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Abstract

Genotype-phenotype (GP) maps specify how the random mutations that change genotypes generate variation by altering
phenotypes, which, in turn, can trigger selection. Many GP maps share the following general properties: 1) The total number
of genotypes NG is much larger than the number of selectable phenotypes; 2) Neutral exploration changes the variation
that is accessible to the population; 3) The distribution of phenotype frequencies Fp~Np=NG , with Np the number of
genotypes mapping onto phenotype p, is highly biased: the majority of genotypes map to only a small minority of the
phenotypes. Here we explore how these properties affect the evolutionary dynamics of haploid Wright-Fisher models that
are coupled to a random GP map or to a more complex RNA sequence to secondary structure map. For both maps the
probability of a mutation leading to a phenotype p scales to first order as Fp, although for the RNA map there are further
correlations as well. By using mean-field theory, supported by computer simulations, we show that the discovery time Tp of
a phenotype p similarly scales to first order as 1=Fp for a wide range of population sizes and mutation rates in both the
monomorphic and polymorphic regimes. These differences in the rate at which variation arises can vary over many orders of
magnitude. Phenotypic variation with a larger Fp is therefore be much more likely to arise than variation with a small Fp. We
show, using the RNA model, that frequent phenotypes (with larger Fp) can fix in a population even when alternative, but
less frequent, phenotypes with much higher fitness are potentially accessible. In other words, if the fittest never ‘arrive’ on
the timescales of evolutionary change, then they can’t fix. We call this highly non-ergodic effect the ‘arrival of the frequent’.
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Introduction

Darwin’s account of biological evolution [1] stressed the

importance of natural selection: If some individuals are better

adapted to their environment than their competitors, their

offspring will come to dominate the population. The fittest survive

and the less fit go extinct. Yet selection alone is not sufficient to

drive evolution because natural selection reduces the very

variation that it requires to operate. It was only recognised well

after Darwin’s day [2], in part through the success of the Modern

Synthesis, that the fuel for selection is provided by mutations that

make offspring genetically different from their parents. Crucially,

mutations change genetically stored information (the genotype) while

selection operates on the physical expression of this information

(the phenotype). Understanding the relation between genotypes and

phenotypes – the GP map – is therefore crucial to understanding

evolutionary dynamics [3].

GP mappings have been studied at different levels of abstraction

[4] The most basic systems are concerned with the sequence-to-

structure(-to-function) relation of single molecules such as RNA [5]

or proteins [6–8], but higher-level systems such as protein

complexes [9], gene-regulatory networks [10] and developmental

networks [11] have also been studied. Even though these GP maps

arise in quite different contexts, they share several interesting

properties:

1) Most basically, the number of possible genotypes NG is

typically much greater than the number of possible pheno-

types NP, so the map is many-to-one. As a consequence, many

mutations may conserve the phenotype, leading to mutational

robustness. Important prior work has linked such robustness

to the concept of neutral spaces, namely the set of all

genotypes that map to a particular phenotype, with the

additional property that they be linked by neutral mutations

[4,5,12].

2) Even though NP%NG, the accessible genetic neighbourhood

of a single genotype g that generates a given phenotype p may

include significantly fewer alternative phenotypes (potential

variation) than is found in the neighbourhood of the (neutral)

set N p of all Np~DN pD genotypes that map onto phenotype p.

Exploration of a neutral space can therefore increase the

variety of phenotypes discovered by a population [13,14].

3) Perhaps the most striking commonality of these GP maps is a

strong bias in assignment of genotypes to phenotypes: Most

phenotypes are realised by a tiny proportion of all genotypes,

while most genotypes map into a small fraction of all

phenotypes. This property is shared by all the GP maps we
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noted before. Typically the number Np of genotypes per

phenotype p and the related phenotype frequencies

Fp~Np=NG can vary over many orders of magnitude. Such

huge variations are likely to have an effect on the course of

evolution.

In this paper we study the evolutionary dynamics of a classical

Wright-Fisher model, but with explicit microscopic GP maps that

capture the three generic properties of such maps introduced

above. Motivated by the strong bias in the distribution of the Fp

observed for many GP maps, we derive a mean-field like

approximation for the average probability wpq that a mutation

will change a genotype that generates phenotype q into one that

generates phenotype p. This approximation greatly simplifies the

dynamics, allowing us to calculate analytic expressions for

quantities such as the median time Tp for phenotype p to first

appear in the population as a function of population size N , the

point mutation rate m, genome length L and the mutation

probabilities wpq.

These approximations are then tested against extensive

simulations of two models: firstly, a simple GP map where the

genotypes are randomly assigned to phenotypes according to a

pre-determined distribution for the frequencies Fp and secondly,

the well-known mapping of RNA sequence to secondary structure

[4,5,15], which is more complex, but also more biologically

realistic. We focus on the case where a population of N individuals

has initially equilibrated at a fitness maximum given by phenotype

q, and then measure the median time Tp for alternative phenotype

p to first arise in the population.

