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Preface

This book is designed to provide a path for the reader into an amalgamation of two
venerable areas of mathematics, Dynamical Systems and Number Theory. Many of
the motivating theorems and conjectures in the new subject of Arithmetic Dynamics
may be viewed as the transposition of classical results in the theory of Diophantine
equations to the setting of discrete dynamical systems, especially to the iteration
theory of maps on the projective line and other algebraic varieties. Although there is
no precise dictionary connecting the two areas, the reader will gain a flavor of the
correspondence from the following associations:

Diophantine Equations Dynamical Systems

rational and integral
points on varieties

-¾ rational and integral
points in orbits

torsion points on
abelian varieties

-¾ periodic and preperiodic
points of rational maps

There are a variety of topics covered in this volume, but inevitably the choice
reflects the author’s tastes and interests. Many related areas that also fall under the
heading of arithmetic or algebraic dynamics have been omitted in order to keep the
book to a manageable length. A brief list of some of these omitted topics may be
found in the introduction.

Online Resources

The reader will find additonal material, references and errata at

http://www.math.brown.edu/˜jhs/ADSHome.html
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Introduction

A (discrete) dynamical systemconsists of a setS and a functionφ : S → S mapping
the setS to itself. This self-mapping permits iteration

φn = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

= nth iterate ofφ.

(By convention,φ0 denotes the identity map onS.)
For a given pointα ∈ S, the (forward) orbit of α is the set

Oφ(α) = O(α) = {φn(α) : n ≥ 0}.

The pointα is periodic if φn(α) = α for somen ≥ 1. The smallest suchn is called
theexact period ofα. The pointα is preperiodicif some iterateφm(α) is periodic.
The set of periodic and preperiodic points ofφ in S are denoted respectively by

Per(φ, S) = {α ∈ S : φn(α) = α for somen ≥ 1},
PrePer(φ, S) = {α ∈ S : φm+n(α) = φm(α) for somen ≥ 1, m ≥ 0}

= {α ∈ S : Oφ(α) is finite}.

We writePer(φ) andPrePer(φ) when the setS is fixed.

Principal Goal of Dynamics
Classify the pointsα in the setS according to the behavior of
their orbitsOφ(α).

If S is simply a set with no additional structure, then typical problems are to de-
scribe the sets of periodic and preperiodic points and to describe the possible periods
of periodic points. Usually, however, the setS has some additional structure and
one attempts to classify the points inS according to the interaction of their orbits
with that structure. There are many types of additioal structures that may imposed,
including algebraic, topological, metric, and analytic.

Example0.1. (Finite Sets). Let S be a finite set andφ : S → S a function. Clearly
every point ofS is preperiodic, so we ask for a description of the set of periodic
points. For example, for eachn ≥ 0 we ask for the size of the set
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2 Introduction

Pern(φ, S) = {α ∈ S : φn(α) = α}.
As a particular example, we consider the case thatS = Fp is a finite field and

look at mapsφ : Fp → Fp give by polynomialsφ(z) ∈ Fp[z]. Fermat’s little theorem
says that

Per(zp,Fp) = Fp and Per(zp−1,Fp) = {0, 1},
which gives two extremes for the set of periodic points. A much harder question is to
fix an integerd ≥ 2 and ask for which primesp is there a polynomialφ of degreed
satisfyingPer(φ,Fp) = Fp? Similarly, one might fix a polynomialφ(z) ∈ Z[z]
and ask for which primesp is it true thatPer(φ,Fp) = Fp; in particular, are there
infinitely many such primes?

In a similar, but more general, vein, one can look at a rational functionφ ∈ Fp(z)
inducing a rational mapφ : P1(Fp) → P1(Fp). Even more generally, one can ask
similar questions for a morphismφ : V (Fp) → V (Fp) of any varietyV/Fp, for
exampleV = PN .

Example0.2. (Groups). Let G be a group and letφ : G → G be a homomorphism.
Using the group structure, it is often possible to describe the periodic and preperiodic
points ofφ fairly explicitly. The following proposition describes a simple, but impor-
tant, example. In order to state the proposition, we recall that thetorsion subgroup of
an abelian groupG, denotedGtors, is the set of elements of finite order inG,

Gtors = {α ∈ G : αm = e for somem ≥ 1},
wheree denotes the identity element ofG.

