
 Open access Proceedings Article DOI:10.1109/IROS.1993.583784

The "Ariadne's clew" algorithm: global planning with local methods
— Source link

Pierre Bessière, Juan-Manuel Ahuactzin, El-Ghazali Talbi, Emmanuel Mazer

Published on: 26 Jul 1993 - Intelligent Robots and Systems

Topics: Search algorithm, Motion planning, Path (graph theory) and Genetic algorithm

Related papers:

 Robot Motion Planning

 Probabilistic roadmaps for path planning in high-dimensional configuration spaces

 Robot motion planning: a distributed representation approach

 OBPRM: an obstacle-based PRM for 3D workspaces

 Complexity of the mover's problem and generalizations

Share this paper:

View more about this paper here: https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-
1plo32mzes

https://typeset.io/
https://www.doi.org/10.1109/IROS.1993.583784
https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-1plo32mzes
https://typeset.io/authors/pierre-bessiere-l4528le69s
https://typeset.io/authors/juan-manuel-ahuactzin-3biwm0iwkt
https://typeset.io/authors/el-ghazali-talbi-3gniozvowu
https://typeset.io/authors/emmanuel-mazer-ev457zygy1
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/search-algorithm-2g4xpul7
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/topics/path-graph-theory-23zojyrm
https://typeset.io/topics/genetic-algorithm-2evea86k
https://typeset.io/papers/robot-motion-planning-3qlt7dqyo0
https://typeset.io/papers/probabilistic-roadmaps-for-path-planning-in-high-dimensional-45s4l7x8cl
https://typeset.io/papers/robot-motion-planning-a-distributed-representation-approach-1bsc9j9iz2
https://typeset.io/papers/obprm-an-obstacle-based-prm-for-3d-workspaces-21013d3lnh
https://typeset.io/papers/complexity-of-the-mover-s-problem-and-generalizations-fpucxxfax1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-1plo32mzes
https://twitter.com/intent/tweet?text=The%20%22Ariadne's%20clew%22%20algorithm:%20global%20planning%20with%20local%20methods&url=https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-1plo32mzes
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-1plo32mzes
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-1plo32mzes
https://typeset.io/papers/the-ariadne-s-clew-algorithm-global-planning-with-local-1plo32mzes

THE "ARIADNE'S CLEW"1 ALGORITHM:

GLOBAL PLANNING WITH LOCAL METHODS2

Pierre BESSIéRE3, Juan-Manuel AHUACTZIN, El-Ghazali TALBI & Emmanuel MAZER

CNRS4

IMAG Institute, LIFIA5 & LGI6 laboratories

ABSTRACT

The goal of the work described in this paper is to
build a path planner able to drive a robot in a dy-
namic environment where the obstacles are moving.

In order to do so, we propose a method, called
"ARIADNE'S CLEW algorithm", to build a global path
planner based on the combination of two local
planning algorithms : an EXPLORE algorithm and a
SEARCH algorithm. The purpose of the EXPLORE al-
gorithm is to collect information about the envi-
ronment with an increasingly fine resolution by
placing landmarks in the searched space. The goal
of the SEARCH algorithm is to opportunistically
check if the target can be easily reached from any
given placed landmark.

The ARIADNE'S CLEW algorithm is shown to be
very fast in most cases allowing planning in dy-
namic environments. Hence, it is shown to be com-
plete, which means that it is sure to find a path
when one exists. Finally, we describe a massively
parallel implementation of this algorithm.

INTRODUCTION

The goal of this work is to build a path planner
able to drive a robot in a dynamic environment
where the obstacles are moving.

Designing a path planner is a central question in
robotics research. A review of the existing ap-
proaches can be found in Latombe's book [1]. There
are two main ways to deal with this problem : the
global and the local approaches. The global ap-
proaches suppose that a complete representation of
the configuration space has been computed before
looking for a path. The global approaches are com-
plete in the sense that if a path exists it will be
found. Unfortunately, computing the complete con-
figuration space is very time consuming, worst, the
complexity of this task grows exponentially as the
number of degrees of freedom increases.
Consequently, today most of the robot path planners
are used off-line : the planner is invoked with a

model of the environment, it produces a plan which
is passed to the robot controller which, in turn, exe-
cutes it. In general, the time necessary to achieve
this, is not short enough to allow the robot to move
in a dynamic environment. The local approaches
need only partial knowledge of the configuration
space. The decisions to move the robot are taken
using local criteria and heuristics to choose the most
promising directions. Consequently, the local meth-
ods are much faster. Unfortunately, they are not
complete, it may happen that a solution exists and is
not found. The local approaches consider planning
as an optimisation problem, where finding a path to
the target corresponds to the optimisation of some
given function. As any optimisation technique, the
local approaches are subject to get trapped in some
local optima, where a path to the goal has not been
found and from which it is impossible or, at least,
very difficult to escape.