Our analytic expressions agree quantitatively with the simula-

tions in the polymorphic limit where NLm&1, and also in the

opposite monomorphic limit NLm%1. In between these regimes a

single scaling factor must be included. In all regimes the median

discovery time Tp!1=wpq. For the random model wpq&Fp; this

scaling also holds for the more complex RNA mapping, although

there is significantly more scatter due to local correlations within

the neutral spaces and for some phenotypes we find wpq~0 even

though Fp is large (this can be due to biophysical constraints

explained for example in ref. [16]). Despite such higher order

effects, the variation of the Fp over many orders translates directly

into the Tp. More frequent (higher Fp) phenotypes are therefore

discovered more rapidly and more often along evolutionary

trajectories. In this way the structure of the GP map can play a key

role in determining evolutionary outcomes.

Finally, we employ the RNA GP map to study the case where

two phenotypes p1 and p2 are both more fit than the source

phenotype q, but where Fp1&Fp2 (or more accurately wp1q&wp2q).

Direct simulations show that phenotype p1, which is more

frequent, is much more likely to fix in the population, even if its

fitness is much lower than that of p2, an effect we call ‘the arrival

of the frequent’.

Results

Theoretical framework
We study the evolution of a population of N asexual haploid

individuals. Each individual i carries a genotype gi of L letters

taken from an alphabet of size K . The individual’s phenotype pi is

determined from gi via the GP map. The population evolves in in

discrete, non-overlapping generations according to the classical

Wright-Fisher model for haploid individuals: At each generation

T , N parents are drawn with replacement with probability

proportional to their fitness 1zsi with the constraint that the

population size (or carrying capacity) N is fixed. Each parent gives

rise to one offspring, and the offspring make up the population for

the next generation. During reproduction, each base in the

genotype of length L mutates to a random alternative base with

probability m. The number of mutations (that is, the Hamming

distance) d between parent and offspring is thus distributed

binomially according to h(d)~
L

d

� �

md (1{m)L{d . In this way the

set fgig of N genotypes changes at each generation.

The expected number of individuals with phenotype p that

arises at generation t can be written as:

mp(t)~
X

N

i

X

L

d~1

h(d)Wp(gi,si,d) ð1Þ

where Wp(gi,si,d) is the probability that a d fold mutation of

genotype gi (selected for reproduction according to fitness 1zsi)

generates an individual with phenotype p. It takes into account the

mutational connections between the NG~KL genotypes that

make up the GP map. The probability of not finding p is

approximately given by the Poisson distribution as exp({mp(t)).

While exact, these dynamic expressions depend implicitly on

time through stochastic changes in the set fgig, and are typically

very hard to solve. In order to gain intuitive insight, we employ a

number of simplifications and approximations, motivated in part

by the general properties of GP maps discussed in the

introduction. First, we assume that Lm%1 so that for dw1,

h(d)%h(1)&Lm, which means that we can ignore higher order

mutations (terms with dw1 in Eq. (1)). For a given source

phenotype q (where the fitnesses of all genotypes mapping into q

are equal, and so we take 1zsq~1 for simplicity) we can then

calculate the mean probability wpq that a single point mutation will

generate another phenotype p:

wpq~
1

Nq

X

Nq

i~1

Wp(gi,0,1) ð2Þ

where the sum is over the set N q of all Nq genotypes that generate

phenotype q (see also Figure 1). It is convenient to introduce the

robustness of phenotype q as the average probability over all N q of

neutral mutations: r~wqq. If we consider the case where at

generation t{1 the whole population is on N q, then Eq. (1)

simplifies in this mean-field (or pre-averaged) approximation to:

mp(t)~NLmwpq ð3Þ

The polymorphic limit. IfNLm&1then the population naturally

Consider the case where1zsp~dqp so that the population remains on

Nq,which is one way to model neutral exploration. In the mean-field

approximation the expected number of individuals with phenotype

p produced per generation is now independent of time, and given

by Eq.(3), as long as double mutations can be ignored. The time

Tp(a) when on average the probability of having discovered p is a

(so that the median discovery time of p is Tp(1=2)) is then given by:

The Arrival of the Frequent

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e86635

 spreads over different genotypes, a regime called the polymorphic limit.



Tp(a)~
{log(1{a)

NLmwpq
ð4Þ

Eqns. (3–4) should provide a good approximation of the full

dynamics in the limit that N is large enough that variations

between individual genotypes gi[N q are averaged out, in other

words, for the case where the 1-mutant neighbourhood of the

population is similar to that of the whole neutral space.

Neutral spacescanbeastronomically la-

than even the largest viral or bacterial populat-

ions. In that case, the local neighborhood of the population may not

be fully representative of the neighborhood of the entire space. This

scenario can most easily be understood in the monomorphic limit

where mutants are rare, NLm%1, and exploration is dominated

by genetic drift. Every neutral mutant has a probability of 1=N to

go to fixation, allowing the population to move to a new genotype.

Thus the timescale of fixations is Kimura’s famous result [18]

tf~1=(Lmr), where the robustness r is the probability that a

mutation is neutral, so that Lmr is the rate of neutral mutations.