Proposition0.3. LetG be an abelian group, letd ≥ 2 be an integer and letφ : G →
G be thedth-power mapφ(α) = αd. Then

PrePer(φ,G) = Gtors

Proof. The simple nature of the mapφ allows us to give an explicit formula for its
iterates,

φn(α) = αdn

.

First take an elementα ∈ PrePer(φd, G). This means thatφm+n(α) = φm(α) for
somen ≥ 1 andm ≥ 0, soαdm+n

= αdm

. But G is a group, so we can multiply
by α−dm

to getαdm+n−dm

= e. The assumptions ond, m, andn imply that the
exponent is positive, soα ∈ Gtors.

Next suppose thatα ∈ Gtors, sayαm = e, and consider the following sequence
of integers modulom:

d, d2, d3, d4, . . . modulom.

Since there are only finitely many residues modulom, eventually the sequence has a
repeated element, saydi ≡ dj (modm) with i > j. Then

φi(α) = αdi

= αdj

= φj(α), sinceαm = e anddi ≡ dj (mod m),

which proves thatα ∈ PrePer(φ).
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Example0.4. (Topological Spaces). LetS be a topological space and letφ : S → S
be a continuous map. For a givenα ∈ S, one might ask for a description of the
accumulation points ofOφ(α). For example, a pointα is calledrecurrent if it is an
accumulation point ofOφ(α). In other words,α is recurrent if there is a sequence of
integersn1 < n2 < n3 < · · · such thatlimi→∞ φni(α) = α, so eitherα is periodic,
or it eventually returns arbitrarily close to itself.

Example0.5. (Metric Spaces). Let(S, ρ) be a compact metric space. For example,S
could be the unit sphere sitting insideR3 andρ(α, β) the usual Euclidean distance
from α to β in R3. The fundamental question in this setting is whether points that
start off close to a given pointα continue to remain close to one another under re-
peated iteration ofφ. If this is true, we say thatφ is equicontinuousat α, otherwise
we say thatφ is chaoticat α. (See Section 1.4 for the formal definition of equicon-
tinuity.) Thus ifφ is equicontinuous atα, we can approximateφn(α) quite well by
computingφn(β) for any pointβ that is close toα. But if φ is chaotic atα, then no
matter how close we chooseα andβ, eventuallyφn(α) andφn(β) move away from
each other.

Example0.6. (Arithmetic Sets). An arithmetic set is a set such asZ orQ or a num-
ber field that is of number theoretic interest, but doesn’t have a natural underlying
topology. More precisely, an arithmetic set tends to have a variety of interesting
topologies; for example,Q has the archimedean topology induced by the inclusion
Q ⊂ R and thep-adic topologies induced by the inclusionsQ ⊂ Qp. In the arith-
metic setting, the mapφ is generally a polynomial or a rational map. Here are some
typical arithmetical-dynamical questions, where we takeφ(z) ∈ Q(z) to be a ratio-
nal function of degreed ≥ 2 with rational coefficients:

• Let α ∈ Q be a rational number. Under what conditions can the orbitOφ(α)
contain infinitely many integer values? In other words, when canOφ(α) ∩ Z
be an infinite set?

• Is the setPer(φ,Q) of rational periodic points finite or infinite? If finite, how
large can it be?

• Let α ∈ Per(φ) be a periodic point forφ. It is clear thatα is an algebraic
number. What are the arithmetic properties of the fieldQ(α), or more generally
of the field generated by all of the periodic points of a given period?

What is in this Book: We provide a brief summary of the material that is covered.

1. An Introduction to Classical Dynamics
We begin in Chapter 1 with a short self-contained overview, without proofs, of
classical complex dynamics on the projective line.

2. Dynamics Over Local Fields: Good Reduction
Chapter 2, which starts our study of arithmetic dynamics, considers rational
mapsφ(z) with coefficients in a local fieldK, for example,K = Qp. The em-
phasis in Chapter 2 is on maps that have “good reduction modulop.” The good
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reduction property imples that many of the geometric properties ofφ acting on
the points ofK are preserved under reduction modulop. In particular, the mapφ
is p-adically nonexpanding, and periodic points behave well when reduced mod-
ulo p. The remainder of the chapter gives applications exploiting these two key
properties of good reduction.

