O can be found as follows. Let r0 be as above. There exist r1 < r0
and C > 0 depending only on ‖M Rm‖C0 , such that ∂B M

r (O) has a second fundamental
form Ar ≥ C

r γr where γr is the induced metric on ∂B M
r (O) (use the Hessian comparison

theorem for the distance function to O [SY94]). Furthermore, there exists 0 < r2 < r1/2,
depending additionally on sup� |A| with the following property. If O and r < r2 are
such that ∂B M

r (O) touches� at p, then the�-ball B�r2
(p) does not intersect the interior

of B M
r (O). The important point to note is that the radius of the �-ball does not depend

on r .
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Now fix r < r2 and consider the set Ur ⊂ � of points which can be touched by a
ball which lies completely outside of �, that is,

Ur :=
{

p ∈ � : ∃O ∈ 	 s.t. B M
r (O) ⊂ 	 and p ∈ ∂B M

r (O)
}
.

Clearly Ur is non-empty if 2r < dist(�, ∂+ M), as then the point p1 ∈ � which realizes
dist(�, ∂+ M) is in Ur . Let�1 be the component of� containing p1. If�1 ⊂ Ur , then dist
(�1, �\�1) ≥ 2r . We then select p2 ∈ �\�1 such that p2 realizes the distance
dist(�\�1, ∂

+ M ∪ �1), clearly p2 ∈ Ur . We can continue this process until either
we found a component �k of � with �k �⊂ Ur and Ur ∩ �k �= ∅, or we showed that
� = Ur . However, the latter can not happen if i+(�) < r , as the points p, q from
Lemma 2.13 are not in Ur . Thus, there is a component �k of � which contains a point
p ∈ ∂Ur , the boundary of Ur relative to �.

As Ur is closed in �, there exists O ∈ 	 such that p ∈ ∂B M
r (O) and B M

r (O) ⊂ 	.
We claim that there exists q ∈ � ∩ ∂B M

r (O), q �= p. This q can be constructed as
follows. Choose a sequence of points pk ∈ �\Ur with pk → p. Consider the geodesic
normal to � emanating from pk outward. Let Ok be the point at distance r from pk
on this geodesic. As pk is not in Ur , the ball Br (Ok) intersects � in a point qk with
dist(qk, Ok) < r and dist�(pk, qk) ≥ r2, by our choice of r . By compactness we can
assume that the qk converge to q with dist(q, O) ≤ r and dist�(p, q) ≥ r2. As p ∈ Ur ,
the open ball B M

r (O) does not intersect � and thus dist(q, O) = r .
Thus we find that, if r < r2 and i+(�) < r , there exist points p �= q ∈ � and O ∈ 	

such that p, q ∈ ∂Br (O). Denote the geodesic segment joining O and p by γp and the
segment joining O and q by γq . We now want to show that the angle between γp and
γq at O is close to π if r is small enough.

Consider geodesic normal coordinates around O . Then the segments γp and γq are
straight lines emanating from O . Let L p be the plane orthogonal to γp through p. As
the curvature of � is bounded, B�r3

(p) is the graph of a function u p over L p with

r−2u p + r−1|∂ku p| + |∂k∂lu p| ≤ C (6.1)

for r < r3, where r3> 0 and C < ∞depend only on injρ(M, g, K ; ∂M)−1,‖M Rm‖C0(M)

and sup� |A|). In particular, B�r3
(p) is contained in a small tubular neighborhood of L p.

Similarly, B�r3
(q) is contained in a neighborhood of Lq .

Let α be the angle of γp and γq at O . We claim that for each η > 0 there exists r > 0
such that |α−π | < η. Otherwise, if α is not close to π , the planes L p and Lq intersect at
distance d with d = r

cos(α/2) ≤ r
ε
. Thus, choosing r small enough, we can make L p and

Lq intersect within d ≤ r3/2. This implies that B�r3
(p) and B�r3

(q) must also intersect.
This is a contradiction, as � is assumed to be embedded.