Between fixations, the population undergoes periods of geno-

typic stasis in which only the 1-mutant neighborhood of the

current genotype g is explored by (rare) mutations. As there are

(K{1)L adjacent genotypes, the timescale of this exploration is

te~(K{1)L=(NLm)~(K{1)=(Nm).

It is instructive to compare the ratio j of these two time-scales,

defined via

j~
tf

te
~

N

(K{1)Lr
&

N

L
ð5Þ

We can use this dimensionless ratio to distinguish between

different dynamic regimes. If j&1, fixation takes much longer

than exploration. If we define ngp as the number of local

neighbours of the genotype g mapping to phenotype p for the

current population, then in this limit, phenotypes with ngpw0 are

produced continuously (on a time-scale given by te) until the

population moves to a different genotype. The dynamics under

strong genetic drift therefore induce short-term correlations in the

mutant phenotypes. Since j&N=L, we call this regime the large

population limit.

In the opposite extreme j%1, which we call the large genome

limit, the population typically moves to a different genotype before

all accessible mutants have been explored. In this regime, we do

not expect short-term correlations in the mutant phenotypes,

simply because every mutant occurs only very rarely.

Actual discovery and neutral fixation times can show strong

fluctuations. As our evolutionary process is a Markov process – the

next set of mutants depends only on the parents, not on earlier

mutants – the first discovery time of a neighbour genotype as well

as the arrival time of the neutral mutant ‘‘destined’’ to be fixed, are

distributed geometrically (or exponentially in a model with

continuous time). Thus the mean of te or tf is equal to the

respective standard deviation, and any particular evolutionary

trajectory can be very different from the average behaviour.

Let t be the actual time the population stays at the current

genotype. In the continuous time approximation, t is distributed

exponentially with mean tf . If the genotype g has ngp mutations

leading to p then the probability that p is found during this time is

1{exp({ngpt=te). Integrating over the distribution of t, we have

the probability P(ngp) that phenotype p is discovered before the

next neutral fixation:

P(ngp)~

ð

?

0

dt

tf
(1{e

{n
g
pt=te )e

{t=tf ~1{
1

1zn
g
pj

ð6Þ

If fixations are the rate-limiting step (ie. j&1), P?1 if ngp=0, as

each neighborhood is searched exhaustively before the population

moves on. On the other hand, if fixation is faster than exploration

(j%1), the introduction of alternative phenotypes is determined by

random fluctuations, as most available mutants are not produced.

To leading order, we find P(ngp)&ngpj~Nngp=((K{1)Lr). We

Figure 1. Illustration of the mean field approximation. A) An example genotype space: Each point corresponds to a unique genotype; shape
and color of the marker indicate the phenotype. Genotypes joined by edges can be interconverted by single mutations. Edges for neutral mutations
share the color of the (conserved) phenotype, non-neutral mutations are shown as black dashed lines. The shading of the genotypes illustrates the
number of individuals carrying the respective genotype in a hypothetical population. The mutations away from the genotypes occupied by the
population determine the accessible phenotypes. B) Our meanfield approximation averages over the internal structure of neutral spaces. So neutral
spaces are represented by the markers of their phenotypes only, with the size representing the neutral space size (ie. number of genotypes in the
space). The uniform shading of the blue neutral space implies that in the meanfield approximation, the population is assumed to continually explore
the neighbourhood of its entire neutral space. Mutational outcomes are thus determined from the local frequencies of phenotypes around the
neutral space, as measured by the wpq coefficients. This mean field approximation allows us to derive analytic forms that can be compared to
simulations of the full GP map.
doi:10.1371/journal.pone.0086635.g001
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note that the inverse dependence on r arises from tf : More robust

neutral spaces are explored faster, but therefore less thoroughly.

The dynamics in the monomorphic regime are thus relatively

straightforward. But whether some new phenotype p is discovered

still depends on the structure of the neutral space which in turn

determines how the available phenotypes change upon a neutral

fixation. To describe this structure, we turn again to a mean-field

approximation: The mutational neighborhood of each particular

genotype g[N q resembles the average over N q. As the mean

number of mutations per genotype leading to p is given by

�nnpq~(K{1)Lwpq, the probability that p is accessible after a

neutral fixation is 1{exp({�nnpq)&�nnpq (the approximation is valid

provided npq%1, that is p is not accessible from every genotype in

the source neutral space; of course, this is just the condition we are

interested in, as otherwise neutral exploration would not typically

be necessary for phenotype p to arise).

Over a large number of generations (t&tf ), a monomorphic

population explores its neutral space uniformly [19]. Assuming

that ngpw1 can be ignored in practice, we have

Tp(a)~{tf log(1{a)=(npqP(1)). The first discovery time in the

large population limit becomes:

Tp(a)~
{tf log(1{a)

npq
~

{log(1{a)

L2(K{1)mrwpq
ð7Þ

whereas in the large genome limit we obtain

Tp(a)~
{te log(1{a)

npq
~

{log(1{a)

NLmwpq
ð8Þ

which has the same form as the polymorphic limit, Eq. (4): When

the population is too small (compared to the genome length), the

exploration of each genotype’s mutational neighborhood is

typically incomplete. Then, just as in the polymorphic limit, only

random fluctuations determine which accessible genotypes are

actually realized by the population.