3. Dynamics Over Global Fields
We move on in Chapter 3 to arithmetic dynamics over global fields such asQ
and its finite extensions. Just as in the study of Diophantine equations over global
fields, the theory of height functions plays a key role, and we develop this theory,
including the construction of the canonical height associated to a rational map. We
discuss rationality of preperiodic points and formulate a general uniform bound-
edness conjecture. Using classical results from the theory of Diophantine approx-
imation, we describe exactly which rational mapsφ can have orbits containing
infinitely many integer points, and we give a more precise result saying that the
numerator and denominator ofφn(α) grow at approximately the same rate. We
consider the extension fields generated by periodic points and describe their Ga-
lois groups, ramification, and units.

4. Families of Dynamical Systems
At this point we change our perspective and, rather than studying the dynamics of
a single rational map, we consider families of rational maps and the variation of
their dynamical properties. We construct various sorts of parameter and moduli
spaces, including the space of quadratic polynomials with a point of exact pe-
riod N (which are analogs of the classical modular curvesX1(N)), the parameter
spaceRatd of rational functions of degreed, and the moduli spaceMd of rational
functions of degreed modulo the natural conjugation action byPGL2. In particu-
lar, we prove thatM2 is isomormphic to the affine planeA2. We also study twists
of rational maps, analogous to the classical theory of twists of varieties, and the
field of moduli versus field of definition problem.

5. Dynamics Over Local Fields: Bad Reduction
Chapter 5 returns to arithmetic dynamics over local fields, but now in the case of
“bad reduction.” It becomes necessary to work over an algebraically closed field,
so we discuss the fieldCp and give a brief introduction to nonarchimedean analy-
sis and Newton polygons. Using these tools, we define the nonarchimedean Julia
and Fatou sets and prove a version of Montel’s theorem that is then used to study
periodic points and wandering domains in the nonarchimedean setting. This is fol-
lowed by the construction ofp-adic Green functions and local canonical heights.
The chapter concludes with a short introduction to dynamics on Berkovich space.
The Berkovich projective linePB is path connected, compact, and Hausdorff, yet
it naturally contains the totally disconnected, non-locally compact, non-Hausdorff
spaceP1(Cp).

6. Dynamics Associated to Algebraic Groups
There is a small collection of rational maps whose dynamics are much easier to
understand than those of a general map. These special rational maps are associ-
ated to endomorphisms of algebraic groups. We devote Chapter 6 to the study of
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these maps. The easiest ones are the power mapsMd(z) = zd and the Chebyshev
polynomialsTd(z) characterized byTd(2 cos θ) = 2 cos(dθ). They are associ-
ated to the multiplicative group. More interesting are the Lattès maps attached to
elliptic curves. We give a short description, without proofs, of the theory of ellip-
tic curve and then spend the remainder of the chapter discussing dynamical and
arithmetic properties of Lattès maps.

7. Dynamics in Dimension Greater Than One
With a few exceptions, the results in Chapters 1–6 all deal with iteration of maps
on the one-dimensional spaceP1, i.e., they are dynamics of one variable. In Chap-
ter 7 we consider some of the issues that arise when studying dynamics in higher
dimensions. We first study a class of rational mapsφ : PN → PN that are not
everywhere defined. Even overC, the geometry of dynamics of rational maps is
imperfectly understood. We restrict attention to automorphismsφ : AN → AN

and study height functions and rationality of periodic points for such maps. We
next consider morphismsφ : X → X of varieties other thanPN . In order to
deal with higher dimensional dynamics, we use tools from basic algebraic geom-
etry and Weil’s height machine, which we describe without proof. We then study
arithmetic dynamics, heights, and periodic points on K3 surfaces admitting two
noncommuting involutionsι1 andι2. The compositionφ = ι1 ◦ ι2 provides an
automorphismφ : X → X whose geometric and arithmetic dynamical properties
are quite interesting.

What’s Missing: A book necessarily reflects the author’s interests and tastes, while
space considerations limit the amount of material that can be included. There are
thus many omitted topics that naturally fit into the purview of arithmetic dynamics.
Some of these are active areas of current mathematical research with their own liter-
ature, including introductory and advanced textbooks. Others are younger areas that
deserve books of their own. Examples of both sorts include the following, some of
which overlap with one another:

• Dynamics over finite fields
This includes general iteration of polynomial and rational maps acting on fi-
nite fields, see for example [39, 40, 97, 165, 200, 202, 253, 286, 311, 324, 360,
359, 375, 410, 418], and more specialized topics such as permutation polynomi-
als [253, Chapter 7] that are fields in their own right.