The ultimate goal of a planner is to find a path in
the configuration space from the initial position to
the target. However, while searching for this path,
an interesting sub-goal to consider may be to try to
collect information about the free space and about
the possible paths to go about that space. The
ARIADNE'S CLEW algorithm tries to do both at the
same time. An EXPLORE algorithm collects infor-
mation about the free space with an increasingly
fine resolution, while, in parallel, a SEARCH algo-
rithm opportunistically checks if the target can be
reached. The EXPLORE algorithm works by placing
landmarks in the searched space in such a way that
a path from the initial position to any landmark is
known. In order to learn as much as possible about
the free space the EXPLORE algorithm tries to
spread the landmarks all over the space. To do so, it
tries to put the landmarks as far as possible from
one another. For each new landmark produced by
the EXPLORE algorithm the SEARCH algorithm
checks with a local method if the target may be
reached from that landmark. The ARIADNE'S CLEW
algorithm is very fast, however, we will show that it
is a complete planner which will find a path if one
exits. The resolution at which the space is scanned
and the time spent to do so, automatically adapts to
the difficulty of the problem.

Both the EXPLORE and the SEARCH algorithms
may be seen as solving optimisation problems. We
first introduce the optimisation technique we are
using, namely, genetic algorithms. We then de-
scribe successively in some details, the SEARCH al-
gorithm, the EXPLORE algorithm and the concate-
nation of both. We finally explain a massively
parallel implementation of our method and present
some results proving that using this method we are
able to drive a robot in a dynamic environment. We
conclude with a discussion and some perspectives
for future work.

PRINCIPLE OF GENETIC ALGORITHMS

EVALUATION

SELECTION

REPRODUCTION

REPLACEMENT

figure 1: The basic principle of genetic algorithms

Genetic algorithms are programs used to deal
with optimisation problems. They have first been
introduced by Holland [2]. Their goal is to find op-
timum of a given function F on a given search space
S. For instance, the search space S may be 2N, a
point of S is then described by a vector of N bits
and F is a function able to compute a real value for
each of the 2N vectors.

In an initialisation step a set of points of the
search space S (called a "population" of "individu-
als"), is drawn at random (the "genotype" of each
individual is a vector of N bits). Then, the genetic
algorithm iterates over the following 4 steps until a
satisfying optimum is reached (see figure 1 below) :

1 - Evaluation: The function F is computed
for each individual, ordering the population from
the worst to the best.
2 - Selection: Pairs of individuals are selected,

best individuals having more chance to be se-
lected than poor ones (one individual may appear
in different pairs).
3 - Reproduction: New individuals (called
"offspring") are produced from these pairs.
4 - Replacement: A new population is gener-
ated by replacing some of the individuals of the
old population by the new ones.

Reproduction is done using some "genetic opera-
tors". Number of them may be used but the two
most common are mutation and crossing-over. The
mutation operator picks at random some mutation
locations among the N possible sites in the vector
and flip the value of the bits at these locations as
represented in figure 2.

figure 2: mutation operator

The cross-over operator selects at random a cut
point among the N possible sites in the binary
genotype and exchanges the last parts of the two
parents vectors as shown in figure 3.

+

010001001110111

figure 3: cross-over operator

Genetic algorithms have many applications and
exhibi t very impress ive
optimisation capabilities compare
to other optimisation techniques
especially when the search space
is big (≈2300) and F quite irregular
(see [3] for a recent survey).

Beside their scientific interest
as a model of biological evolution,
genetic algorithms have two main
technological interests:

1 - They are very robust
techniques able to deal with a
very large class of optimisation
problems.
2 - They are very easy to
program in parallel and the ac-
celeration obtained by doing so
is considerable (see [4]).