Finally, let us compare our results for large populations in the

monomorphic and polymorphic limits. Most importantly, in both

cases Tp is inversely proportional to wpq: Rare phenotypes are hard

to find. Comparing Equations (4) and (7), the only difference is

that N in the polymorphic regime is replaced by L(K{1)r in the

monomorphic limit. This difference is intuitive: When the

population is diverse, every new individual helps exploration and

reduces discovery times. But if all individuals have the same

genotype, simply having ‘‘more of the same’’ does not make

neutral exploration faster. However, repeated mutants may

influence the fixation of adaptive phenotypes.

These results suggest that for intermediate NLm there should be

a smooth transition between these two regimes. To quantify the

crossover we introduce a factor c that multiplies N in Eq.(4); we

expect that c?1 as either NLm becomes very large (the

polymorphic limit) or N%L (the large genome limit), and that

c?(K{1)Lr=N as NLm%1 and N&L (the large population

monomorphic limit).

Simulations in model GP maps
In order to test our mean-field theory we study two kinds of GP

maps that both include the generic properties of GP maps that we

introduced earlier.

Random GP map. In the random GP map, the total number

of phenotypes NP and the frequencies fFpg can be set arbitrarily

(subject to the normalization constraint
PNP

p~1 Fp~1). The

KL
|Fp genotypes mapping into phenotype p are distributed

randomly in genotype space. The statistical properties of the map

are thus determined by the parameters L, K , and the set fFpg.

Studying this map has two motivations: First, ignoring some

biophysical detail may help illuminate generic features shared by

the systems described in the introduction. Second, a simple model

may clarify which deviations from our theory arise from

population dynamic effects rather than from detailed (and

system-specific) structure in the GP map.

In this simple model, correlations between genotypes are absent,

facilitating analysis of the resulting neutral spaces. For example,

wpq~Fp is a good approximation as long as NP%NG and

Nq,Np&1. Also, there is a percolation threshold

l(K)~1{K{1=(K{1): thus only phenotypes with Fqwl(K) have

completely connected neutral spaces [20].

Here we study a particular random GP map with L~12, and

K~4 (as in DNA and RNA) so that there are

NG~412&1:68|107 genotypes. These map onto NP~58

phenotypes distributed with frequencies Fp!1:2{p. The Fp vary

over about 5 orders of magnitude, a range similar to the Fp of

L~12 RNA (see also Figure S1). To make sure that the largest

neutral space percolates, its frequency is set separately as

F1~0:5wl(4)~0:37. For several values of m, we simulated

N~1000 individuals for up to 7|1010 generations. The fitness

was set as 1zsp~dp,1 so that we are effectively modelling neutral

exploration on the space 1, which is convenient for measuring all

Tp. We measured first discovery times for the 57 alternative

phenotypes over 100 independent simulations to obtain the

median time Tp.

Figure 2A depicts these median discovery times Tp for

simulations ranging from the polymorphic regime NLm&1 to

the monomorphic limit NLm%1 (see also Figure S2). We note the

following:

1) For all regimes the Tp vary over many orders of magnitude,

but they are found in fewer generations for larger m.

2) Locally frequent phenotypes (i.e. those with high wpq) are

much easier to discover. The inset of Figure 2A shows that

wpq&Fp, so this conclusion carries over to frequent pheno-

types with large Fp.

3) A subset of the phenotypes with wpqwwL:1=(K{1)

L&0:028 are likely to be in the one-mutation neighbourhood

of any genotype. In the monomorphic regime these are are

then found by exploration of a genome so that Tp is given by

Eq. (8), which has the same form as the polymorphic limit, Eq.

(4), as can be seen in Figure 2A. Discovery times cross over to

the regime where neutral exploration is required when

wpq%wL. Such behaviour can be viewed as a finite size effect:

NP typically increases with L. Therefore the largest Fp will

likely decrease for larger systems, so that a smaller fraction of

phenotypes can be found without neutral exploration.

4) In the fully polymorphic regime where each individual

essentially explores independently, any phenotype with

wpqw1=(NLm) is likely to be part of immediately accessible

standing variation [21] in the initial population, and is therefore

found quickly. Indeed, in Figure 2A for m~10{2, where

NLm~120, these phenotypes are typically found in one or

two generations on average. However, for rarer phenotypes,

where neutral exploration is important, the Tp are well

approximated by Eq. (4). Again, the fraction of phenotypes

that are immediately accessible should decrease for larger L.

The Arrival of the Frequent
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5) In the intermediate regime m~10{4, where NLm~1:2, the

population spreads over more phenotypes than in the

monomorphic regime, but over fewer than in the polymorphic

regime. Thus the crossover to the regime where neutral

exploration is important occurs at a smaller wpq than for the

monomorphic regime. In this intermediate m regime neither

Eq. (4) nor Eq. (7) suffices. Instead, we use the previously

introduced factor c that multiplies N in Eq. (4) to achieve

quantitative accuracy. In Appendix S1 and in Figures S3 and

S4, we explore the scaling of c with the parameters N,L,m, for

different dynamic regimes, and for a range of j.

