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THE "ARIADNE'S CLEW"1 ALGORITHM:
GLOBAL PLANNING WITH LOCAL METHODS?

Pierre BESSIERE?, Juan-Manuel AHUACTZIN, El-Ghazali TALBI & Emmanuel MAZER

CNRS#
IMAG Institute, LIFIAS & LGI® laboratories

ABSTRACT

The goal of the work described in this paper is to
build a path planner able to drive a robot in a dy-
namic environment where the obstacles are moving.

In order to do so, we propose a method, called
"ARIADNE'S CLEW algorithm", to build a global path
planner based on the combination of two local
planning algorithms : an EXPLORE algorithm and a
SEARCH algorithm. The purpose of the EXPLORE al-
gorithm is to collect information about the envi-
ronment with an increasingly fine resolution by
placing landmarks in the searched space. The goal
of the SEARCH algorithm is to opportunistically
check if the target can be easily reached from any
given placed landmark.

The ARIADNE'S CLEW algorithm is shown to be
very fast in most cases allowing planning in dy-
namic environments. Hence, it is shown to be com-
plete, which means that it is sure to find a path
when one exists. Finally, we describe a massively
parallel implementation of this algorithm.

INTRODUCTION

The goal of this work is to build a path planner
able to drive a robot in a dynamic environment
where the obstacles are moving.

Designing a path planner is a central question in
robotics research. A review of the existing ap-
proaches can be found in Latombe's book [1]. There
are two main ways to deal with this problem : the
global and the local approaches. The global ap-
proaches suppose that a complete representation of
the configuration space has been computed before
looking for a path. The global approaches are com-
plete in the sense that if a path exists it will be
found. Unfortunately, computing the complete con-
figuration space is very time consuming, worst, the
complexity of this task grows exponentially as the
number of degrees of freedom increases.
Consequently, today most of the robot path planners
are used off-line : the planner is invoked with a

model of the environment, it produces a plan which
is passed to the robot controller which, in turn, exe-
cutes it. In general, the time necessary to achieve
this, is not short enough to allow the robot to move
in a dynamic environment. The local approaches
need only partial knowledge of the configuration
space. The decisions to move the robot are taken
using local criteria and heuristics to choose the most
promising directions. Consequently, the local meth-
ods are much faster. Unfortunately, they are not
complete, it may happen that a solution exists and is
not found. The local approaches consider planning
as an optimisation problem, where finding a path to
the target corresponds to the optimisation of some
given function. As any optimisation technique, the
local approaches are subject to get trapped in some
local optima, where a path to the goal has not been
found and from which it is impossible or, at least,
very difficult to escape.

The ultimate goal of a planner is to find a path in
the configuration space from the initial position to
the target. However, while searching for this path,
an interesting sub-goal to consider may be to try to
collect information about the free space and about
the possible paths to go about that space. The
ARIADNE'S CLEW algorithm tries to do both at the
same time. An EXPLORE algorithm collects infor-
mation about the free space with an increasingly
fine resolution, while, in parallel, a SEARCH algo-
rithm opportunistically checks if the target can be
reached. The EXPLORE algorithm works by placing
landmarks in the searched space in such a way that
a path from the initial position to any landmark is
known. In order to learn as much as possible about
the free space the EXPLORE algorithm tries to
spread the landmarks all over the space. To do so, it
tries to put the landmarks as far as possible from
one another. For each new landmark produced by
the EXPLORE algorithm the SEARCH algorithm
checks with a local method if the target may be
reached from that landmark. The ARIADNE'S CLEW
algorithm is very fast, however, we will show that it
is a complete planner which will find a path if one
exits. The resolution at which the space is scanned
and the time spent to do so, automatically adapts to
the difficulty of the problem.



Both the EXPLORE and the SEARCH algorithms
may be seen as solving optimisation problems. We
first introduce the optimisation technique we are
using, namely, genetic algorithms. We then de-
scribe successively in some details, the SEARCH al-
gorithm, the EXPLORE algorithm and the concate-
nation of both. We finally explain a massively
parallel implementation of our method and present
some results proving that using this method we are
able to drive a robot in a dynamic environment. We
conclude with a discussion and some perspectives
for future work.

PRINCIPLE OF GENETIC ALGORITHMS

Genetic algorithms are programs used to deal
with optimisation problems. They have first been
introduced by Holland [2]. Their goal is to find op-
timum of a given function F on a given search space
S. For instance, the search space S may be 2N, a
point of S is then described by a vector of N bits
and F is a function able to compute a real value for
each of the 2N vectors.