• Dynamics over function fields
The study of function fields over finite fields has long provided a parallel theory
to the study of number fields, but inseparability and wild ramification often lead
to striking differences, while function fields of characteristic0 present their own
arithmetic challenges, e.g., thay have infinitely many points of bounded height.
The study of arithmetic dynamics over function fields is in its infancy. For a hand-
ful of results, see [18, 57, 79, 98, 189, 257, 328, 330, 390].

• Iteration of formal andp-adic power series
There is an extensive literature, but no textbook, on the iteration properties of
power series. Among the fundamental problems are the classification of nontrivial
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commuting power series (to what extent do they come from formal groups) and
the description of preperiodic points. See for example [244, 245, 246, 247, 248,
249, 250, 251, 252, 258, 259, 260, 261, 262, 364, 365].

• Algebraic dynamics
There is no firm line between arithmetic dynamics and algebraic dynamics, and
indeed much of the material in this book is quite algebraic. Some topics of an
algebraic nature that we do not cover include irreducibility of iterates [5, 15, 103,
105, 320, 321, 399], formal transformations and algebraic identities such as [51,
73, 74], and various results of an algebro-geometric nature [137, 151, 367, 411].

• Lie groups and homogeneous spaces, ergodic theory and entropy
This is a beautiful and much studied area of mathematics in which geometry,
analysis, and algebra interact. There are many results of a global arithmetic nature,
including for example hard problems of Diophantine approximation, as well as
an extensivep-adic theory. For an introduction to some of the main ideas and
theorems in this area, see [43, 225, 282, 397], and for other arithmetic aspects
of ergodic theory and entropy, including relations with height functions, ergodic
theory in a nonarchimedean setting, and arithmetic properties of dynamics on
solenoids, see for example [8, 29, 95, 120, 135, 148, 171, 209, 218, 220, 229,
255, 256, 325, 414, 415, 416, 421].

• Equidistribution in arithmetic dynamics
There are many ways to measure (arithmetic) equidistribution, including via
canonical heights,p-adic measures, and invariant measures on projective and
Berkovich spaces. In Section 3.10 we summarize some basic equidistribution con-
jectures and theorems (without proof) For additional material, see [14, 22, 26, 91,
?, 156, 166, 191, 402, 405, 424].

• Topology and arithmetic dynamics on foliated spaces
This surprising connection between these diverse areas of mathematics has been
inverstigated by Deninger in a series of papers [114, 115, 116, 117, 118].

• Dynamics on Drinfeld modules
It is natural to study local and global arithmetic dynamics in the setting of Drin-
feld modules, although only a small amount of work has yet been done. See for
example [166, 370].

• Number theoretic iteration problems not arising as maps on varieties
A famous example of this type of problem is the notorious3x + 1 problem,
see [231] for an extensive bibliography. Another problem that people have stud-
ied is iteration of arithmetic functions such as Euler’sϕ function, see for exam-
ple [139, 317].

• Realizability of integer sequences
A sequence(an) of nonnegative integers is said to be realizable if there is a setS
and a functionφ : S → S with the property that for alln, the mapφ hasan

periodic points of ordern. See [146] for an overview and [10, 132, 145, 336, 337,
394] for further material on realizable sequences.
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Prerequisites: The principal prerequisite for reading this book is basic algebraic
number theory (rings of integers, ideals and ideal class groups, units, valuations and
absolute values, completions, ramification, etc.) as covered, for example, in the first
section of Lang’sAlgebraic Number Theory[236]. We also assume some knowledge
of elementary complex analysis as typically covered in an undergraduate course in
the subject. No background in dynamics or algebraic geometry is required; we sum-
marize and give references as necessary. In particular, to help make the book rea-
sonably self-contained, we have included introduction/overview material on Nonar-
chimedean Analysis in Section 5.2, Elliptic Curves in Section 6.3, and Algebraic
Geometry in Section 7.2. However, previous familiarity with basic algebraic geome-
try will certainly be helpful in reading some parts of the book, especially Chapters 4
and 7.