In summary then, our theory derived in the previous section

accurately describes the median discovery time Tp of this simple

random GP map as a function of the parameters N,m,wpq. We find

that wpq&Fp, and thus Tp*1=Fp in all regimes studied. The more

frequent the phenotype, the earlier (and more often, see Figure S2)

it appears as potentially selectable variation in an evolving

population. Given the success of our theory for the random

model, we now will test our theory and conclusions for a more

complex GP map.

RNA secondary structure mapping. One of the best

studied GP mappings has RNA genotypes of length L made up

of nucleotides G, C, U and A. The phenotypes are the minimum

free-energy secondary structures for the sequences, which can be

efficiently calculated [15]. The number of genotypes grows as 4L,

while the number of phenotypes is thought to grow roughly as

NP*1:8L [4] so that NP%NG . Moreover, sampling and exact

enumerations[5,16,22] have shown that the distribution of

phenotype frequencies Fp is highly biased, with a small fraction

of phenotypes taking up the majority of genotypes. The neutral

spaces N q are typically broken up into a number of large

components that are connected by single point mutations that

allow neutral exploration [16,22]. By exhaustive enumeration of

the L~20 RNA mapping (see also Figure S5) we calculate the wpq
between several neutral components of the 11,219 distinct

secondary structures that the NG~420&1:1|1012 genotypes

map to.

Figure 2b shows the wpq for the largest component of the

phenotype q drawn in the figure. This phenotype is ranked as the

3rd most frequent for L~20 and exhibits behaviour typical of this

system. First, the wpq vary over many orders of magnitude. Second,

as shown in the inset if wpq=0, then the local wpq are, to first order,

proportional to the global Fp. Finally, this neutral space connects to

just over 75% of the total NP~11,219 phenotypes in this

particular map: Some wpq are zero even though Fp can be quite

large. Generally, the number of phenotypes that can be reached

from N q increases with Fq [13,16].

We performed extensive simulations of the L~20 RNA system.

Typical results are shown in Figure 2B. First, we note that the

median discovery times vary over many orders of magnitude. The

most frequent are found in a median time of Tp&103 generations

while after the maximum measured time of 2|109 generations,

over 42% of the directly accessible phenotypes (with wpq=0) have

still not been found. We estimate that over 1013 generations would

be needed to discover all accessible phenotypes, giving a ten order

of magnitude range in the Tp. Second, the local frequency wpq is a

good predictor for ranking Tp (see Figure S6 for a comparison of

Tp and global frequency Fp). Further, the criterion wpq~0

accurately predicts that phenotypes are not discovered (see also

Figure S6). However, in contrast to the random GP map, the Tp

are discovered at a slower rate than predicted by Eq. (7). Instead,

we use a single cv3Lr=N to renormalise N in Eq. (4). This slower

Figure 2. Test of the meanfield model. A) Median discovery times Tp for the random GP map averaged over 100 simulations with N~1000 and
varying mutation rates. Note that the y-axis is scaled with m. In the the polymorphic limit (m~10{2), Eq. (4) (dashed line) describes discovery times
well for wpqv1=(NLm). Phenotypes with larger wpq are part of the standing variation typically found in the first generation (yellow dash-dotted line).

In the monomorphic limit (m~10{6), Eq. (7) (dotted line) quantitatively describes Tp for wpq%wL , whereas Eq. (4) tracks the simulation data with just

one fit parameter c~0:099 multiplying N for the intermediate regime with m~10{4 (solid line). For wpq *> wL the curves follow Eq. (4), for reasons

described in the text. Inset: For the random GP map the local phenotype frequency wpq correlates very well with the global frequency Fp . B) Local

frequency wpq ranked for the 8639 phenotypes that link with single point mutations from the DN qD~460,557,583 genotypes that map to this RNA

structure; an example sequence from N q is shown in the figure. Inset: The local connections wpq are roughly proportional to the global frequency Fp,

but there is significant scatter due to the internal correlations of the RNA neutral spaces. Organge points depict the 2580 phenotypes for which
wpq~0. Light blue points depict the 4933 phenotypes that are discovered in our simulations, and the dark blue points depict the 3705 accessible

phenotypes that are not found (q itself is shown in green). C) Simulations of Tp (blue dots) versus wpq for the RNA phenotype shown in B), compared

to Eq. (4) (solid line) with a factor c~0:070 multiplying N . Here N~100, m~10{5 and the simulations were run for 2|109 generations. Also shown
are the purely polymorphic (dashed) and monomorphic (dotted) predictions. Dark blue dots above 2|109 (dot-dashed line) depict some of the 3705
accessible phenotypes that are not found (as can be seen in see the inset of B). We estimate that about 1013 generations would be needed to find the
phenotypes with the smallest wpq=0.

doi:10.1371/journal.pone.0086635.g002
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discovery rate reflects the internal structure of the RNA: similar

genotypes typically have similar mutational neighbourhoods [23],

and so the population needs to neutrally explore longer in order to

find novelty. Nevertheless, a single c factor yields a remarkably

good fit for all the different phenotypes p (something we find for all

source phenotypes q we have so far studied). Finally, we note that

the three most frequent phenotypes are found relatively faster

because they satisfy wpq *> wL. As expected, for this larger system

the fraction of phenotypes for which this holds is lower than for the

random GP map with smaller L.