6.3. Surgery. With the previous preparations, we can carry out the surgery procedure.
We choose r so small that the above considerations apply, giving the following properties:
1. The (2δ)-standard neck in normal coordinates around any point O ∈ M with

dist(O, ∂M) > injρ(M, g, K ; ∂M) has θ+ < 0 in (M, g, K ).
2. The M-ball B M

δ (O) is contained in the interior of the image of the (2δ)-standard
neck.

3. If i+(�) < δ, then there exist points p, q ∈ � and O ∈ 	 such that Bδ(O) ⊂ 	

and p, q ∈ ∂Bδ(O).
4. The angle α of γp and γq at O satisfies |1/ cosα + 6 tan α| ≤ 3/2.
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Fig. 4. The surgery in geodesic normal coordinates

Now assume that i+(�) < δ and pick p, q, O as in Condition 3 above, and consider
geodesic normal coordinates around O such that γq lies on the negative x3-axis. Let N
be the image of the (2δ)-neck centered at O with its axis aligned with the x3-coordinate
axis, as in Fig. 4. Condition 4 on α implies that the plane L p is such that

L p ∩ {(x1)2 + (x2)2 ≤ 6δ} ⊂ {−3

2
δ ≤ x3 ≤ 3

2
δ]}.

Recall that the component �p of � ∩ {−2δ ≤ x3 ≤ 2δ} containing p is the graph over
L p of a function u p with

r−2u p + r−1|∂ku p| + |∂k∂lu p| ≤ C,

where C is as in Eq. (6.1). Thus, we can choose δ, depending only on C so small, that
first�p ⊂ {−2δ ≤ x3 ≤ 2δ}, and second�p and N intersect transversely (note that the
angle of� and L p is of order δ, whereas the angle between the neck and L p is uniformly
bounded away from zero). We can similarly argue for �q , so that we find that Fig. 4 is
indeed accurate.

The surgery can now be performed as follows. Let �′
p be the component of �\N

that contains p and �′
q be the component that contains q. Let N ′ be the component of

N\� between �p and �q . Construct a non-smooth surface �N by removing �′
p and

�q and adding N ′. By construction this surface is homologous to�, and hence to ∂+ M .
By Condition 1, we find that the inserted neck has θ+ < 0. Condition 2 implies that
Bδ(O) is indeed contained in the neck we added. Furthermore, at the corner�∩ N ′, the
normals νN of N ′ and ν of � enclose an angle < π .

We proceed by using Lemma 2.14 to smooth out this corner, thereby constructing
a surface �′. This �′ lies outside of �N , and agrees with �N except in an arbitrarily
small neighborhood of the corner and has θ+ ≤ 0 and θ+ �≡ 0. Note that in particular,
the component of �′, which contains part of N ′ has θ+ < 0 somewhere.

6.4. Results. By the previous surgery procedure we arrive at the following proposition:

Proposition 6.1. Let (M, g, K ) be a data set such that ∂M is the disjoint union ∂M =
∂+ M ∪ ∂−M of smooth compact surfaces without boundary. Assume that θ+(∂+ M) > 0
and if ∂−M is non-empty, that θ+(∂−M) < 0.
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There exists δ > 0 depending only on injρ(M, g, K ; ∂M)−1, ‖M Rm‖C0 and ‖K‖C1

with the following property. If � ⊂ M is a stable MOTS, homologous to ∂+ M, bound-
ing 	 together with ∂+ M, and i+(�) < δ, then there exists a MOTS �′ outside of �,
homologous to ∂+ M and bounding 	′ together with ∂+ M such that

Vol(	′) ≤ V ol(	)− v0,

where 0 < v0 := inf{Vol B M
δ (p) : dist(p, ∂M) ≥ δ}.

Proof. The fact that� is stable yields a curvature bound in view of Theorem 2.10. Then
the above surgery procedure can be applied to construct �′. ��

An immediate corollary of the above proposition is the following.

Corollary 6.2. Let (M, g, K ) and δ be as in Proposition 6.1. If� is an outermost MOTS
in M, then i+(�) ≥ δ.

Proof. If i+(�) < δ, then Proposition 6.1, guarantees the existence of a barrier surface
outside of �, and Theorem 5.1 implies the existence of a MOTS outside of �. Thus �
is not outermost. ��

More importantly, as already indicated, the fact that a surgery takes away a uniform
amount of volume, gives a finiteness result, which allows us to prove the following
theorem.