In an initialisation step a set of points of the
search space S (called a "population" of "individu-
als"), is drawn at random (the "genotype" of each
individual is a vector of N bits). Then, the genetic
algorithm iterates over the following 4 steps until a
satisfying optimum is reached (see figure 1 below) :

1 - Evaluation: The function F is computed

for each individual, ordering the population from

the worst to the best.

2 - Selection: Pairs of individuals are selected,
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best individuals having more chance to be se-
lected than poor ones (one individual may appear
in different pairs).

3 - Reproduction: New individuals (called
"offspring") are produced from these pairs.

4 - Replacement: A new population is gener-
ated by replacing some of the individuals of the
old population by the new ones.

Reproduction is done using some "genetic opera-
tors". Number of them may be used but the two
most common are mutation and crossing-over. The
mutation operator picks at random some mutation
locations among the N possible sites in the vector
and flip the value of the bits at these locations as
represented in figure 2.
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figure 2: mutation operator

The cross-over operator selects at random a cut
point among the N possible sites in the binary
genotype and exchanges the last parts of the two
parents vectors as shown in figure 3.
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figure 3: cross-over operator

Genetic algorithms have many applications and
exhibit very impressive
optimisation capabilities compare
to other optimisation techniques
especially when the search space
is big (=2300) and F quite irregular
(see [3] for a recent survey).

Beside their scientific interest
as a model of biological evolution,
genetic algorithms have two main
technological interests:

1 - They are very robust

techniques able to deal with a

very large class of optimisation

problems.

2 - They are very easy to

program in parallel and the ac-

celeration obtained by doing so

is considerable (see [4]).

SELECTION

figure 1: The basic principle of genetic algorithms



We proposed a parallel genetic algorithm and
developed an implementation on a massively paral-
lel machine based on Transputers (see [5]). This al-
gorithm and the performances obtained by the
parallel implementation have been an essential
achievement for the success of the work described
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figure 4: the principle of the parallel genetic
algorithm

s

The principle of this parallel genetic algorithm is
described by figure 4. It consists in one parallel
process running for each individual in the popula-
tion. The processes are organised in a torus struc-
ture where each process has 4 neighbours. At each
generation all the individuals, in parallel, choose
among their 4 neighbours with whom they want to
breed and reproduce with the chosen bride. The
parallel genetic algorithm iterates over the follow-
ing 4 steps until a satisfying optimum is reached :

1 - Evaluation: Evaluate in parallel all the

individuals.

2 - Selection: Select in parallel, among the

four neighbours, the bride with the best evalua-

tion.

3 - Reproduction: Reproduce in parallel with

the chosen bride.

4 - Replacement: Replace in parallel the par-

ents by the offspring.

THE SEARCH ALGORITHM

The purpose of the SEARCH algorithm is to de-
termine if the target T may be reached "simply"
from a given point wt. In order to do so, it looks for
fixed length Manhattan motions in the configuration
space starting at it and ending at T.

Given a system with N degrees of freedom {01,

07, ..., ON}, a Manhattan motion of length 1 consists
in moving each degree of freedom 0; successively
once by Ab;. A Manhattan motion of length L is a
succession of L Manhattan motions of length 1 or
of LxN elementary motions of a single degree of
freedom. Such a Manhattan motion M is denoted :
= (A6.A0),...,A8),... A0y, AO? ,AB3...,AD} )
Let us call ¢/the point reached in the configura-
tion space after i ixj elementary motions. Let us call
b the furthest point reached along M before a col-
hslon occurred. We are lookmg for a collision free
Manhattan motion such that 72 =75 = 7.

The SEARCH algorithm may be expressed as an
optimisation problem for the parallel genetic algo-
rithm where:

- The search space Sy is the set of all Manhattan
motions of length L starting at .

- The evaluation function Fg applied to a
Manhattan motion M given a target T is defined
as follow :

F,(M,t)=0 if any / of M preceding rb is in
the BACKPROJECTIONS of t. (The BACKPRO—
JECTION; of T is the set of all points of the
searched space from which T may be reached by
a Manhattan motion of length 1).

Otherwise, F(M,t)=llt — £21l.