Overall, the evolutionary dynamics of this rather complex RNA

system resembles that of the much simpler random GP map. Most

importantly, the discovery times vary over many orders of

magnitude. More precisely, as long as wpq=0, Tp!1=wpq for

both the monomorphic and polymorphic regimes: Phenotypic bias

leads to a simple, systematic ordering in the discovery of novel

phenotypes.

The arrival of the frequent
The many orders of magnitude difference in the arrival rate of

variation between phenotypes should have many important

implications for evolutionary dynamics. Consider for example

the situation where the population has equilibrated to a phenotype

q, which was the fitness peak, when subsequently the environment

changes so that a different phenotype p has a higher fitness 1zs.

In order to fix, the alternative phenotype must first be found. If the

time-scale TE on which the environment changes again is much

longer than Tp then it likely that the population will discover and

fix p. However, if TE%Tp, then a new phenotype p’ may become

more fit before p has time to fix. Tp can vary over many orders of

magnitude, so many potentially highly adaptive phenotypes may

satisfy TpwTE and thus never be found.

Consider also the situation where two phenotypes p1 and p2 are

both more fit than q after an environmental change. If

s2ws1 *> 1=2N, then in a standard population genetics picture,

we would expect p2 to fix rather than p1 as long as Tp2 TE .

However, this argument ignores the rate at which variation arises.

If, for example, wp1q&wp2q, then p1 may fix well before p2 is

discovered and fixes.

To illustrate this effect, we study the L~12 RNA system

depicted in Figure 3, where the source neutral space has

Nq~1932 genotypes, while the two target phenotypes have

wp1q~0:067 and wp2q~0:0015, so wp2q=wp1q&0:022, a relatively

modest ratio compared to the what could be found from e.g. Fig. 2.

For this particular system wp1p2~0: there are no direct single

mutation connections between the two target phenotypes – p1 and

p2 are distinct peaks of the fitness landscape.

We simulated a population of N~1000 individuals with fixed

s1~0:002w1=2N, but with varying ratios s2=s1§1. The popu-

lation begins on phenotype q and evolves until p1 or p2 fixes.

Results are shown in Figure 4. As the mutation rate increases

and the system moves from the monomorphic to polymorphic

regime, the probability that p2 is discovered at least once increases

(and is largely independent of fitness). Nevertheless, phenotype p1

is discovered much earlier and also much more often because

wp1q&wp2q. Furthermore, in the monomorphic regime where j&1

the population remains on a single genotype g much longer than it

takes to explore all the neighbours. Thus if p1 is accessible from g,

then p1 is likely arise repeatedly in relatively quick succession (in

‘‘bursts’’). This effect, which arises naturally in our microscopic

model [24], can significantly enhance the probability of fixation

over that predicted by origin-fixation models [25] which ignore the

discreteness of the source neutral space.

Overall, our simulations show how the more frequent pheno-

type p1 can fix at the expense of the more fit phenotype p2. Given

the many orders of magnitude difference possible between the Tp,

such an ‘‘arrival of the frequent’’ effect may prevent the arrival of

the fittest: If a highly beneficial phenotype is never discovered, a

much less adaptive but easily accessible phenotype may go to

fixation instead.

Finally, phenotype p2 is significantly less mutationally robust

than p1 (more frequent phenotypes are typically more robust

[13,16]), and so once discovered, produces deleterious mutants at

a higher rate, making it harder for p2 to fix at higher mutations

rates, a phenomenon known as ‘‘survival of the flattest’’ [26],

observed here for the lower ratios s2=s1 at higher m. Thus both the

‘‘arrival of the frequent’’ and the ‘‘survival of the flattest’’ mitigate

against the fixation of phenotypes with lower frequency Fp, even if

their fitness is much higher.

We note that differences in neutral network size have

traditionally also been taken into account in terms of free fitness

[27], which – in analogy with free energy in statistical physics [28]

– incorporates an entropy-like component to account for

mutational effects such as genetic drift and mutational robustness.

This picture provides a theoretical foundation for the ‘‘survival of

the flattest’’ [26] effect we observe at high mutation rates in

Figure 4. However, the ‘‘arrival of the frequent’’ effect is

fundamentally different because it does not rely on mutation-

selection balance and quasi-equilibrium or steady-state assump-

tions like free-fitness theory does. Rather, it reflects the strongly

non-equilibrium effect that p2 is rarely or never found. In the

example above, the difference in discovery times between p1 and

p2 is rather modest, and so at large enough mutation rates p2 is

found fairly regularly and free-fitness could be used to analyse

results in that regime. But as can be seen for instance in Figure 2

for L~20 RNA, differences in discovery times can vary over many

more orders of magnitude than is the case for our particular

example, so that in practice highly adaptive yet rare phenotypes

may not be discovered at all, even on very long timescales.