We proposed a parallel genetic algorithm and
developed an implementation on a massively paral-
lel machine based on Transputers (see [5]). This al-
gorithm and the performances obtained by the
parallel implementation have been an essential
achievement for the success of the work described
in this paper.

figure 4: the principle of the parallel genetic
algorithm

The principle of this parallel genetic algorithm is
described by figure 4. It consists in one parallel
process running for each individual in the popula-
tion. The processes are organised in a torus struc-
ture where each process has 4 neighbours. At each
generation all the individuals, in parallel, choose
among their 4 neighbours with whom they want to
breed and reproduce with the chosen bride. The
parallel genetic algorithm iterates over the follow-
ing 4 steps until a satisfying optimum is reached :

1 - Evaluation: Evaluate in parallel all the
individuals.
2 - Selection: Select in parallel, among the
four neighbours, the bride with the best evalua-
tion.
3 - Reproduction: Reproduce in parallel with
the chosen bride.
4 - Replacement: Replace in parallel the par-
ents by the offspring.

THE SEARCH ALGORITHM

The purpose of the SEARCH algorithm is to de-
termine if the target t may be reached "simply"
from a given point p. In order to do so, it looks for
fixed length Manhattan motions in the configuration
space starting at p and ending at t.

Given a system with N degrees of freedom {q1,

q2, ..., qN}, a Manhattan motion of length 1 consists
in moving each degree of freedom qi successively
once by Dqi. A Manhattan motion of length L is a
succession of L Manhattan motions of length 1 or
of LxN elementary motions of a single degree of
freedom. Such a Manhattan motion M is denoted :

M = Dq
1

1
,Dq

2

1
,...,Dqi

1
,...,DqN

1
,Dq

1

2
,Dq

2

2
,...,DqN

L()

Let us call
i
jt the point reached in the configura-

tion space after ixj elementary motions. Let us call
a
bt the furthest point reached along M before a col-

lision occurred. We are looking for a collision free
Manhattan motion such that a

bt = N
Lt = t .

The SEARCH algorithm may be expressed as an
optimisation problem for the parallel genetic algo-
rithm where:

- The search space Ss is the set of all Manhattan
motions of length L starting at p.
- The evaluation function Fs applied to a
Manhattan motion M given a target t is defined
as follow :

Fs(M,t)=0 if any
i
jt of M preceding

a
bt is in

the BACKPROJECTIONs of t . (The BACKPRO-
JECTIONs of t is the set of all points of the
searched space from which t may be reached by
a Manhattan motion of length 1).

Otherwise, Fs(M,t)=||t -
a
bt ||.

The SEARCH algorithm tries to minimise the
evaluation function Fs(M,t) over the search space
Ss.

Manhattan motions have been chosen because
for the NxL elementary motions of M, it is possible
to compute simply in parallel, both the correspond-
ing

i
jt and the collision-free test on the path from p

to
i
jt (see [6]). Furthermore, in a 3 dimension

physical space, the collision-free test itself consists
in three processes running in parallel checking
respectively that there is no vertex-to-plan colli-
sions, plan-to-vertex collisions and edge-to-edge
collisions. Finally, each of these three processes
may be expressed as the parallel evaluation of AxB
processes where A is the number of elements in the
first set of the test (A is the number of vertices,
plans or edges) and where B is the number of ele-
ments in the second set (B is the number of plan,
vertices or edges).

The SEARCH algorithm may be used as a planner
by itself. It has been used as such for several appli-
cations. Let us describe briefly two of them (a more
detailed presentation may be found in [7]).

0

String

1

2

1 2 3 4 5 6 7 8 9 11
1 2 1 2 1 2 1 2 1 1

10
2

figure 5.a

figure 5.b figure 5.c figure 5.d figure 5.e

figure 6.a figure 6.b

The first application is
a planner for a planar
arm with two degrees of
freedom. By restricting
ourselves to two dimen-
sions we can graphically
represent the configura-
tion space and give the
reader a better feeling of
the method. However,
the proposed method
does not make any hy-
pothesis about the num-

ber of degrees of freedom and can be used without
modification for arms with a much larger number of
degrees of freedom. Figure 5.a shows a Manhattan
motion in the configuration space and the associ-
ated "individual" of the genetic algorithm. Figure
5.b shows the initial and final configuration of the
arm in the operational space. Figure 5.c shows the
path found in the operational space and Figure 5.d
the path found in the configuration space. Finally,
Figure 5.e shows the portion of the configuration
space which has been evaluated. It should be
noticed that only a very restricted part of the
configuration is really computed, this is one of the
main explanation of the efficacy of the algorithm
and this is why this algorithm is able to handle
planning in dynamic environments.