Theorem 6.3. Let (M, g, K ) be a data set such that ∂M is the disjoint union ∂M =
∂+ M ∪ ∂−M of smooth compact surfaces without boundary. Assume that θ+(∂+ M) > 0
and if ∂−M is non-empty, that θ+(∂−M) < 0. Let δ be as in Proposition 6.1.

If � ⊂ M is a MOTS homologous to ∂+ M, then there exists a stable MOTS �′, with

i+(�′) ≥ δ,

such that �′ does not intersect the region bounded by � (and ∂−M if non-empty).

Proof. If� is not stable we use Theorem 5.1 with inner boundary� to construct a stable
MOTS�1 outside of�. If i+(�1) < δ, then Proposition 6.1 applies and yields a barrier
outside of�1 which can be fed into Theorem 5.1 to construct a stable MOTS�2 outside
of �1. The region bounded by �1 and �2 has volume bounded below by v0, where v0
is from Proposition 6.1. If i+(�2) < δ, we can iterate. As each step consumes at least
volume v0 outside of �, this procedure must end after a finite number of steps with a
surface �k with i+(�k) ≥ δ. ��

A lower bound on i+(�) can be used to estimate the area of �. This area estimate is
crucial to get the compactness of the class of stable MOTS with i+(�) bounded below.

Proposition 6.4. Let (M, g) be a compact Riemannian manifold with boundary, and
� ⊂ M an embedded, two-sided surface with bounded curvature |A| ≤ C. Let

δ := min{i+
0 (�), i+(�)}.

Then there exists an absolute constant c such that the following area estimate holds:

|�| ≤ c(δ−1 + sup
�

|A|)Vol(M). (6.2)
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Proof. Let ν be the outward pointing normal to the surfaces �s := G�(�, s) for
s ∈ [0, δ], where G� is as in Eq. (2.1). Then M div(ν) = Hs , where Hs denotes the
mean curvature of �s . As δ ≤ i+

0 (�), the estimate

|M divν| ≤ 2 sup
�s

|A| ≤ 4 sup
�

|A|

follows from the definition of i+
0 (�) (which has the bound on sup�s |A| built in).

Let φ be a cut-off function with φ(s) = 1 for s ≤ δ/4, φ = 0 for s ≥ δ/2 and
0 ≤ φ′(s) ≤ 8δ−1. Using the divergence theorem for the vector field N = −φ(s)ν in
the volume U := G(�, [0, δ)), we infer that

|�| =
∫

�

〈N , ν〉 dµ =
∫

U

M divN ≤ Vol(U )| div N |.

This yields the desired area estimate. ��
As outermost MOTS are stable, and thus have bounded curvature, we can combine

this proposition with Corollary 5.3 to infer the following area bound for outermost
MOTS.

Theorem 6.5. Let (M, g, K ) be a smooth, compact initial data set with ∂M the dis-
joint union ∂M = ∂−M ∪ ∂+ M, where ∂+ M is non-empty and has θ+[∂+ M] > 0, and
θ−[∂−M] < 0 if ∂−M is non-empty. Then, if � is an outermost MOTS, we have the
estimate

|�| ≤ C,

where C depends only on ‖M Rm‖C0(M), ‖K‖C1(M), injρ(M, g, K , ∂M)−1, and Vol(M).

As the proof of the previous theorem does not assume that� is connected, it also implies
a bound on the number of components of an outermost MOTS.

Corollary 6.6. Let (M, g, K ) be as above. Then there exists a constant N , depending
only on ‖M Rm‖C0(M), ‖K‖C1(M), injρ(M, g, K ; ∂M)−1, and Vol(M) such that any
outermost MOTS has at most N components.

Proof. Since outermost MOTS are stable, their curvature is bounded in view of Theo-
rem 2.10. This implies a lower bound on the area of each component. From Theorem 6.5
we thus infer a bound on the number of components. ��

7. The Trapped Region

In this section we examine the weakly outer trapped region, or more precisely the bound-
ary of the weakly outer trapped region. We make the usual assumptions on (M, g, K ), that
is (M, g, K ) is a smooth initial data set with ∂M the disjoint union ∂M = ∂−M ∪∂+ M ,
where ∂−M may be empty, but ∂+ M is non-empty, such that ∂±M are smooth, compact
surfaces without boundary and θ+[∂−M] < 0 with respect to the normal pointing into
M and θ+[∂+ M] > 0 with respect to the normal pointing out of M .