The SEARCH algorithm tries to minimise the
evaluation function Fg(M,t) over the search space
SS-

Manhattan motions have been chosen because
for the NxL elementary motions of M, it is possible
to compute simply in parallel, both the correspond-
ing ¢/ and the collision-free test on the path from &t
to 1;J (see [6]). Furthermore, in a 3 dimension
phys1ca1 space, the collision-free test itself consists
in three processes running in parallel checking
respectively that there is no vertex-to-plan colli-
sions, plan-to-vertex collisions and edge-to-edge
collisions. Finally, each of these three processes
may be expressed as the parallel evaluation of AxB
processes where A is the number of elements in the
first set of the test (A is the number of vertices,
plans or edges) and where B is the number of ele-
ments in the second set (B is the number of plan,
vertices or edges).

The SEARCH algorithm may be used as a planner
by itself. It has been used as such for several appli-
cations. Let us describe briefly two of them (a more
detailed presentation may be found in [7]).



o) The first application is
a planner for a planar
arm with two degrees of
freedom. By restricting
ourselves to two dimen-
sions we can graphically
represent the configura-
tion space and give the
reader a better feeling of
the method. However,
the proposed method

.S does not make any hy-

figure 5.a pothesis about the num-

ber of degrees of freedom and can be used without
modification for arms with a much larger number of
degrees of freedom. Figure 5.a shows a Manhattan
motion in the configuration space and the associ-
ated "individual" of the genetic algorithm. Figure

5.b shows the initial and final configuration of the

arm in the operational space. Figure 5.c shows the

path found in the operational space and Figure 5.d

the path found in the configuration space. Finally,

Figure 5.e shows the portion of the configuration

space which has been evaluated. It should be

noticed that only a very restricted part of the
configuration is really computed, this is one of the
main explanation of the efficacy of the algorithm
and this is why this algorithm is able to handle
planning in dynamic environments.

0

eeefasioofedTpoaofnetlraanRa |

used version of SEARCH has been implemented on a
massively parallel Transputers machine. The plan-
ning time for a given path was less than 1 second on
a machine of 64 Transputers.

As shown by the two previous examples, the
used of SEARCH has a planner is very interesting.
However, it may happen that the genetic algorithm
gets trapped in some local minima. In that case the
planner does not find a solution even if one exists.
The SEARCH algorithm is not complete, this is its
main drawback.

THE EXPLORE ALGORITHM

The purpose of the EXPLORE algorithm is to
collect information about the free space. The
EXPLORE algorithm works by placing landmarks in
the searched space in such a way that a collision
free Manhattan path from the initial position m to
any landmark Ayx is known. In order to learn as
much as possible about the free space the EXPLORE
algorithm tries to spread the landmarks all over the
space. To do so, it tries to put the landmarks as far
as possible from one another. Let us call A =
{M.A2,... k... } the set of already placed landmarks
at a given step of the program. It is possible to de-
fine the distance between a point o of the searched

&1 [0 Espace des L Espace des
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figure 5.b

figure 5.c

The second application is a planner for a holo-
nomic mobile robot. Figure 6 shows how the plan-
ner behaves in a dynamic environment. Figure 6.a
shows the initial found path. Figure 6.b shows the
path re-planned after the closing of the door. The

figure 6.b

/

figure S.e

figure 5.d

space and the set A by D(a,A)=Min llA - all on all
landmarks A, € A.

The EXPLORE algorithm may be expressed as an
optimisation problem for the parallel genetic algo-
rithm where:

- The search space S is the set of all Manhattan
motions of length L starting from any landmark
)\'k of A.
- The evaluation function F. applied to a
Manhattan motion M of S, is defined as follows :
F.(M)=D(<%2,A) where ¥ is still the fur-
thest point reached along M before a collision
occurred.

The EXPLORE algorithm tries to maximise over




the search space S. the evaluation function F.(M). THE ARIADNE'S CLEW ALGORITHM

Figure 7 shows how the landmarks spread in the The purpose of the ARIADNE'S CLEW algorithm
environment. is to find a path from a given point & to a target T.

] The ARIADNE'S CLEW algorithm is the follow-

& @ mg.
H Iﬁ% H ﬂ + 1 - Use the SEARCH algorithm to find if a
D D "simple" path exist between it and .
H — 2 - Ifno "simple" path found by step 1, then
do until a path is found
2.1 * Use EXPLORE to generate a new

landmark A.

2.2 * Use SEARCH to look for a "sim
ple" path from A to T.

It is interesting to notice that SEARCH may be
seen as a backprojection function for EXPLORE.
SEARCH could be called BACKPROJECTIONe be-
cause it plays relatively to EXPLORE the exact same
role than BACKPROJECTIONg relatively to SEARCH.
A quite complicated backprojection function in-
deed, which usually produces very big backprojec-
tion allowing EXPLORE to stop after placing just a
few landmarks.