The second application is a planner for a holo-
nomic mobile robot. Figure 6 shows how the plan-
ner behaves in a dynamic environment. Figure 6.a
shows the initial found path. Figure 6.b shows the
path re-planned after the closing of the door. The

used version of SEARCH has been implemented on a
massively parallel Transputers machine. The plan-
ning time for a given path was less than 1 second on
a machine of 64 Transputers.

As shown by the two previous examples, the
used of SEARCH has a planner is very interesting.
However, it may happen that the genetic algorithm
gets trapped in some local minima. In that case the
planner does not find a solution even if one exists.
The SEARCH algorithm is not complete, this is its
main drawback.

THE EXPLORE ALGORITHM

The purpose of the EXPLORE algorithm is to
collect information about the free space. The
EXPLORE algorithm works by placing landmarks in
the searched space in such a way that a collision
free Manhattan path from the initial position p to
any landmark lk is known. In order to learn as
much as possible about the free space the EXPLORE
algorithm tries to spread the landmarks all over the
space. To do so, it tries to put the landmarks as far
as possible from one another. Let us call L =
{l1,l2,...lk,...} the set of already placed landmarks
at a given step of the program. It is possible to de-
fine the distance between a point a of the searched

space and the set L by D(a,L)=Min ||lk - a || on all
landmarks lk Î L.

The EXPLORE algorithm may be expressed as an
optimisation problem for the parallel genetic algo-
rithm where:

- The search space Se is the set of all Manhattan
motions of length L starting from any landmark
lk of L.
- The evaluation function Fe applied to a
Manhattan motion M of Se is defined as follows :

Fe(M)=D(
a
bt ,L) where

a
bt is still the fur-

thest point reached along M before a collision
occurred.

The EXPLORE algorithm tries to maximise over

the search space Se the evaluation function Fe(M).

Figure 7 shows how the landmarks spread in the
environment.

figure 7

Figure 8 shows "the ARIADNE'S CLEW" : a tree
of landmarks allowing to go about the free space.

figure 8: The ARIADNE'S CLEW

THE ARIADNE'S CLEW ALGORITHM

The purpose of the ARIADNE'S CLEW algorithm
is to find a path from a given point p to a target t.

The ARIADNE'S CLEW algorithm is the follow-
ing:

1 - Use the SEARCH algorithm to find if a
"simple" path exist between p and t.

2 - If no "simple" path found by step 1, then
do until a path is found
2.1 * Use EXPLORE to generate a new

landmark l.
2.2 * Use SEARCH to look for a "sim

ple" path from l to t.

It is interesting to notice that SEARCH may be
seen as a backprojection function for EXPLORE.
SEARCH could be called BACKPROJECTIONe be-
cause it plays relatively to EXPLORE the exact same
role than BACKPROJECTIONs relatively to SEARCH.
A quite complicated backprojection function in-
deed, which usually produces very big backprojec-
tion allowing EXPLORE to stop after placing just a
few landmarks.

The ARIADNE'S CLEW algorithm has three very
important qualities:

- It reduces to the very fast SEARCH algorithm
for most of the cases.
- It is complete, in the sense that if a path exists
it will be found (see proposition 2 below).
- It automatically adapts the resolution at which
it scans the space to the complexity of the prob-
lem (see proposition 3 below).

Figure 9 shows two complex paths found by the
ARIADNE'S CLEW algorithm.

figure 9

In the sequel of this section, three important
propositions concerning the ARIADNE'S CLEW al-
gorithm will be established. However, given the re-
stricted length of this paper, only sketches of proofs
are proposed.

Definition 1: a PATH P from an initial point p to
a target t in an N dimensions metric space is de-
fined as an N-uplet (F1(t), F2(t), ..., FN(t)) of N
continuous functions from [0,1] -> Â such that
(F1(0), F2(0), ..., FN(0)) are the co-ordinates of p
and (F1(1), F2(1), ..., FN(1)) are the co-ordinates of
t.

Definition 2: a MANHATTAN MOTION OF
LENGTH 1 in an N dimensions space is defined as an
N-uplet

1M = Dq
1

1
,Dq

2

1
,...,Dqi

1
,...,DqN

1() where
each

i
1Dq is an integer corresponding to the length

of the move along dimension i expressed in some
given elementary length unit u.

Definition 3: a MANHATTAN MOTION OF
LENGTH L in an N dimension space is defined as an
NxL-uplet:

LM = Dq
1

1
,Dq

2

1
,...,Dqi

1
,...,DqN

1
,Dq

1

2
,Dq

2

2
,...,DqN

L()
where each

i
jDq is an integer corresponding to the

length of the jth move along dimension i expressed
in some given elementary length unit u.