The definition of a trapped set and the trapped region below make sense only if
θ+[∂−M] < 0. However, we can circumvent this requirement for the main theorem as
discussed in Remark 7.4 below.

To define the weakly outer trapped region, we introduce the notion of a weakly outer
trapped set.
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Definition 7.1. An open set 	 ⊂ M with smooth embedded boundary ∂	 is called a
weakly outer trapped set if ∂	 is the disjoint union ∂	 = ∂−M ∪ ∂+	, where ∂+	

is a smooth, compact surface without boundary and θ+[∂+	] ≤ 0 with respect to the
normal pointing out of 	.

Note that ∂+	 is homologous to ∂+ M in this definition.

Definition 7.2. The weakly outer trapped region is the union of all weakly outer
trapped sets enclosing ∂−M:

T :=
⋃

	 is outer trapped

	. (7.1)

We will henceforth refer to T simply as the trapped region. If ∂−M is non-empty,
then the trapped region is non-empty as well, but if ∂−M is empty it might happen that
T is empty. In this case the statements below are void.

Let ∂−T := ∂T ∩ ∂−M and ∂+T = ∂T \∂−M . The definition of T is analogous
to the set �out,M in [KH97, Def. 3]. It is known in the literature that provided ∂+T is
smooth, it satisfies θ+ = 0 [HE73,KH97]. The most general result about ∂+T we are
aware of is [KH97, Prop. 7], which asserts that if ∂+T is C0 and piecewise smooth, then
it is smooth and satisfies θ+ = 0. In contrast, we do not assume any initial regularity for
∂+T for the following theorem.

Theorem 7.3. Let (M, g, K ) be such that ∂M is the disjoint union ∂M = ∂+ M ∪
∂−M such that θ+[∂−M] < 0 if ∂−M is non-empty, and ∂+ M is non-empty and has
θ+[∂+ M] > 0. Let T be the trapped region in M. If T is non-empty, then ∂T is the
disjoint union ∂T = ∂−T ∪ ∂+T of smooth, compact surfaces without boundary, where
∂−T = ∂−M and ∂+T is a smooth stable MOTS homologous to ∂+ M.

Remark 7.4. If (M ′, g′, K ′) is a data set where ∂−M ′ is only a weak barrier θ+[∂−M ′] ≤
0, then (M ′, g′, K ′) can be modified to (M̃, g̃, K̃ ) such that ∂−M̃ is a strong barrier
θ+[∂−M̃] < 0. This construction was already used in Sect. 5. The trapped region T̃ ⊂ M̃
of this extension is such that ∂+T̃ ⊂ M ′, that is, it lies in M ′, since the region bounded
by ∂−M̃ and ∂−M ′ is a trapped set. However, it might be possible that ∂+T̃ ∩∂−M ′ �= ∅.
In this case the intersection ∂+T̃ ∩ ∂−M ′ is a sub-collection of the components of ∂−M ′
which are stable MOTS.

Remark 7.5. If the dominant energy condition holds, then ∂+T is a collection of spheres
or tori [HE73,AK03,GS06].

The proof is along the lines of [HI01, Sect. 4]. Before we begin the proof of the the-
orem we prove some lemmas, which essentially replace the maximum principle, which
is not as powerful for MOTS, as it is for minimal surfaces.