The ARIADNE'S CLEW algorithm has three very
important qualities:

. " , " - It reduces to the very fast SEARCH algorithm
Figure 8 shows "the ARIADNE'S CLEW" : a tree for most of the cases.

of landmarks allowing to go about the free space. - Ttis complete, in the sense that if a path exists
it will be found (see proposition 2 below).

- It automatically adapts the resolution at which
it scans the space to the complexity of the prob-
lem (see proposition 3 below).

Figure 9 shows two complex paths found by the
ARIADNE'S CLEW algorithm.

figure 8: The ARIADNE'S CLEW



figure 9

In the sequel of this section, three important
propositions concerning the ARIADNE'S CLEW al-
gorithm will be established. However, given the re-
stricted length of this paper, only sketches of proofs
are proposed.

Definition 1: a PATH P from an initial point 7 to
a target T in an N dimensions metric space is de-
fined as an N-uplet (F1(t), F2(t), ..., FN(t)) of N
continuous functions from [0,1] -> R such that
(F1(0), F2(0), ..., FN(0)) are the co-ordinates of
and (F1(1), F2(1), ..., FN(1)) are the co-ordinates of
T.

Definition 2: a MANHATTAN MOTION OF
LENGTH 1 in an N dimensions space is defined as an
N-uplet M, =(AG},AGi,...,AB},...,AG}V‘z‘ where
each Ae! is an integer corresponding to the length
of the move along dimension i expressed in some
given elementary length unit v.

Definition 3: a MANHATTAN MOTION OF

LENGTH L in an N dimension space is defined as an
NxL-uplet:
M, = AB},AB;,...,AG},...,AG;,AOE,AH?,...,AH,%,)
where each Ag/ is an integer corresponding to the
length of the jtlll move along dimension i expressed
in some given elementary length unit v.

Proposition 1: for any €>0, for any path P, it is
possible to find v, L and a Manhattan motion a; of
length L, such that the path P is approximated by
M with an error less than €.

Sketch of proof:
- Direct application of the Stone-Weirstrass
theorem.

Proposition 2: the ARIADNE'S CLEW algorithm
is complete, which means that, for any given €>0, if
a path exists from the initial point 7 to the target T it
will find (in a finite time) L and a Manhattan mo-
tion of length L am; starting at t and ending at t
with an error less than €.

Sketch of proof:

- Proposition 1 insures that such a Manhattan
motion My exists.

- The ARIADNE'S CLEW algorithm searches a
discrete finite space.

- The ARIADNE'S CLEW algorithm insures that
all the produced Manhattan motions are differ-
ent.

Consequently, a; will be produced after a finite
amount of time.

Remark: In fact Proposition 2 proves that any al-
gorithm producing Manhattan motions without pro-
ducing twice the same is complete. This is true ei-
ther for an algorithm enumerating the Manhattan
motions or for an algorithm drawing randomly the
Manhattan motions (without drawing twice the
same). Of course the ARIADNE'S CLEW algorithm is
doing much, much, better than those two.

Definition 4: for a given ¢, let us call the
COMPLEXITY OF THE PROBLEM the minimum num-
ber C of identical tiles necessary to do a paving of
the space, the biggest dimension of a tile being
equal to €.

Definition 5: let us call RESOLUTION R the
number of landmarks generated by the ARIADNE'S
CLEW algorithm to find a solution.

Proposition 3: resolution R is always inferior or
equal to complexity C.

Sketch of proof:

- as long as R<C, two different landmarks may
not be in the same tile given that the ARIADNE'S
CLEW algorithm maximises the distance between
the landmarks.

- for R=C, there is exactly one landmark in
each tile.

- in that case, it exists a Manhattan motion
starting at a distance of 7 less than € (starting at
the landmark in the same tile than it) and ending
at a distance of T less than € (ending at the land-
mark in the same tile than t).

Remark: In practice, experiences prove that
R<<C. There are two main reasons for this. First,
most of the time, SEARCH stops EXPLORE after the
generation of just a few landmarks. Second, the



ARIADNE'S CLEW algorithm adapts locally its reso-
lution to the surrounding free space, generating a lot
of landmarks where narrow doors or corridors have
to be found and generating just a few of them when
in an open free space.