Proposition 1: for any e>0, for any path P, it is
possible to find u, L and a Manhattan motion LM of
length L, such that the path P is approximated by

LM with an error less than e.

Sketch of proof:
- Direct application of the Stone-Weirstrass
theorem.

Proposition 2: the ARIADNE'S CLEW algorithm
is complete, which means that, for any given e>0, if
a path exists from the initial point p to the target t it
will find (in a finite time) L and a Manhattan mo-
tion of length L LM starting at p and ending at t
with an error less than e.

Sketch of proof:
- Proposition 1 insures that such a Manhattan
motion LM exists.
- The ARIADNE'S CLEW algorithm searches a
discrete finite space.
- The ARIADNE'S CLEW algorithm insures that
all the produced Manhattan motions are differ-
ent.
Consequently, LM will be produced after a finite
amount of time.

Remark: In fact Proposition 2 proves that any al-
gorithm producing Manhattan motions without pro-
ducing twice the same is complete. This is true ei-
ther for an algorithm enumerating the Manhattan
motions or for an algorithm drawing randomly the
Manhattan motions (without drawing twice the
same). Of course the ARIADNE'S CLEW algorithm is
doing much, much, better than those two.

Definition 4: for a given e , let us call the
COMPLEXITY OF THE PROBLEM the minimum num-
ber C of identical tiles necessary to do a paving of
the space, the biggest dimension of a tile being
equal to e.

Definition 5: let us call RESOLUTION R the
number of landmarks generated by the ARIADNE'S
CLEW algorithm to find a solution.

Proposition 3: resolution R is always inferior or
equal to complexity C.

Sketch of proof:
- as long as R<C, two different landmarks may
not be in the same tile given that the ARIADNE'S
CLEW algorithm maximises the distance between
the landmarks.
- for R=C, there is exactly one landmark in
each tile.
- in that case, it exists a Manhattan motion
starting at a distance of p less than e (starting at
the landmark in the same tile than p) and ending
at a distance of t less than e (ending at the land-
mark in the same tile than t).

Remark: In practice, experiences prove that
R<<C. There are two main reasons for this. First,
most of the time, SEARCH stops EXPLORE after the
generation of just a few landmarks. Second, the

EXPLORE SEARCH

Landmarks

Found

Parallel Genetic Algorithm
p parallel processes

Parallel Genetic Algorithm
p parallel processes

Collision-free test for Fe
nxl parallel processes

Collision-free test for Fs
nxl parallel processes

Collision-free test for an elementary motion
3 parallel processes

Collision-free test for an elementary motion
3 parallel processes

AxB parallel processes AxB parallel processes

figure 10

ARIADNE'S CLEW algorithm adapts locally its reso-
lution to the surrounding free space, generating a lot
of landmarks where narrow doors or corridors have
to be found and generating just a few of them when
in an open free space.

PARALLEL IMPLEMENTATION

It is possible to design a massively parallel im-
plementation of the ARIADNE'S CLEW algorithm
with 5 embedded levels of parallelism (see figure
10) :

1 - At top level of parallelism, SEARCH and
EXPLORE may run in parallel. EXPLORE
produces a landmark while SEARCH exploits the
previous one. SEARCH stops EXPLORE as soon as
it reaches the target.
2 - Both SEARCH and EXPLORE need to run a
genetic algorithm which can be implemented in
parallel as described in section 2.
3 - Fs and Fe, the evaluation functions of
SEARCH and EXPLORE, consist mainly in testing
collision on paths. This may be done by NxL
parallel processes, where N is the number of
degrees of freedom and L the length of the

considered Manhattan motions.
4 - Each of this NxL
processes may be further
decomposed as three parallel
processes testing respectively
vertex-to-plan, plan-to-vertex
and edge-to-edge collisions.
5 - Finally, each of this test
needs AxB parallel processes
where A is the number of
elements in the first set of the
test (A is the number of
vertices, plans or edges) and
where B is the number of
elements in the second set (B is
the number of plans, vertices
or edges).

The methodology used to
implement this on a parallel
machine consists in writing the
application fully in parallel as if
there were as many processors
available as the number of
processes. Of course, in practice,
this is not the case. However, we
use languages and tools
(particularly the PAROS parallel
operating system and the PARX
communication kernel developed
in the SUPERNODE II project, see
[8]) which allows to conceive a
parallel program independently of
the architecture of the target
machine.