Lemma 7.6. Let (M, g, K ) be an initial data set as in Theorem 7.3. Let 	1 ⊂ M and
	2 ⊂ M be open sets such that ∂	i is the disjoint union ∂	i = ∂−M ∪ ∂+	i , where
∂+	i is smooth, embedded, and ∂+	i = ⋃Ni

j=1�
j
i is the union of disjoint, stable, con-

nected MOTS � j
i , i = 1, 2. Then for any δ > 0, there exists 	′

1 ⊂ 	1 and data K ′ on
M with the following properties:

1. ∂	′
1 = ∂−M ∪ ∂+	′

1,
2. ∂+	′

1 and ∂+	2 intersect transversally,
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3. dist(∂+	′
1, ∂

+	1) < δ,
4. K ′ ∈ C1,1(M) and K ′ = K on M\	1,
5. θ+ on ∂+	2 ∩ M\	′

1 computed with respect to K ′ is at most its value with respect
to K , and

6. there exists a foliation�s , s ∈ (−ε, 0] of	1\	′
1 such that�0 = ∂+	1 and θ+[�s] <

0 with respect to the data K ′.

Proof. By pushing the components of ∂+	1 into 	1, as in the proof of Theorem 5.1,
while changing the data K to K ′ near components of ∂	1 which are stable but not
strictly stable, we can construct K ′ and a foliation �s near ∂	1 such that each �s has
θ+[�s] < 0, thus satisfying Properties 1, 4 and 6. By Sard’s theorem, �s and ∂+	2
intersect transversally for almost every s ∈ (−ε, 0). Hence we can pick one such s, for
which also Properties 2 and 3 are satisfied. Property 5 follows by construction, as we
were subtracting a non-negative definite tensor from K to obtain K ′. ��
Subsequently, for two sets 	1,	2 we denote by 	1�	2 the symmetric difference,
defined by 	1�	2 = (	1\	2) ∪ (	2\	1).

Lemma 7.7. Let (M, g, K ), 	1 and 	2 be as in the previous lemma. Assume further-
more that 	1�	2 �= ∅. Then there exists 	 ⊃ 	1 ∪ 	2, such that ∂	 is the disjoint
union ∂	 = ∂−M ∪ ∂+	, where ∂+	 is an embedded stable MOTS. Any connected
component of ∂+	1 which intersects 	2, lies in the interior of 	.

Proof. There is nothing to prove if ∂(	1 ∪	2) is a smooth embedded manifold. Thus
we can assume that ∂+	1 and ∂+	2 intersect. Fix δ > 0 to be the distance at which
we can apply Proposition 6.1 in (M, g, K ). We use Lemma 7.6, to deform 	1 and K to
	′

1 and K ′ with the stated properties for this choice of δ. As ∂+	′
1 and ∂+	2 intersect

transversally, Lemma 2.14 allows us to smooth out the corner of ∂(	′
1 ∪ 	2) in the

outward direction.
Furthermore, all stable components of ∂+	1 which were touching ∂	2 but not inter-

secting	2 give rise to components of ∂+	′
1, which are disjoint of ∂+	2 and at a distance

at most δ to ∂+	2. Thus we can apply the surgery procedure of Proposition 6.1 to join
these components to ∂	2. This yields an open set 	′ with 	′ ⊃ 	′

1 ∪ 	2 and ∂	′ is
the disjoint union ∂	′ = ∂−	′ ∪ ∂+	′, where ∂−	′ = ∂−M and ∂+	′ is C1,1 and has
θ+[∂+	′] ≤ 0 and θ+[∂+	′] �≡ 0, as θ+ �≡ 0 on the components of ∂+	′ which were
created from joining a component of ∂+	′

1 to a component of ∂+	2. We can then use the
flow from Lemma 5.2 to smooth out the boundary of 	′, yielding 	′′ ⊃ 	′ ⊃ 	′

1 ∪	2
with	′′ an open set. Note, by construction all components of ∂+	′

1 and all components of
∂+	2 which were joined with components from ∂+	′

1 are contained in the interior of	′′.
Now an application of Theorem 5.1 to the data (M\	′′, g, K ), with inner boundary

∂−(M\	′′) = ∂+	′′, and outer boundary ∂+ M yields a set 	 ⊃ 	′′ with boundary ∂	
the disjoint union ∂	 = ∂−M ∪ ∂+	, where ∂+	 is a smooth, stable MOTS.

By construction all components of ∂+	′
1 and ∂+	2 are in the interior of 	. Further-

more, an application of the strong maximum principle as in the proof of Theorem 5.1
implies that ∂+	 can not penetrate the region 	1\	′

1 as this is foliated by trapped
surfaces. In particular all components of ∂+	1 which meet ∂+	2 are contained in the
interior of 	. ��
Remark 7.8. The preceding lemma implies the uniqueness of outermost MOTS.