PARALLEL IMPLEMENTATION

It is possible to design a massively parallel im-
plementation of the ARIADNE'S CLEW algorithm
with 5 embedded levels of parallelism (see figure
10) :

1 - At top level of parallelism, SEARCH and
EXPLORE may run in parallel. EXPLORE
produces a landmark while SEARCH exploits the
previous one. SEARCH stops EXPLORE as soon as
it reaches the target.
2 - Both SEARCH and EXPLORE need to run a
genetic algorithm which can be implemented in
parallel as described in section 2.
3 - Fs and Fe, the evaluation functions of
SEARCH and EXPLORE, consist mainly in testing
collision on paths. This may be done by NxL
parallel processes, where N is the number of
degrees of freedom and L the length of the
considered Manhattan motions.

Landmarks

4 - Each of this NxL

N
EXPLORE )‘ Found T SEARCH ) processes may be further
\ v \ decomposed as three parallel
processes testing respectively
Parallel Genetic Algorithm / Parallel Genetic Algorithm \ VCI‘tCX-tO-plan, plan-tO-Vel’tGX
p parallel processes / p parallel processes \ and edge_to_edge collisions.
— — \ e — — 5 - Finally, each of this test

— )
J ] ] needs AxB parallel processes
_l@ _@_®_@_@ where A is the number of

elements in the first set of the

®
—@—@—@

|
_@_@J L@_@_ _@J test (A is the number of
vertices, plans or edges) and
' where B is the number of
_@_.@J L_@_ _.@_.@J elements in the second set (B is

I the number of plans, vertices

] LN

ACH
= \ \_—

or edges).
| g

\ The methodology used to
\/ 1implement this on a parallel

7/ \ 7/
/ 7
v \ v

s/ Collision-free test for Fe / Collision-free test for Fs
nxl parallel processes \ / nxl parallel processes

machine consists in writing the
application fully in parallel as if
\ there were as many processors
\ available as the number of
processes. Of course, in practice,

©0 0 ©0

" this is not the case. However, we
use languages and tools

-
e -
- \ -
-

Collm’fon free test for an elementary motion| Col)sdon -free test for an elementary motiory
3 parallel processes 3 parallel processes

- \

(particularly the PAROS parallel
operating system and the PARX
| communication kernel developed
in the SUPERNODE II project, see
[8]) which allows to conceive a

| parallel program independently of

(( X X )) (( X X j gllaech?flcel_litecture of the target

7 | 7

7 7

7 AXxB parallel processes

AxB parallel processes ‘

We implement this on SUPER-
| NODE machine made of 128
Transputers.

00 oj‘ ©O

0

figure 10



CONCLUSION, RESULTS AND PERSPECTIVES

We have presented a general method to search a
continuous configuration space. This method is im-
plemented using a minimisation technique based on
parallel genetic algorithms. We have demonstrated
the validity of the method on a set of complex path
planning problems. Finally, we proposed a mas-
sively parallel implementation of the method which
permits on-line re-planning.

Our experimental set-up used to test our algo-
rithm for an actual six degrees of freedom arm is
represented on figure 11. Robotl is under the
control of the MegaNode (128 T800 Transputers
parallel machine) running a parallel implementation
of the ARIADNE'S CLEW algorithm. RobotlI is used
as a dynamically obstacle : it is manually controlled
via KALI (KALI is a robot control software initially
developed at Mc Gill University). First we use a
CAD system called ACT7 which permits precise
geometrical description of the arms and obstacles
and which is able to present 3D simulations. We
compile this representation into a special format

Robor | Robot II

68030 68030

KALI Bus VME KALI Bus VME

(VxWorks) (VxWorks)

Sun 4
(Unix)

Genetic Algorithm server

Jousaya

(SEARCH)

Genetic Algoritm

(EXPLORE)

ACT

Robot simulation package

oo
oo
oo
oo VxWorks
oo
oo
oo

Sun 3

o0ooO0OooOo ooooOooo
Oo0o0OOoo ooodooo
Ooooo oooooo
Ooo oooooo

Mega—Node
128 Transputers
(Parix)

Silicon Graphics

(Unix)

server
Mega-Node

(Unix)

figure 11

which is downloaded to the MegaNode. A final
position is then specified to Robotl, the MegaNode
quickly (2 seconds) produces a plan which assume
RobotlI is standing still, should the position of
RobotlI change under manual control, RobotI stops
and the MegaNode (re)computes another path.

We plan in the next months to work on the pro-
blems of grasping, re-grasping and fine motion
synthesis.
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