Cross References and Exercises: Theorems, propositions, examples, etc. are num-
bered consecutively within each chapter and cross-references are given in full, for
example Proposition 3.2 refers to the second labeled item in Chapter 3. Exercises
appear at the end of each chapter and are also numbered consecutively, so Exer-
cise 5.7 is the seventh exercise in Chapter 5. There is an extensive bibliography, with
reference numbers in the text given in square brackets.

This book contains a large number of exercises. Some of the exercises are marked
with a single asterisk* , which indicates a hard problem. Others exercises are marked
with a double asterisk** , which means that the author does not know how to solve
them. However, it should be noted that these “unsolved” problems are of varying de-
grees of difficulty, and in some cases their designation reflects only the author’s lack
of perspicacity. On the other hand, some of the unsolved problems are undoubtledly
quite difficult. The author solicits solutions to the** marked problems, as well as
solutions to the exercises that are posed as questions, for inclusion in later editions.
The reader will find additional notes and references for the exercises on page 436.

Standard Notation: Throughout this book we use the standard symbols

Z, Q, R, C, Fq, Zp, AN , andPN

to represent the integers, rational numbers, real numbers, complex numbers, field
with q elements, ring ofp-adic integers,N -dimensional affine space, andN -dimen-
sional projective space, respectively. Additional notation is defined as it is introduced
in the text. A detailed list of notation may be found on page 440.

Exercises

0.1. Let S be a set andφ : S → S a function.
(a) If S is a finite set, prove thatφ is bijective if and only ifPer(φ, S) = S.
(b) In general, prove that ifPer(φ, S) = S, thenφ is bijective.
(c) Give an example of an infinite setS and mapφ with the property thatφ is bijective and

Per(φ, S) 6= S.
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(d) If φ is injective, prove thatPrePer(φ, S) = Per(φ, S).

0.2. Let S be a set, letφ : S → S andψ : S → S be two maps ofS to itself, and suppose
thatφ andψ commute, i.e., assume thatφ ◦ ψ = ψ ◦ φ.
(a) Prove thatψ

(
PrePer(φ)

)
⊂ PrePer(φ).

(b) Assume further thatψ is a finite-to-one surjective map, i.e.,ψ(S) = S, and for everyx ∈
S, the inverse imageψ−1(x) is finite. Prove thatψ

(
PrePer(φ)

)
= PrePer(φ).

(c) We say that a pointP ∈ S is anisolated preperiodic point ofφ if there are integersn >
m such thatφn(P ) = φm(P ) and such that the set

{
Q ∈ S : φn(Q) = φm(Q)

}

is finite. Suppose that every preperiodic point ofφ is isolated. Prove that

PrePer(φ) ⊂ PrePer(ψ).

Conclude that if the commuting mapsφ andψ both have isolated preperiodic points,
thenPrePer(φ) = PrePer(ψ).

0.3. Let φ(z) = zd + a ∈ Z[z] and letp be a prime. Prove thatPer(φ,Fp) = Fp if and only
if gcd(d, p− 1) = 1.

0.4. Let G be a group and letφ : G → G be a homomorphism.
(a) Prove thatPer(φ, G) is a subgroup ofG.
(b) IsPrePer(φ, G) a subgroup ofG? Either prove that it is a subgroup or give a counterex-

ample.

0.5. Let G be a topological group, that is,G is a topological space with a group structure
such that the group composition and inversion laws are continuous maps. Letφ : G → G
be a continuous homomorphism.Exercise 0.4 says thatPer(φ, G) is a subgroup ofG, so its
topological closurePer(φ, G) is also a subgroup ofG. Compute this topological closure for
each of the following examples. (In each example,d ≥ 2 is a fixed integer.)
(a) G = C∗ andφ(α) = αd.
(b) G = R∗ andφ(α) = αd.
(c) G = RN/ZN andφ(α) = dα mod ZN .

0.6. (a) DescribePer(φ,Q) for the functionφ(z) = z2 + 1.
(b) DescribePer(φ,Q) for the functionφ(z) = z2 − 1.
(c) Let φ(z) ∈ Z[z] be a monic polynomial of degree at least two. Prove thatPer(φ,Q) is

finite. (Hint. First prove thatPer(φ,Q) ⊂ Z.)
(d) Same question as (c), but nowφ(z) ∈ Q[z] has rational coefficients and is not assumed

to be monic.

0.7. Let φ(z) = z + 1/z and letα ∈ Q∗. Prove thatOφ(α) ∩ Z is finite. What is the largest
number of points that it can contain?