Discussion

Mutations provide the fuel for natural selection. Based on this

principle, we have presented a detailed model of evolutionary

dynamics that focuses on a microscopic description of the outcome

of mutations. The phenotypic effect of mutations is mediated by

the genotype-phenotype (GP) map which is therefore a crucial

ingredient. As outlined in the introduction, several generic features

are shared by many different example maps, independent of

model details. Here we mainly focussed on the fact that these

mapping are highly biased: Some phenotypes are realised by orders

of magnitude more genotypes than most other phenotypes.

Our calculations for a simplified random mapping and for the

more complex RNA secondary structure model predict that the

large bias observed in the GP maps translates into a similar order

of magnitude variation in the median discovery times Tp for a

range of population genetic parameters. For both maps the local

frequencies wpq (which predict discovery times) are a good

predictor for the discovery times Tp. For the random GP map

wpq&Fp. For RNA this relationship provides a rough first order

estimate, but the local frequencies can also deviate strongly,

especially when wpq~0, which can occur even when the global

frequency Fp is large. For both maps the strong bias in the GP

map leads to a systematic ordering of the median discovery times of

alternative phenotypes, an effect that we postulate may hold for

other GP maps as well.
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In light of the simplicity of our mean-field approximation, its

success in predicting the first-discovery time Tp (cf. Figure 2) is

rather striking. In the random GP map, the excellent agreement

probably arises because all genotypes in the source neutral space

are similar in the sense that they have the same probability

distribution to have a certain mutational neighbourhood. There

are static fluctuations because the number of neighbours is less

than the number of states with wpq=0. But while these fluctuations

have an effect on processes like fixation, they average out over the

many runs used to find the mean or median Tp. By contrast, in the

RNA GP map mutational neighbourhoods of adjacent genotypes

are often correlated [13,23] so that a single neutral mutation does

not completely re-shuffle the accessible phenotypes (as the mean-

field assumption would assume). This effect explains why the value

of the exploration parameter c we obtain by fitting is below the

value suggested by our mean-field model, and also why we still

observe around 1 order of magnitude variation in Tp for very

similar values of wpq (see Figure 2). Despite such correlations

(which we postulate may occur in other realistic GP maps), rare

phenotypes (low wpq) remain hard to find; the strong phenotypic

bias in the RNA GP map provides a good a posteriori justification

for our mean-field calculations: The many orders of magnitude

range in wpq dominates the scale of the phenotype discovery times.

The large differences we observe in the rate with which potential

variation appears should have many consequences for evolutionary

dynamics. There is of course a long history of invoking processes that

impose directionality on the pathways available for evolutionary

exploration (see ref. [29] for a recent discussion). Here, by solving

microscopic population genetic models, we show in detail just how

strong these orienting processes can be. Other authors have also

pointed out how evolution may favour phenotypes with large neutral

networks for RNA, see e.g. refs. [5,22]. Similar points have been

made for protein models [12]. Consider, for example, our L~20

RNA system. Despite its rather modest size, we find 10 orders of

magnitude difference between the discovery times of frequent and

rare phenotypes. These differences should be even more pronounced

for larger L. In nature, selectable RNA phenotypes are of course

characterised by more than just their secondary structure, and

evolutionary processes don’t always work at constant L. Neverthe-

less, it is hard to see how such enormous variations in Tp would not

persist in some form in much more sophisticated treatments of

biological RNA. Similar arguments can be made for the other GP

maps we listed above. More generally we emphasise that including

the GP map in population genetic calculations may be of importance

to a wide range of evolutionary questions.

We explicitly showed how phenotypes with a high local

frequency can fix at the expense of locally rare phenotypes, even

if the latter have much higher fitness. Taken together, these

arguments suggest that the vast majority of possible phenotypes

may never be found, and thus never fix, even though they may

globally be the most fit: Evolutionary search is deeply non-ergodic.

When Hugo de Vries was advocating for the importance of

mutations in evolution, he famously said ‘‘Natural selection may

explain the survival of the fittest, but it cannot explain the arrival

of the fittest’’ [2]. Here we argue that the fittest may never arrive.

Instead evolutionary dynamics can be dominated by the ‘‘arrival

of the frequent’’.

Figure 3. Interconnections of neutral spaces in RNA influence evolutionary trajectories. A) L~12 RNA neutral component for phenotype
q with Nq~1932 genotypes (drawn in blue). Lines depict single mutations to itself, or to two alternative phenotypes p1 (grey) and p2 (red). The
genotypes were ordered using the Fruchterman-Reingold algorithm [30]. B) Illustration of the fitness landscape.
doi:10.1371/journal.pone.0086635.g003

Figure 4. The arrival of the frequent. Probability that phenotype p2
is discovered (dotted lines) or is fixed (dashed lines) as a function of
mutation rate m for different relative selection coefficients s2=s1 for
Ns1~2. The probability that p2 is discovered is independent of relative
fitness (within statistical simulation errors). Phenotype p1 is much more
likely to fix than phenotype p2, even when the latter is much more fit,
due to an ‘‘arrival of the frequent’’ phenomenon.
doi:10.1371/journal.pone.0086635.g004
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Methods

Simulations
In the dynamic simulations, all N individuals of the population

are initially assigned to a single random genotype in the source

neutral space. Then the population evolves for 10N generations to

reach a steady-state dispersal on the neutral space before

measurements are started.