Proof of Theorem 7.3. Subsequently we assume that T is non-empty, and therefore
(M, g, K ) contains trapped regions, as otherwise there is nothing to prove. We first
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show that we can define ∂+T by a collection of sets with much more well-behaved
boundaries. We define T to be the collection of all outer trapped sets 	, such that the
outer boundary ∂+	 satisfies the following four assumptions:

1. θ+[∂+	] = 0;
2. every component of ∂+	 is stable, and thus satisfies sup |A| ≤ C , where C is the

constant from Theorem 2.10, and depends only on ‖M Rm‖C0(M), ‖K‖C1(M) and
injρ(M, g, K ; ∂M);

3. i+(∂+	) ≥ δ where δ depending on the same data as C above is the δ from Theo-
rem 6.3;

4. |∂+	| ≤ C , where C is the area resulting from Proposition 6.4 applied to ∂+	 with
i+(∂+	) ≥ δ for the above δ. This C also depends only on injρ(M, g, K ; ∂M),
‖M Rm‖C0(M) and ‖K‖C1(M).

To this end, assume that	 is an outer trapped set, which does not lie in T . Then we con-
struct a set 	′ ⊃ 	 which lies in T by applying Theorem 6.3 and using Proposition 6.4
to prove the area estimate.

We thus see that

T =
⋃

	∈T
	.

The first claim is that for each point p ∈ ∂+T there exists 	 ∈ T such that p ∈ ∂+	.
Clearly, for every n there exists 	n such that dist(�n, p) < 1

n , where �n = ∂+	n .
We can now appeal to the compactness theorem [AM05, Theorem 1.3] for stable MOTS
with bounded curvature and bounded area, which, after passing to a sub-sequence, yields
a limit � of ∂+	n in C1,α . This � is a smooth stable MOTS with bounded curvature
and bounded area. Furthermore, � is the outer boundary of a set 	, as the ∂+	n can
eventually be represented as graphs over �.

However, � is not necessarily embedded, as the limit of embedded surfaces might
meet itself. As i+(∂+	) ≥ δ, the only thing that prevents � from being embedded
are points where � touches itself from the inside. To remedy this, we can replace the
sequence of the 	n by a sequence 	′

n which is increasing in the sense that 	′
n ⊂ 	′

n+1
for all n. We proceed inductively and let 	′

1 := 	1. Assume that we have constructed

	′
1 ⊂ 	′

2 ⊂ · · · ⊂ 	′
n−1

with 	′
k ∈ CT for k = 1, . . . , n − 1. Consider the set 	n ∪ 	′

n−1. Either this set has
a smooth embedded boundary, in which case we can use Theorem 5.1 to ensure the
existence of 	′

n ⊃ 	n ∪ 	′
n−1 or 	n ∪ 	′

n−1 does not have a smooth boundary. Then
Lemma 7.7 yields a barrier for Theorem 5.1 and allows us to construct	′

n ⊃ 	n ∪	′
n−1.

By eventually applying Theorem 6.3, we can assume that 	′
n ∈ T .

We will now relabel 	n := 	′
n and �n := �′

n . As explained above, there is a sub-
sequence of the 	n such that the �n converge in C1,α to a stable MOTS � which is
the outer boundary of a set 	 and has i+(�) ≥ δ, thus � can not touch itself on the
outside. Since the 	n are increasing, � can not touch itself on the inside either. This
follows from the fact that the �n converge as graphs from the inside to �. Thus if �
touches itself on the inside, so would the �n . But each �n is embedded, and hence � is
embedded and 	 ∈ T .

Next we show that ∂+T consists of a smooth collection of MOTS. To this end assume
first that 	1 and 	2 are such that the outer boundaries ∂+	k meet ∂+T for k = 1, 2.
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Let �k be a component of ∂+	k that meets ∂T . From Lemma 7.7 we infer that either
�1 = �2 or dist(�1, �2) > 0.

It follows that ∂T is a collection of disjoint stable MOTS. ��
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