We implement this on SUPER-
NO D E machine made of 128
Transputers.

Mega−Node
128 Transputers

Sun 3

E
thernet

Silicon Graphics

(Unix)

(Parix)

(Unix)

 68030

Bus VME

 (VxWorks)

 68030

Bus VME

 (VxWorks)

Robot IIRobor I

KALIKALI

Sun 4

(Unix)

 Genetic Algorithm

 (SEARCH)

Genetic Algoritm

 (EXPLORE)

ACT

Robot simulation package

server
Mega−Node

server
VxWorks

figure 11

CONCLUSION, RESULTS AND PERSPECTIVES

We have presented a general method to search a
continuous configuration space. This method is im-
plemented using a minimisation technique based on
parallel genetic algorithms. We have demonstrated
the validity of the method on a set of complex path
planning problems. Finally, we proposed a mas-
sively parallel implementation of the method which
permits on-line re-planning.

Our experimental set-up used to test our algo-
rithm for an actual six degrees of freedom arm is
represented on figure 11. RobotI is under the
control of the MegaNode (128 T800 Transputers
parallel machine) running a parallel implementation
of the ARIADNE'S CLEW algorithm. RobotII is used
as a dynamically obstacle : it is manually controlled
via KALI (KALI is a robot control software initially
developed at Mc Gill University). First we use a
CAD system called ACT7 which permits precise
geometrical description of the arms and obstacles
and which is able to present 3D simulations. We
compile this representation into a special format

which is downloaded to the MegaNode. A final
position is then specified to RobotI, the MegaNode
quickly (2 seconds) produces a plan which assume
RobotII is standing still, should the position of
RobotII change under manual control, RobotI stops
and the MegaNode (re)computes another path.

We plan in the next months to work on the pro-
blems of grasping, re-grasping and fine motion
synthesis.

BIBLIOGRAPHY

[1] J-C. Latombe; "Robot motion planning", Ed. Kluwer
Academic Publisher, 1991.

[2] J.H. Holland; "Adaptation in natural and artificial
systems"; Ann Arbor: Univ. of Michigan Press, 1975.

[3] D.E. Goldberg; "Genetic algorithms in search,
optimization, and machine learning"; Addison-Wesley,
1989.

[4] E-G. Talbi & P.Bessi�re; "A parallel genetic algorithm
for the graph partitioning problem"; ACM Int. Conf. on
Supercomputing, Cologne, Germany, June 1991.

[5] E-G. Talbi & T.Muntean; "A parallel genetic algorithm
for process-processors mapping", Int. Conf. on High
Speed Computing II, Montpellier, M.Durand and F.El
Dabaghi (Editors), Elsevier Science Pub., North-
Holland, pp.71-82, Oct 1991.

[6] T. Lozano-P�rez, J.L. Jones, E. Mazer & P.A.
O'Donnell; "HANDEY A robot task planner"; the MIT
Press, 1992

[7] J.M. Ahuactzin, A-G. Talbi, P. Bessi�re & E. Mazer;
"Using genetic algorithms for robot motion planning";
ECAI92, Vienna, Austria, 1992

[8] T. Muntean, N. Gonzalez & Y. Langue; "PARX Kernel
for the PAROS parallel operating system"; ESPRIT '91;
Kluewer Academic Publishers, 1991.

1Once upon a time, Ariadne, daughter of Minos, King of
Crete, helped Theseus to kill the Minotaur who lived in the
Labyrinth, a huge maze build by Daedalus. The main
difficulty for Theseus was to find his way through out the
Labyrinth. Ariadne imagined to give him a thread to unwind
in order to find his path back.
2This work has been made possible by two EEC ESPRIT
project: SUPERNODE II (n°2528) & PAPAGENA (n°6857)
and CONACYT Mexico
3Telephone: (33)76.57.46.73; E-mail: bessiere@imag.fr; Fax:
(33)76.57.46.02.
4Centre National de la Recherche Scientifique
5Laboratoire d'Informatique Fondamentale et d'Intelligence
Artificielle
6Laboratoire de G�nie Informatique
7Kali andACT are comercial products of Aleph Technologies

Pa
pe

r p
ub

lis
he

d
in

 I
E

E
E

-I
R

O
S
'9

3
co

nf
er

en
ce

In
te

lli
ge

nt
 R

O
bo

ts
 a

nd
 S

ys
te

m
s

Y
ok

oh
am

a
- J

A
PA

N
 -

19
93