RNA
Secondary structures for RNA were predicted from sequence

using the Vienna package [15], version 1.8.5 with all parameters

set to their default values.

Supporting Information

Appendix S1

(PDF)

Figure S1 Static properties of the random GP map. A) Global

phenotypes frequencies. In addition to the distribution of frequen-

cies Fp used in our simulations (orange), the diagram also shows the

frequencies of RNA secondary structures at L~12, obtained by

exhaustive enumeration using the Vienna package, Version 1.8.5

with all parameters set to their default values [15]. B) Comparison of

global frequencies Fp and local frequencies wpq for the source

neutral space q with rank 1. The robustness of phenotype q (r:wqq)

is marked in green; alternative phenotypes (p=q) are shown in light

blue. The dashed line marks the equality of global and local

frequency Fp~wpq. The relative size of deviations becomes more

severe as Fp becomes small: The less genotypes map into p, the less

will frozen fluctuations in the GP map average out.

(TIF)

Figure S2 Total number of mutants per phenotype in

different dynamic settings. The diagram shows the total

number of mutants Mp~
PT

t~1 mp(t) carrying phenotype p that

were produced during a total of T~104=(Nm) generations of

simulation under the random GP map. Dots show the average

over 100 simulations, error bars show the standard deviation. The

dashed lines correspond to the mean-field theory Mp~NLmwpqT

that follows directly from Eq. (3). In panels B and D, the

populations are in the highly polymorphic regime (NLm&1) and

hence evolve towards greater robustness [19] so that the total

number of non-neutral mutants is reduced.

(TIF)

Figure S3 Scaling of Nc with population dynamic

parameters. The diagram shows the dependence of c on: A)

mutation rate m, B) population size N and C) number of mutants

per generation NLm. Note that the y-axis has been scaled by

population size N.

(TIF)

Figure S4 Scaling of c with population dynamic param-

eters. The diagram shows the dependence of c on: A) mutation

rate m, B) population size N and C) number of mutants per

generation NLm. In contrast to Figure S3, the y-axis shows c
without any scaling factors.

(TIF)

Figure S5 Phenotypic bias for RNA secondary struc-

tures of length L~20. A) Global phenotype frequencies Fp for

all NP~11,219 secondary structures. It required about 1 CPU-

year on typical present-day hardware to fold all 420&1012

sequences once using the fold-routine of the Vienna package

[15], version 1.8.5 with all default parameters. B–D) Local

phenotype frequencies wpq around 3 neutral spaces. An example

sequence and its secondary structure is given in each panel;

starting from this sequence, the wpq can be obtained exactly by

tracing out all possible neutral mutations and counting how often

each phenotype is produced. Insets: Comparison of global and local

frequencies. Accessible phenotypes (wpqw0) are drawn in blue,

inaccessible phenotypes (wpq~0) are shown in orange and the

phenotype corresponding to the neutral space itself is shown in

green (wqq:r). The dashed line marks the equality of local and

global frequencies Fp~wpq and the dotted line indicates the

minimal (non-zero) local frequency wmin,q~1=(3LNq), corre-

sponding to only a single mutation away from one of the Nq

genotypes in the neutral space. Inaccessible phenotypes with very

small global frequencies are omitted for clarity. Note that all these

phenotypes are relatively rare ones when compared to Fig. 2b.

(TIF)

Figure S6 Predictions based on global frequency. The

diagram shows the same median discovery times of alternative

RNA secondary structures that are displayed in Figure 2c, but

here as a function of the phenotypes’ global frequencies Fp rather

than their local frequencies wpq. The different colors indicate:

Accessible phenotypes that are typically discovered within the

simulation time (Tp(1=2)ƒ2|109), wpqw0, light blue); accessible

phenotypes that are typically not discovered (Tp(1=2)w2|109,

wpqw0, dark blue); inaccessible phenotypes that are typically

discovered (Tp(1=2)ƒ2|109, wpq~0, orange); inaccessible phe-

notypes that are typically not discovered (Tp(1=2)w2|109,

wpq~0, red). The lines correspond to the prediction for Tp based

on global rather than local frequencies: Tp(1=2)~log 2=(NLmFp)

(cf. Eq. (4)), dashed) and Tp(1=2)~log 2=(3L2mrFp) (cf. Eq. (7)).

In contrast to the predictions based on the local frequencies wpq in

Figure 2c, we note the following: 1) Several phenotypes arise even

earlier than predicted by the analogue of the polymorphic limit

(points below dashed line). 2) Many phenotypes are not discovered

even though other phenotypes of comparable (and even much

lower) frequency do arise during the simulation. 3) 4 of the most

frequent, but locally inaccessible phenotypes are discovered on a

time-scale when double mutations become relevant (orange dots;

since N~100 and m~10{5, double mutants occur on the

timescale t2&1=(N(Lm)2~2:5|105, so if double mutations were

to lead to globally random phenotypes, we expect phenotypes with

wpq~0 to be discovered around Tp&t2 log 2=Fp.)

(TIF)
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